UNIFORMLY CONVERGENT STOLZ THEOREM FOR SEQUENCES OF FUNCTIONS

CAO HAIJUN and YAN HAN*

Science College Shandong Jiaotong University P. R. China Shandong University of Finance and Economics Shandong 250000 P. R. China

Abstract

Based on the lemma from Toplitz transformation for sequences of uniformly convergent functions, we derive and prove the uniformly convergent Stolz theorem for sequences of functions in region *I*.

1. Introduction

In this paper, we start from Stolz theorem for infinite sequences and generalize it to Stolz theorem for sequences of functions. First we give the following theorems for

*Corresponding author

Received August 13, 2016; Revised November 16, 2016; Accepted November 24, 2016

© 2017 Fundamental Research and Development International

Keywords and phrases: sequences of functions, Toplitz transformation, Stolz theorem.

²⁰¹⁰ Mathematics Subject Classification: 40A30.

This work is supported by a project of Shandong Province Higher Educational Science and Technology Program (No. J14LI57); The Scientific Research Foundation of Shandong Jiaotong University (No. Z201428), and Research Fund for the Doctoral Program of Shandong Jiaotong University.

infinite sequences:

Theorem 1 (Stolz Theorem [1-5]). Let $\{a_n\}$ and $\{b_n\}$ be two sequences such that

(1) $\{a_n\}$ is a strictly monotone increasing sequence;

(2) $\lim_{n \to \infty} a_n = +\infty$.

If
$$\lim_{n \to \infty} \frac{b_{n+1} - b_n}{a_{n+1} - a_n} = l$$
 exists (having a limit of positive and negative infinity), then

$$\lim_{n \to \infty} \frac{b_n}{a_n} = l.$$

There is no requirement for sequence $\{b_n\}$ to have a limit of ∞ , so this theorem could be remarked as $\frac{*}{\infty}$ Stolz theorem. Similarly, we generalize Stolz theorem for sequences of uniformly convergent functions with indeterminate expression as following:

Theorem 2. If two sequences of functions $\{f_n(x)\}$ and $\{g_n(x)\}$ satisfy the following conditions in region I,

- (1) $g_n(x)$ is uniformly convergent to $+\infty$ on region I;
- (2) For any $x \in I$, $0 < \{g_n(x)\}$ monotone increases;
- (3) For any given n, function $\frac{f_{n+1}(x) f_n(x)}{g_{n+1}(x) g_n(x)}$ is bounded on region I.

Then, if $\frac{f_{n+1}(x) - f_n(x)}{g_{n+1}(x) - g_n(x)}$ is uniformly convergent to h(x), $\frac{f_n(x)}{g_n(x)}$ is uniformly

convergent to h(x).

Similar to the proof of Stolz theorem for unlimited sequences, we need to give Toplitz transformation for sequences of functions which are the following three lemmas.

Lemma 1. Let sequences of functions $\{f_n(x)\}, \{g_n(x)\}, and \{a_{ij}(x)\}$ be

defined in region I, if for any $x \in I$, we have:

$$\begin{pmatrix} g_{1}(x) \\ g_{2}(x) \\ \dots \\ g_{n}(x) \\ \dots \end{pmatrix} = \begin{pmatrix} a_{11}(x) & 0 & \cdots & 0 & \cdots \\ a_{21}(x) & a_{22}(x) & \cdots & 0 & \cdots \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1}(x) & a_{n2}(x) & \cdots & a_{nn}(x) & \cdots \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix} \begin{pmatrix} f_{1}(x) \\ f_{2}(x) \\ \dots \\ f_{n}(x) \\ \dots \\ \dots \end{pmatrix}$$

and the following hold;

(1)
$$a_{ij}(x) \ge 0, \ j < i, \ i, \ j = 1, \ 2, \ L, \ \forall x \in I;$$

(2) $\sum_{j=1}^{i} a_{ij}(x) = 1, \ \forall i \in N, \ \forall x \in I;$

(3) For any $j \in N$, $x \in I$; a_{nj} is uniformly convergent to 0 when n approaches infinity;

(4) For any n, $f_n(x)$ is bounded in region I.

Then, if $\{f_n(x)\}$ is uniformly convergent to $h(x), x \in I$, we have

$$\sum_{j=1}^{n} a_{nj}(x) f_j(x) = g_n(x) \Longrightarrow h(x), \quad n \to \infty, \ x \in I.$$

Proof. For any n, $f_n(x)$ is bounded in region I, if $\{f_n(x)\}$ is uniformly convergent to h(x), then $\{f_n(x)\}$ and h(x) are uniformly bounded in region I, that means there exists M > 0 such that for any $n, x \in I$, $|f_n(x)| \le M$. Further because $\{f_n(x) - h(x)\}$ is uniformly convergent to 0, then for $\varepsilon = 1$, there exists N > 0, for any n > N, $x \in I$, $\{f_n(x) - h(x)\} < 1$.

