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Abstract 

In this paper, the Wiener Index ( ) ( )
{ } ( )∑ ∈

=
GVuv

uvdGW
,

,  and Hosoya 

polynomial ( ) ( )

{ } ( )∑ ∈
=

GVuv

uvd
xxGH

,
,,  of a class of Jahangir graphs 

mJ ,3  with exactly 13 +m  vertices and m4  edges are computed. 

1. Introduction 

Suppose G is a connected graph and ( ),, GVyx ∈  where ( )GV  denotes the set 

of all vertices in G. The distance ( )yxd ,  between x and y is defined as the length of 

a minimal path connecting x and y. The maximum distance between two vertices of G 

is called the diameter of G, denoted by ( ).Gd  The Wiener index of a connected 

graph ( )GWG,  is defined as the summation of all distances between all pairs of 

vertices of G. The Wiener index is introduced by Harold Wiener [1] in 1947 and is 
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equal to 

( ) ( )

( )( )

.,
2
1 ∑ ∑

∈ ∈

=

GVv GVu

uvdGW  

Other properties and applications of Wiener index can be found in [2-15]. 

The polynomial ( ) ( )

( )( )
∑ ∑

∈ ∈

=

GVv GVu

uvdxxGH ,

2
1

,  is called the Hosoya 

polynomial of G. The name is used in honour of Haruo Hosoya, who discovered a 

new formula for the Wiener index in terms of graph distance [16]. We refer the 

interested readers to papers [17-23] for more information on this topic and the 

Hosoya polynomial. 

2. Main Results 

In this section, we compute the Wiener index and Hosoya polynomial for 

Jahangir graphs. Suppose mJ ,3  is Jahangir graph ,3≥∀m  with exactly 13 +m  

vertices and m4  edges as shown in Figure 1 [24, 25]. ,3≥∀m  Jahangir graph is a 

connected graph consisting of a cycle mC3  with one additional vertex (Center vertex 

c) such that c is adjacent to m vertices of mC3  at distance 3 to each other on .3mC  

 

Figure 1. Some examples of Jahangir graphs 4,3J  and .6,3J  

Theorem 1. Let mJ ,3  be Jahangir graphs .3≥∀m  Then: 

The Wiener index of mJ ,3  is equal to 

( ) .1315 2
,3 mmJW m −=  

The Hosoya polynomial of mJ ,3  is equal to 

( ) ( ) ( ) ( ) .52129
2
1

4 4321
,3 xmmxmmxmmmxJH m −+−+++=  
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Proof. Suppose mJ ,3  denotes Jahangir graph for all positive integer number 

.3≥m  From the definition of Jahangir graph ,,3 mJ  one can see that the size of 

vertex set ( )mJV ,3  is equal to 1312 +=++ mmm  such that there are m2  vertices 

of Jahangir graph mJ ,3  with degree two and m vertices of mJ ,3  with degree three 

and Center vertex c has degree m. These imply that the size of edge set ( )mJE ,3  be 

( ) .4
2

1322
,3 m

mmm
JE m =

×+×+×
=  

To compute the Wiener index and Hosoya polynomial of ,,3 mJ  we first introduce 

some notions, which are useful to aims in this paper. The number of unordered pairs 

of vertices x and y of mJ ,3  such that distance ( ) kyxd =,  is denoted by 

( ).,,3 kJd m  Obviously ( ).1 ,3 mJdk ≤≤  Thus we redefine the Hosoya polynomial 

and Wiener index as follows: 

( ) ( )
( ) kJd

k
mm xkJdxJH

m∑ =
=

,3

1 ,3,3 ,,  

and 

( ) ( )
( )

.,
,3

1 ,3,3 kkJdJW
mJd

k
mm ×=∑ =

 

We divide the vertex set ( )mJV ,3  of Jahangir graph into several partitions on based 

vd  and denote by 32 , VV  and mV  such that { ( ) }.,3 kdJVvV vmk =∈=  Thus 

{ ( ) } ,22 2,32 mVdJVvV vm =→=∈=  

{ ( ) } ,3 2,33 mVdJVvV vm =→=∈=  

{ ( ) } .13,3 =→=∈= mcmm VdJVcV  

From the definition of the Hosoya polynomial, it s easy to see that the first sentence 

of ( ) ( )1,,, ,3,3 mm JdxJH  is equal to the number of edges of ( ).4,3 mJ m  

By definition of Jahangir graph ,,3 mJ  one can see that m2  2-edges paths start 

from the vertex c and for every vertex v of ,2V  there are three 2-edges paths and 
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( )( )12 −+ m  2-edges paths start from a vertex u of .3V  So ( ) =2,,3 mJd  

( ) ( )( )[ ] ( ).9
2
1

12232
2
1 2 mmmmmm +=−+++  

From Figure 1, we see that there is not any 3-edges path with c. But there are 

( )( )322 −+ m  3-edges paths start from a vertex u of 3V  and also there are 

( )( )22 −+ m  3-edges paths start from a member of .2V  Thus ( ) =3,,3 mJd  

( )( ) ( )( )[ ] ( ).123222220
2
1

−=−++−++ mmmmmm  

From the structure of mJ ,3  in Figure 1, we see that the diameter of Jahangir 

graph ( )mJD ,3  is equal to 4 and is between two vertices of .2V  The format of a 4-

edges path of mJ ,3  is denoted by ,,3
,

232 vcvvv  where 2
,

22 ,, VvvCc ∈∈  and 

,
33 , vv .3V∈  The number of these 4-edges paths is ( )( ) ( )52321 −=−+ mmmm  

( d= ( )).4,,3 mJ  

Thus by these results, the Hosoya polynomial of Jahangir graph mJ ,3  is equal to 

( ) ( )
i

mm xiJdxJH ∑= ,, ,3,3  

( ) ( ) ( ) .52129
2
1

4 4321 xmmxmmxmmxm −+−+++=  

It is obvious that for Jahangir graph ( ) ( )
( )

== ∑ =

mJd

i mmm iJdJHJ ,3
1 ,3,3,3 ,1,,  

( )
.

2
133

2

13 +
=







 + mmm
 On the other hand, we have following computations for the 

Wiener index of Jahangir graph mJ ,3  as: 

( ) ( ) iiJdJW mm ×=∑ ,,3,3  

( ) ( ) ( )5241239
2
1

241 −×+−×++×+×= mmmmmmm  

mmmmmmm 2086694 222
−+−+++=  

.1315 2 mm −=  

And these complete the proof of Theorem 1. 
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