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Abstract 

Based on the lemma from Toplitz transformation for sequences of 

uniformly convergent functions, we derive and prove the uniformly 

convergent Stolz theorem for sequences of functions in region I. 

1. Introduction 

In this paper, we start from Stolz theorem for infinite sequences and generalize it 

to Stolz theorem for sequences of functions. First we give the following theorems for 
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infinite sequences: 

Theorem 1 (Stolz Theorem [1-5]). Let { }na  and { }nb  be two sequences such 

that 

(1) { }na  is a strictly monotone increasing sequence; 

(2) .lim +∞=
∞→
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There is no requirement for sequence { }nb  to have a limit of ,∞  so this theorem 

could be remarked as 
∞

*
 Stolz theorem. Similarly, we generalize Stolz theorem for 

sequences of uniformly convergent functions with indeterminate expression as 

following: 

Theorem 2. If two sequences of functions { ( )}xfn  and { ( )}xgn  satisfy the 

following conditions in region I, 

(1) ( )xgn  is uniformly convergent to +∞  on region I; 

(2) For any ,Ix ∈  { ( )}xgn<0  monotone increases; 

(3) For any given n, function 
( ) ( )
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1  is bounded on region I. 

Then, if 
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1  is uniformly convergent to ( ),xh  
( )

( )xg

xf

n

n  is uniformly 

convergent to ( ).xh  

Similar to the proof of Stolz theorem for unlimited sequences, we need to give 

Toplitz transformation for sequences of functions which are the following three 

lemmas. 

Lemma 1. Let sequences of functions { ( )},xfn  { ( )},xgn  and { ( )}xaij  be 
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defined in region I, if for any ,Ix ∈  we have: 
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and the following hold; 

(1) ( ) ;,,2,1,,,0 IxLjiijxaij ∈∀=<≥  

(2) ( ) ;,,1
1

IxNixa
i

j
ij ∈∀∈∀=∑

=

 

(3) For any ;, IxNj ∈∈  nja  is uniformly convergent to 0 when n approaches 

infinity; 

(4) For any ,n  ( )xfn  is bounded in region I. 

Then, if { ( )}xfn  is uniformly convergent to ( ),xh  ,Ix ∈  we have 

( ) ( ) ( ) ( ) .,,

1

Ixnxhxgxfxa nj

n

j

nj ∈∞→⇒=∑
=

 

Proof. For any ,n  ( )xfn  is bounded in region I, if { ( )}xfn  is uniformly 

convergent to ( ),xh  then { ( )}xfn  and    ( )xh  are uniformly bounded in region I, that 

means there exists 0>M  such that for any ,, Ixn ∈  ( ) .Mxfn ≤ Further because 

{ ( ) ( )}xhxfn −  is uniformly convergent to 0, then for ,1=ε  there exists ,0>N  for 

any ,, IxNn ∈>  { ( ) ( )} .1<− xhxfn  

Let { },1,,,,max 21 NMMMM …=  where iM  is the bound for ( )xhfi −  in 

region I, thus for any ,, nIx ∈  we have 
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( ) ( ) .Mxhxfn ≤−  

As { ( )}xfn  is uniformly convergent to ( ),xh  we know that for any ,0>ε  there 

exists a ,0N  for any ,,0 IxNn ∈>  we have 

( ) ( ) .
2

ε
<− xhxfn  

Moreover, for any ,n  { ( )}xanj  is uniformly convergent to 0, we have 
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Thus Lemma 1 holds. 

Lemma 2. Let sequences of functions { ( )},xfn  { ( )},xgn  and { ( )}xaij  defined 

in region I, for any ,Ix ∈  ( ) ( ) ( )∑
=

=

n

j
jnjn xfxaxg

1

 exists and following hold; 

(1) There exists ,0>k  for any ( ) ( ) ( )xaxaxaIxNn nnnn +++∈∈ ...,, 21  

;k≤  

(2) For any ( )xaIxNj nj,, ∈∈  is uniformly convergent to ;,0 ∞→n  

(3) ( ) ( ) ( ) ( )xaxaxaxA nnnnn +++= ...21  is uniformly convergent to 1 as 

,∞→n  ;Ix ∈  

(4) For any ( )xfn n,  is bounded in region I. 