Let $M = \max\{M_1, M_2, \dots, M_N, 1\}$, where M_i is the bound for $f_i - h(x)$ in region *I*, thus for any $x \in I$, *n*, we have

$$|f_n(x) - h(x)| \le M.$$

As $\{f_n(x)\}\$ is uniformly convergent to h(x), we know that for any $\varepsilon > 0$, there

exists a N_0 , for any $n > N_0$, $x \in I$, we have

$$\left|f_n(x)-h(x)\right|<\frac{\varepsilon}{2}.$$

Moreover, for any n, $\{a_{nj}(x)\}$ is uniformly convergent to 0, we have

 $\left\{M\sum_{j=1}^{N_0} a_{nj}(x)\right\}$ uniformly convergent to 0, therefore for the above $\frac{\varepsilon}{2}$, there exists a

 N_1 , for any $n > N_1$, $x \in I$,

$$M\sum_{j=1}^{N_0}a_{nj}(x)<\frac{\varepsilon}{2}.$$

Let $N = N_0 + N_1$, when n > N, for any $x \in I$, we have:

$$\begin{split} |g_n(x) - h(x)| &= \left| \sum_{j=1}^n a_{nj}(x) f_j(x) - h(x) \right| = \left| \sum_{j=1}^n a_{nj}(x) f_j(x) - h(x) \sum_{j=1}^n a_{nj}(x) \right| \\ &= \left| \sum_{j=1}^n a_{nj}(x) (f_j(x) - h(x)) \right| \le \sum_{j=1}^n |a_{nj}(x)| |f_j(x) - h(x)| \\ &= \sum_{j=1}^{N_0} |a_{nj}(x)| |f_j(x) - h(x)| + \sum_{j=N_0+1}^n |a_{nj}(x)| |f_j(x) - h(x)| \\ &\le M \sum_{j=1}^{N_0} |a_{nj}(x)| + \frac{\varepsilon}{2} \sum_{j=N_0+1}^n |a_{nj}(x)| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

So we have

$$\sum_{j=1}^n a_{nj}(x) f_j(x) = g_n(x) \Longrightarrow h(x), \ n \to \infty, \quad x \in I.$$

Thus Lemma 1 holds.

Lemma 2. Let sequences of functions $\{f_n(x)\}$, $\{g_n(x)\}$, and $\{a_{ij}(x)\}$ defined in region I, for any $x \in I$, $g_n(x) = \sum_{i=1}^n a_{nj}(x)f_j(x)$ exists and following hold;

(1) There exists k > 0, for any $n \in N$, $x \in I$, $|a_{n1}(x)| + |a_{n2}(x)| + ... + |a_{nn}(x)| \le k$;

(2) For any $j \in N$, $x \in I$, $a_{nj}(x)$ is uniformly convergent to $0, n \to \infty$;

(3) $A_n(x) = a_{n1}(x) + a_{n2}(x) + \dots + a_{nn}(x)$ is uniformly convergent to 1 as $n \to \infty$, $x \in I$;

(4) For any n, $f_n(x)$ is bounded in region I.

Then, if $\{f_n(x)\}$ is uniformly convergent to $0, n \to \infty, x \in I$, we have

$$\sum_{j=1}^n a_{nj}(x) f_j(x) = g_n(x) \Longrightarrow 0, \quad n \to \infty, \ x \in I.$$

Proof. Since $f_n(x)$ is uniformly convergent to 0, and for any n, $f_n(x)$ is bounded in region I, we know that $\{f_n(x)\}$ is uniformly bounded in region I, which means that there exists M > 0, for any $j \in N$, $\{a_{nj}(x)\}$ uniformly convergent to 0, and we have $|f_n(x)| \leq M$. Similarly, for any $\varepsilon > 0$, there exists a N_0 , for any $n > N_0$, $x \in I$, we have $|f_n(x)| < \frac{\varepsilon}{2k}$. Since for any n, $|a_{nj}(x)|$ is uniformly convergent to 0, further we know $\left\{M\sum_{j=1}^n |a_{nj}(x)|\right\}$ is uniformly convergent to 0, thus for the above $\varepsilon > 0$, there exists a $N_1 > 0$, for any $n > N_1$, $x \in I$ we have

$$M\sum_{j=1}^n |a_{nj}(x)| \leq \frac{\varepsilon}{2}.$$

Let $N = N_0 + N_1$, when n > N, for any $x \in I$, we have

$$|g_n(x)| = \left|\sum_{j=1}^n a_{nj}(x)f_j(x)\right| \le \sum_{j=1}^{N_0} |a_{nj}(x)| |f_j(x)| + \sum_{j=N_0+1}^N |a_{nj}(x)| |f_j(x)|$$
$$\le M \sum_{j=1}^{N_0} |a_{nj}(x)| + \frac{\varepsilon}{2k} \sum_{j=N_0+1}^N |a_{nj}(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2k} \cdot k = \varepsilon.$$

Thus Lemma 2 holds.

