WEAKLY P2 AND RELATED PROPERTIES

CHARLES DORSETT

Department of Mathematics Texas A&M University-Commerce Commerce, Texas 75429 USA e-mail: charles.dorsett@tamuc.edu

Abstract

In 1975, T_0 -identification spaces were used to further characterize weakly Hausdorff spaces raising the question of whether the process used to characterize weakly Hausdorff could be generalized to include additional properties. The consideration of that question led to the introduction and investigation of weakly *Po* properties. As in the 1975 characterization of weakly Hausdorff, the *Po* separation axioms has a major role in the definition and properties of weakly *Po* properties. Thus the question of what would happen if T_0 in the definition of weakly *P* was replaced by T_1 or T_2 arose leading to the definition and investigation of weakly *P*1 properties. Within this paper, the investigation continues with the definition and investigation of weakly *P*2 properties.

1. Introduction

In 1975 [8], T_0 -identification spaces were used to further characterize weakly Hausdorff spaces.

Keywords and phrases: weakly P2 properties, weakly Po properties, T₀-identification spaces.

2010 Mathematics Subject Classification: 54A05, 54B15, 54D10.

Received September 25, 2015; Accepted October 23, 2015

© 2015 Fundamental Research and Development International

 T_0 -identification spaces were introduced in 1936 [9].

Definition 1.1. Let (X, T) be a space, let *R* be the equivalence relation on *X* defined by xRy iff $Cl(\{x\}) = Cl(\{y\})$, let X_0 be the set of *R* equivalence classes of *X*, let $N : X \to X_0$ be the natural map, and let Q(X, T) be the decomposition topology on X_0 determined by (X, T) and the map *N*. Then $(X_0, Q(X, T))$ is the T_0 -identification space of (X, T).

Within the 1936 paper [9], T_0 -identification spaces were used to further characterize pseudometrizable spaces.

Theorem 1.1. A space (X, T) is pseudometrizable iff $X_0, Q(X, Q(X, T))$ is metrizable [9].

Theorem 1.2. A space (X, T) is weakly Hausdorff iff $(X_0, Q(X, T))$ is Hausdorff [8].

In the 1975 paper [8], it was proven that weakly Hausdorff is equivalent to the R_1 separation axiom, which was introduced in 1961 [1].

Definition 1.2. A space (X, T) is R_1 iff for x and y in X such that $Cl(\{x\}) \neq Cl(\{y\})$, there exist disjoint open sets U and V such that $x \in V$ and $y \in V$ [1].

Within the 1961 paper [1], A. Davis was interested in separation axioms R_i , which together with T_i , are equivalent to T_{i+1} ; i = 0, 1, respectively, leading to the definition of R_1 and the rediscovery of the R_0 separation axiom, which is weaker than R_1 .

Definition 1.3. A space (X, T) is R_0 iff for each $O \in T$ and each $x \in O$, $Cl(\{x\}) \subseteq O$ [1].

The separation axioms R_i ; i = 0, 1 satisfied Davis' expectations [1].

Within a recent paper [2], weakly Hausdorff was generalized to weakly *Po* properties.

Definition 1.4. Let P and S be topological properties. Then a space has property

P implies *S* iff the space is a *P* space that satisfies *S* [2].

For convenience, for a topological property P, P implies T_0 is denoted by Po.

Definition 1.5. Let *P* be a topological property for which *Po* exists. Then (X, T) is weakly *Po* iff $(X_0, Q(X, T))$ has property *P*. A topological property *Po* for which weakly *Po* exists is called a weakly *Po* property [2].

As a result of the role of T_0 in the weakly *Po* property process, within the introductory paper [2], it was proven that for a topological property *P* for which weakly *Po* exists, a space is weakly *Po* iff its T_0 -identification space has property *Po*.

Even though weakly *Po* properties were undefined at the time, since (pseudometrizable)*o* equals metrizable, metrizable was the first known weakly *Po* property and weakly (metrizable) = pseudometrizable. Within the paper [2], it was established that both T_2 and T_1 are weakly *Po* properties, with weakly $T_2 = R_1$ and weakly $T_1 = R_0$.