Then, if { ( )}xfn  is uniformly convergent to ,,,0 Ixn ∈∞→  we have 
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Proof. Since ( )xfn  is uniformly convergent to 0, and for any ( )xfn n,  is 

bounded in region I, we know that { ( )}xfn  is uniformly bounded in region I, which 

means that there exists ,0>M  for any { ( )}xaNj nj,∈  uniformly convergent to 0, 

and we have ( ) .Mxfn ≤  Similarly, for any ,0>ε  there exists a ,0N  for any 

,,0 IxNn ∈> we have ( ) .
2k

xfn
ε

<  Since for any ( )xan nj,  is uniformly 

convergent to 0, further we know ( )
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for the above ,0>ε  there exists a ,01 >N  for any IxNn ∈> ,1  we have 
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Thus Lemma 2 holds. 

Lemma 3. Let sequences of functions { ( )},xfn  { ( )},xgn  and { ( )}xaij  be 

defined in region I. If for any ,Ix ∈  we have ( ) ( ) ( )∑
=

=
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 and 

following hold: 

(1) There exists ,0>k  for any ,, IxNn ∈∈  we have ( ) +xan1  

( ) ( ) ;2 kxaxa nnn ≤++…  

(2) For any { ( )}xaIxNj nj,, ∈∈  is uniformly convergent to ;,0 ∞→n  

(3) ( ) ( ) ( ) ( )xaxaxaxA nnnnn +++= …21  is uniformly convergent to 1 as 

,∞→n  ;Ix ∈  

(4) For any ( )xfn n,  is bounded in region I. 

Then, if { ( )}xfn  is uniformly convergent to ( ) ,, Ixxh ∈  we have 
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Proof. Let ( ) ( ),1 xxA nn α+=  then { ( )}xnα  is uniformly convergent to 0, we 

can get 

( ) ( ) ( ) ( )[ ( ) ( )] ( )xhxxAxfxaxhxg nn
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( )( ( ) ( )) ( ) ( )xxhxhxfxa nnnn α+−++…  

( ) ( ) ( ).xxhxZ nn α+=  

Since { ( )}xfn  is uniformly convergent to ( ),xh  we can conclude that 

{ ( ) ( )}xhxfn −  is uniformly convergent to 0, hence { ( )}xZn  is uniformly 

convergent to 0, then 

( ) ( ) ( ) ( ) ( ).xxhxZxhxg nnn α+=−  

As for any ( )xfn n,  is bounded in region I, we know that ( )xh  is bounded, which 

means there exists a 0>M  such that for any ( ) ., MxhIx ≤∈  On the other hand, 

( )xnα  is uniformly convergent to 0, so, for any ,0>ε  there exists a 0>N  such 

that for any ,, IxNn ∈>  we have ( ) ,ε<α xn  

( ) ( ) ( ) .ε<α≤α MxMxxh nn  

Thus { ( ) ( )}xxh nα  is uniformly convergent to 0, furthermore, we can conclude that 

{ ( ) ( )}xhxgn −  is uniformly convergent to 0, and { ( )}xgn  is uniformly convergent 

to ( ).xh  Thus Lemma 3 holds. 

Now we use the above lemmas to prove Theorem 2. 
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is uniformly convergent to 1. Then from above Lemma 3, we have 
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Moreover, since 
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0  is uniformly convergent to 0, we have that 
( )

( )







xg

xf

n

n  is 

uniformly convergent to ( ) .,, Ixnxh ∈∞→  Finally, Theorem 2 holds. 
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