Lemma 3. Let sequences of functions $\{f_n(x)\}$, $\{g_n(x)\}$, and $\{a_{ij}(x)\}$ be defined in region I. If for any $x \in I$, we have $g_n(x) = \sum_{i=1}^n a_{nj}(x)f_j(x)$ and

following hold:

(1) There exists k > 0, for any $n \in N$, $x \in I$, we have $|a_{n1}(x)| + |a_{n2}(x)| + \dots + |a_{nn}(x)| \le k$;

(2) For any $j \in N$, $x \in I$, $\{a_{nj}(x)\}$ is uniformly convergent to $0, n \to \infty$;

(3) $A_n(x) = a_{n1}(x) + a_{n2}(x) + \dots + a_{nn}(x)$ is uniformly convergent to 1 as $n \to \infty$, $x \in I$;

(4) For any n, $f_n(x)$ is bounded in region I.

Then, if $\{f_n(x)\}$ is uniformly convergent to $h(x), x \in I$, we have

$$\sum_{j=1}^n a_{nj}(x) f_j(x) = g_n(x) \Longrightarrow h(x), \quad n \to \infty, \ x \in I.$$

Proof. Let $A_n(x) = 1 + \alpha_n(x)$, then $\{\alpha_n(x)\}$ is uniformly convergent to 0, we can get

$$g_n(x) - h(x) = \sum_{j=1}^n a_{nj}(x) f_j(x) [A_n(x) - \alpha_n(x)] - h(x)$$
$$= a_{n1}(x) (f_1(x) - h(x)) + a_{n2}(x) (f_2(x) - h(x))$$

$$+ \dots + a_{nn}(x)(f_n(x) - h(x)) + h(x)\alpha_n(x)$$
$$= Z_n(x) + h(x)\alpha_n(x).$$

Since $\{f_n(x)\}$ is uniformly convergent to h(x), we can conclude that $\{f_n(x) - h(x)\}$ is uniformly convergent to 0, hence $\{Z_n(x)\}$ is uniformly convergent to 0, then

$$g_n(x) - h(x) = Z_n(x) + h(x)\alpha_n(x).$$

As for any n, $f_n(x)$ is bounded in region I, we know that h(x) is bounded, which means there exists a M > 0 such that for any $x \in I$, $|h(x)| \le M$. On the other hand, $\alpha_n(x)$ is uniformly convergent to 0, so, for any $\varepsilon > 0$, there exists a N > 0 such that for any n > N, $x \in I$, we have $|\alpha_n(x)| < \varepsilon$,

$$|h(x)\alpha_n(x)| \le M|\alpha_n(x)| < M\varepsilon.$$

Thus $\{h(x)\alpha_n(x)\}$ is uniformly convergent to 0, furthermore, we can conclude that $\{g_n(x) - h(x)\}$ is uniformly convergent to 0, and $\{g_n(x)\}$ is uniformly convergent to h(x). Thus Lemma 3 holds.

Now we use the above lemmas to prove Theorem 2.

Proof. Let $z_n(x) = \frac{f_{n+1}(x) - f_n(x)}{g_{n+1}(x) - g_n(x)}$ be uniformly convergent to h(x) and

$$a_{nj}(x) = \frac{g_j(x) - g_{j-1}(x)}{g_n(x)}$$
, then

$$w_n(x) = a_{n1}(x)z_1(x) + a_{n2}(x)z_2(x) + \dots + a_{nn}(x)z_n(x) = \frac{f_n(x)}{g_n(x)} - \frac{f_0(x)}{g_n(x)}.$$

Since $\{g_n(x)\}$ is uniformly convergent to $+\infty$, so we have $a_{nj}(x) = \frac{g_j(x) - g_{j-1}(x)}{g_n(x)}$ is uniformly convergent to $0 \ (n \to \infty, x \in I)$, then

$$A_n(x) = a_{n1}(x) + a_{n2}(x) + \dots + a_{nn}(x) = \frac{g_n(x) - g_0(x)}{g_n(x)}$$

is uniformly convergent to 1. Then from above Lemma 3, we have

$$w_n(x) = \sum_{j=1}^n a_{nj}(x) z_j(x) \Rightarrow h(x), \quad n \to \infty, \ x \in I.$$

Moreover, since $\left\{\frac{f_0(x)}{g_n(x)}\right\}$ is uniformly convergent to 0, we have that $\left\{\frac{f_n(x)}{g_n(x)}\right\}$ is

uniformly convergent to h(x), $n \to \infty$, $x \in I$. Finally, Theorem 2 holds.

References

- Mathematical Analysis, Vol. 1, Mathematics Department, Huadong Normal University, China Higher Education Press, Beijing, 2008, pp. 78-98.
- [2] Liu Lishan, Basic theory and typical methods for mathematical analysis, China Science and Technology Press, Beijing.
- [3] W. Fleming, Multivariate Function, Translated by Zhuang Yadong, People's Education Press, Beijing, 1982, pp. 94-99.
- [4] Ouyang Guangzhong, Zhu Xueyan, Jin Fulin and Zhu Chuanzhang, Mathematical analysis, China Higher Education Press, Beijing, 2007, pp. 184-193.
- [5] Liu Yulian and Fu Peiren, Mathematical analysis lecture, 3rd ed., China Higher Education Press, Beijing, 1992.