In the introductory weakly *Po* property paper [2], it was shown that both T_0 and "not- T_0 " are not weakly *Po* properties, where "not- T_0 " is the negation of T_0 . Also, within the paper [2], it was shown that a space is weakly *Po* iff its T_0 -identification space is weakly *Po*. The combination of this result with the fact that other topological properties are simultaneously shared by a space and its T_0 -identification space led to the introduction and investigation of T_0 -identification *P* properties, which generalize weakly *Po* properties [3].

Definition 1.6. Let *S* be a topological property. Then *S* is a T_0 -identification *P* property iff both a space and its T_0 -identification space simultaneously share property *S* [3].

Within the paper [4], it was proven that both R_0 and R_1 are T_0 -identification P properties.

As in the case of weakly *P*o properties, both T_0 and "not- T_0 " fail to be T_0 identification *P* properties [3] and weakly *P*1 properties [5]. Within the paper [5], the knowledge and insights obtained from the investigations of weakly *Po* and T_0 -

CHARLES DORSETT

identification *P* properties were used to define and investigate weakly *P*1 properties and to further investigate weakly *Po* and T_0 -identification *P* properties.

For convenience of notation, let P1 denote P implies T_1 .

Definition 1.7. Let *P* be a topological property for which *P*1 exists. Then (X, T) is weakly *P*1 iff $(X_0, Q(X, T))$ is *P*1. A topological property *P*1 for which weakly *P*1 exists is called a weakly *P*1 property.

In this paper, the investigation continues with the introduction and investigation of weakly P2 properties.

2. Weakly P2 Properties

For convenience of notation, let P2 denote P implies T_2 .

Definition 2.1. Let *P* be a topological property for which *P*2 exists. Then (X, T) is weakly *P*2 iff $(X_0, Q(X, T))$ is *P*2. A topological property *P*2 for which weakly *P*2 exists is called a weakly *P*2 property.

Note that the definition of weakly *P*2 is totally consistent with the definitions of weakly *P*0 and weakly *P*1 properties.

Theorem 2.1. Let P be a topological property for which P1 exists. Then (P2)1 = (P2)o = P2 = P1 and $R_1 = Po$ and R_1 .

Proof. Since P2 implies each of T_0 and T_1 , we have (P2)1 and (P2)o exist, and (P2)1 = ((P and T_2) and T_1) = P and (T_2 and T_1) = P and T_2 = P2, (P2)o = (P and T_2) and $T_o = P$ and (T_2 and T_0) = P and T_2 = P2, P2 = P and $T_2 = P$ and (T_1 and R_1) = (P and T_1) and R_1 = P1 and R_1 = (P and (T_0 and R_0)) and R_1 = (P and T_0) and (R_0 and R_1)) = Po and R_1 .

Theorem 2.2. Let Q be a topological property for which Q2 exists. Then the following are equivalent: (a) Q2 is a weakly P2 property, (b) Q2 is a weakly P1 property, (c) Q2 is a weakly Po property, (d) weakly Q2 = (weakly Q1) and R_1 , and (e) weakly Q2 = (weakly Qo) and R_1 .

Proof. (a) implies (b): Since (Q2)I = Q2 and Q2 is a weakly P2 property,

weakly (Q2) = weakly Q2 exists and Q2 is a weakly P1 property.

(b) implies (c): Since (Q2)o = (Q2)I = Q2 and Q2 is a weakly P1 property, weakly Q2 = weakly (Q2)o exists and Q2 is a weakly Po property.

(c) implies (d): Since Q2 is a weakly Po property, then weakly Q2 = weakly (Q2)o exists and Q2 is a weakly Q2 property. Let (X, T) be a space. Then (X, T) is weakly Q2 iff $(X_0, Q(X, T))$ is Q2 = Q1 and R_1 iff $(X_0, Q(X, T))$ is Q1 and $(X_0, Q(X, T))$ is R_1 iff (X, T) is (weakly Q1) and (X, T) is R_1 . Thus weakly Q2 = (weakly Q1) and R_1 .

(d) implies (e): Since weakly Q1 = (weakly Qo) and R_0 , then weakly Q2 = (weakly Q1) and $R_1 =$ ((weakly Qo) and R_0) and $R_1 =$ (weakly Qo) and $(R_0$ and R_1) = (weakly Qo) and R_1 .

(e) implies (a): Since weakly Q2 exists, Q2 is a weakly P2 property.

Corollary 2.1. Let Q2 be a weakly Q2 property. Since weakly Q2 is a weakly Po property, weakly Q2 is neither T_0 nor "not- T_0 " and both ((weakly Q2) and T_0) and ((weakly Q2) and "not- T_0 ") exist.

Corollary 2.2. Let Q2 be a weakly P2 property. Then Q2 is a weakly P1 property and Q0 is a weakly P0 property.

Theorem 2.3. Let Q2 be a weakly P2 property. Then weakly Q2 is a topological property.

Proof. Since weakly Q2 = (weakly Qo) and R_1 , weakly Qo is a topological property [2], and R_1 is a topological property, then weakly Q2 is a topological property.

Within the paper [4], it was shown that compact is a T_0 -identification P property. Since (compact)o exists, (compact)o is a weakly Po property, since (compact)1 exists, (compact)1 is a weakly P1 property, and since (compact)2 exists, (compact)2 is a weakly P2 property. Thus, the converse of Corollary 2.2 is not true. Also, the example shows that weakly Po, weakly P1, and weakly P2 can all be different raising the question of when all three are equal.

CHARLES DORSETT

Theorem 2.4. Let Q2 be a weakly P2 property. Then the least topological property P for which T_0 -identification P = weakly P0 = weakly P1 = weakly P2 is R_1 .

Proof. Since R_1 is a T_0 -identification property and weakly $(R_1)o$ = weakly $(R_1)l$ = weakly $(R_1)2 = R_1$, R_1 satisfies the required property. Let Q2 be a weakly P2 property satisfying the requirements. Then weakly Q2 = (weakly Qo) and R_1 , which implies R_1 . Thus R_1 is the least topological property satisfying the required properties.

A natural question to pose at this point is "If Q2 and W2 are weakly P2 properties and weakly Q2 = weakly W2, must Q2 = W2?", which is resolved below.

Theorem 2.5. Let Q2 be a weakly P2 property and let (X, T) be a space. Then the following are equivalent: (a) $(X_0, Q(X, T))$ has property Q2, (b) $(X_0, Q(X, T))$ is weakly Q2, and (c) $(X_0, Q(X, T))$ is (weakly Q2)o.

Proof. (a) implies (b): Since $(X_0, Q(X, T))$ is homeomorphic to $((X_0)_0, Q(X_0, Q(X_0, Q(X, T))))$ [2], then $((X_0)_0, Q(X_0, Q(X_0, Q(X, T))))$ has property Q2, which implies $(X_0, Q(X, T))$ is weakly Q2.

(b) implies (c): Since $(X_0, Q(X, T))$ is T_0 [9], $(X_0, Q(X, T))$ is (weakly Q2)o.

(c) implies (a): Since $(X_0, Q(X, T))$ is (weakly Q_2)o, $(X_0, Q(X, T))$ is weakly Q_2 . Then $((X_0)_0, Q(X_0, Q(X_0, Q(X, T))))$ has property Q_2 , which, by the homeomorphic given above, implies $(X_0, Q(X, T))$ has property Q_2 .

Corollary 2.3. Let Q2 be a weakly P2 property and let (X, T) be a space. Then (X, T) is weakly Q2 iff $(X_0, Q(X, T))$ is weakly Q2.

Corollary 2.4. Let Q2 be a weakly P2 property. Then weakly Q2 is a T_0 -identification P property.

Theorem 2.6. Let Q2 be a weakly P2 property. Then Q2 = (weakly Q2)o.

16

Proof. Let (X, T) be a space. Suppose (X, T) has property Q2. Then (X, T) is T_0 and (X, T) and $(X_0, Q(X, T))$ are homeomorphic [6]. Thus $(X_0, Q(X, T))$ is Q2, which implies $(X_0, Q(X, T))$ is (weakly Q2)o. Since each of (weakly Q2) and T_0 are topological properties, then, because of the homeomorphism, (X, T) is (weakly Q2)o. Thus Q2 implies (weakly Q2)o.

Suppose (X, T) has property (weakly Q2)o. Then (X, T) is T_0 and (X, T)and $(X_0, Q(X, T))$ are homeomorphic [6]. Thus $(X_0, Q(X, T))$ has property (weakly Q2)o, which implies $(X_0, Q(X, T))$ has property Q2 and (X, T) has property Q2. Thus (weakly Q2)o implies Q2.

Therefore Q2 = (weakly Q2)o.

The next result resolves the questions about what happens if the weakly *P*2 property process is repeated.

Theorem 2.7. Let Q2 be a weakly Q2 property. Then weakly (weakly Q2) = weakly Q2.

Proof. Let (X, T) be a space. Then (X, T) is weakly Q2 iff $(X_0, Q(X, T))$ is Q2 iff $(X_0, Q(X, T))$ is weakly Q2 iff (X, T) is weakly (weakly Q2). Thus weakly (weakly Q2) = weakly Q2.

If Q2 and W2 are weakly P2 properties and weakly Q2 = weakly W2, must Q2 = W2?

Theorem 2.8. Let Q2 and W2 be weakly P2 properties. Then Q2 = W2 iff weakly Q2 = weakly W2.

Proof. Clearly, if Q2 = W2, then weakly Q2 = weakly W2. Thus, consider the case that weakly Q2 = weakly W2. Then Q2 = (weakly Q2)o = (weakly W2)o = W2.

Within the paper [7], it was proven that for a topological property *P* for which weakly *Po* exists, weakly *Po* is strictly weaker than *Po* and thus *Po* is not a T_0 -identification *P* property. Must a similar statement be true for weakly *P2* properties?

CHARLES DORSETT

Theorem 2.9. Let Q2 be a weakly P2 property. Then weakly Q2 is strictly weaker than Q2 and Q2 is not a T_0 -identification P property.

Proof. Since weakly Q2 = weakly Q2 = weakly Q2 = weakly (Q2)o is strictly weaker than (Q2)o = Q2 and Q2 is not a T_0 -identification P property.

Theorem 2.10. Let Q2 be a weakly P2 property and let $S = \{S \mid S \text{ is a topological property, So exists, and So implies Q2}. Then <math>S = \phi$ and weakly Q2 is the least element of S.

Proof. Since weakly Q^2 is a topological property and (weakly $Q^2)o = Q^2$, weakly $Q^2 \in S$. Let $S \in S$. Then (S and weakly Q^2) is a topological property, (S and weakly $Q^2)o$ implies So, and So implies Q2, which implies (S and weakly $Q^2) \in S$. Thus for each $S \in S$, (S and weakly $Q^2) \in S$. Since for each $S \in S$, (S and weakly $Q^2) \in S$. Since for each $S \in S$, (S and weakly Q^2) implies weakly Q^2 , then for each $S \in S$, S implies weakly Q^1 . Hence weakly Q^2 is the least element of S.

Theorem 2.11. *Of all the topological properties S such that So implies* T_2 , R_1 *is the least such topological property.*

Proof. Since weakly $T_2 = R_1$, R_1 is the least such topological property.

Theorem 2.12. Let Q2 be a weakly P2 property. Then weakly $Q2 = ((\text{weakly } Q2) \text{ and } T_0)$ or $((\text{weakly } Q2) \text{ and "not-} T_0")$, where both $((\text{weakly } Q2 \text{ and } T_0) \text{ and } ((\text{weakly } Q2) \text{ and "not-} T_0")$ exist and neither are weakly P2 properties.

Proof. By Corollary 2.1, both ((weakly Q2) and T_0) and ((weakly Q2) and "not- T_0 ") exist. Thus weakly $Q2 = ((\text{weakly } Q2) \text{ and } T_0)$ or ((weakly Q2) and "not- T_0 "), where both ((weakly Q2) and T_0) and ((weakly Q2) and "not- T_0 ") exist. Since ((weakly Q2) and "not- T_0 ") does not imply T_2 , ((weakly Q2) and "not- T_0 ") is not a weakly P2 property. Since ((weakly Q2) and T_0) = (weakly Q2) and T_0) = (weakly Q2) o = Q2 and weakly Q2 is strictly weaker than Q2, ((weakly Q2) and T_0) is not a weakly P2 property.

Corollary 2.5. Each weakly P2 property can be decomposed into two distinct topological properties, neither of which are weakly P2 properties.

When investigating topological properties, questions concerning product spaces and subspaces naturally arise. Below known properties of weakly *Po* product spaces and weakly *Po* subspaces are used to answer questions concerning product spaces and subspaces of weakly *P*1 and weakly *P*2 properties.

3. Product Spaces and Subspaces of Weakly P1 and Weakly P2 Properties

In this section, a topological property P for which the product of a collection of spaces, with the Tychonoff topology, has property P iff each factor space has property P is called a product property.

Theorem 3.1. Let $\mathcal{P} = \{Z \mid Z \text{ is a topological and product property for which weakly P1 exists }. Let <math>P \in \mathcal{P}$, let (X_{α}, T_{α}) be a space for each $\alpha \in A$, $X = \prod_{\alpha \in A} X_{\alpha}$, and let W be the Tychonoff topology on X. Then (X_{α}, T_{α}) is weakly P1 iff (X, W) is weakly P1.

Proof. Suppose (X_{α}, T_{α}) is weakly P1 for each $\alpha \in A$ Since weakly P1 = (weakly Po) and R_0 [5], then weakly Po exists and (X_{α}, T_{α}) is (weakly Po) and R_0 for each $\alpha \in A$ and (X, W) is weakly Po [5] and R_0 , which implies (X, W) is weakly P1.

Conversely, suppose (X, W) is weakly P1. Then (X, W) is (weakly Po) and R_0 , which implies (X_{α}, T_{α}) is (weakly Po) [5] and R_0 for each $\alpha \in A$ and thus weakly P1.

Theorem 3.2. Let \mathcal{P} be as in Theorem 3.1 and let $P \in \mathcal{P}$. Then (weakly P1) and P1 are in \mathcal{P} .

Proof. Since weakly P1 is a topological property, weakly P1 is a product property, and weakly (weakly P1) = weakly P1 [5], then weakly $P1 \in \mathcal{P}$.

Since P1 = (weakly Po) and T_0 [5], both of which are topological and product properties, then $P1 \in \mathcal{P}$.

Using the results above in this paper and arguments similar to those of Theorem 3.1 and Theorem 3.2, (weakly *P*1) and *P*1 in Theorems 3.1 and 3.2 can be replaced

by weakly P2 and P2, respectively.

A topological property P for which a space has property P iff each subspace has property P is called a subspace property.

Theorem 3.3. Let $S = \{Z \mid Z \text{ is a topological, subspace property and weakly P1 exists }. Let <math>S \in S$. Then weakly S1 is a subspace property.

Proof. Suppose (X, T) is weakly S1. Then weakly S1 = (weakly So) and R_0 , where weakly So is a subspace property [5] and R_0 is a subspace property [5], which implies each subspace of (X, T) is (weakly So) and R_0 = weakly S1.

Conversely, suppose each subspace of (X, T) is weakly S1. Then each subspace of (X, T) is (weakly So) and R_0 , which implies (X, T) is (weakly So) and R_0 = weakly S1.

Theorem 3.4. Let S be as in Theorem 3.3 and let $S \in S$. Then (weakly S1) and S1 are in S.

Proof. Since (weakly S1) is a topological, subspace property and weakly (weakly S1) = weakly S1, then (weakly S1) $\in S$.

Since S1 = (weakly S1) and T_0 , where both (weakly S1) and T_0 are topological, subspace properties, then S1 is a topological, subspace property.

Using the results above and arguments similar to those of Theorems 3.3 and 3.4, (weakly *S*1) and *S*1 in Theorems 3.3 and 3.4 can be replaced by (weakly *S*2) and *S*2, respectively.

References

- A. Davis, Indexed systems of neighborhoods for general topological spaces, Amer Math. Monthly 68 (1961), 886-893.
- [2] C. Dorsett, Weakly P properties, Fundamental J. Math. Math. Sci. 3(1) (2015), 83-90.
- [3] C. Dorsett, T₀-identification P and weakly P properties, Pioneer J. Math. Math. Sci. 15(1) (2015), 1-8.
- [4] C. Dorsett, T_0 -identification spaces and R_1 spaces, Kyungpook Math. J. 18(2) (1978), 167-174.

- [5] C. Dorsett, Weakly P1, weakly Po, and T_0 -identification P properties, submitted.
- [6] C. Dorsett, New characterizations of separation axioms, Bull. Cal. Math. Soc. 99(1) (2007), 37-44.
- [7] C. Dorsett, Weakly Po and T_0 -identification P properties, and not-separation axioms, submitted.
- [8] W. Dunham, Weakly Hausdorff spaces, Kyungpook Math. J. 15(1) (1975), 41-50.
- [9] M. Stone, Application of Boolean Algebras to topology, Mat. Sb. 1 (1936), 765-771.