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Abstract

The Uniform-Exponential (Generalized Lambda) distribution [1] have
been shown to be practical in modeling real life data, in particular the
Wheaton river data, Table 6 [1]. In the present paper, we introduce a so-
called Transmuted Uniform-Exponential (Generalized Lambda)
distribution, and compare its performance with the Uniform Exponential
(Generalized Lambda) distribution in modeling the Wheaton river data.
Some properties of the Transmuted Uniform-Exponential (Generalized

Lambda) distribution are presented.
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1. Uniform Distribution

Recall from [2], the uniform distribution with parameters —oo < a < b < o has

PDF

, if xel[a, b],
fa,h(x) = b-a
0, if otherwise
and CDF
0, if x<a,
x—a .
F, »(x) = PR if x € [a, b),
1, if x> b.

2. Exponential Distribution

Recall from [3], the exponential distribution with parameter A >0 and

x € [0, %) has PDF

Hilx) = Ae M

and CDF

F(x)=1- e ™,

3. Generalized Lambda Distribution

According to [1], the four-parameter generalized lambda distribution is defined
in terms of its quantile function, this distribution was proposed by Ramberg and

Schmeiser [4]. In particular, with parameters Aq, Ay, A3, A4 and 0 <u <1, the

quantile function is given by
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A3 A
B u™3 —(1—u)*
le,Kz,l:;,?M (l/l) - )\‘1 + )\‘2 N

When A; =0 and A, = A3 = A4, we obtain the Tukey lambda distribution [5].

4. The Uniform-Exponential (Generalized Lambda)

Family of Distributions

Recall from [1], the CDF of the Uniform-Exponential (Generalized Lambda)
Family of Distributions, for x = 0; 6, A3, A4 > 0, is given by

1 - -_—
Fe,x3,x4(x)=§[1+(1—e oy _(, GX)M]

Figure 1. The graph of Fy 1134 53192, 3.0133(%)
and the PDF, for x 2 0; 6, A3, A4 > 0, is given by

1 - - - — —
Forngng () = 506 g1 = 7@ (o0 1]
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Figure 2. The graph of fj 1134, 53192,3.0133(%).

5. The Transmuted Uniform-Exponential (Generalized Lambda)

Family of Distributions

Definition 5.1 (Owoloko et al. [6]). A random variable X is said to have a

transmuted distribution if its PDF and CDF are, respectively, given by

f(x) = g(x)[1+& - 28G(x)),

F(x) = (1 + 8)G(x) - E[G(x)]%,

where x>0, —-1<&<1 and the baseline distribution has PDF and CDF,

respectively, given by, g(x) and G(x).

Definition 5.2. A random variable X is said to have a transmuted uniform-
exponential (generalized lambda) distribution if its PDF and CDF are, respectively,

given by

fongng, e (%) = go,aq,0, ()1 + & = 28Gg 35,2, (X)),

Fo,nq.04.8(%) = (1 + E)Go 5, 2., (x) — E[Go 2, 2, (0T,
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where x, 0, A3, A4 >0, -1 <& <1 and
Go agny (¥) = %[1 F(1—e )3 (¢ )%4]
and
ENCE %ee—"x a1 = e 0Pt 4 ay (e 0 1]

Remark 5.3. Henceforth a random variable X having the transmuted uniform-
exponential (generalized lambda) distribution will be denoted as X ~

TUEGL(S, A3, Ay, E).

Figure 3. The CDF of TUEGL (0.1134, 5.3192, 3.0133, —0.065271).
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Figure 4. The PDF of TUEGL (0.1134, 5.3192, 3.0133, —0.065271).

6. Application to Wheaton River Data

6.1. The maximum likelihoood estimates in the TUEGL distribution

From Definition 5.2, the likelihood function in the TUEGL distribution is given
by

L =T THeonn, ()1 +& = 286G 2,0, ()]

i=1

where
G ( )_ l[l 1_ —Gx[ 7\,3 _ —ex[ 7u4:|
9,7»3,7»4 Xi) = 2 +( € ) (6‘ )
and
1, —ox 0% \ha— _0x oy —
ge,k3,7x4 (xi) = Ee@ Ox; [k3(1 —e Ox; )7»3 1 + 7\44(6‘ Ox; )7»4 1].

The estimates in the TUEGL distribution are obtained by solving the following

system of equations for 6, A3, A4, &
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dlog[L] _
o
dlog[L] 0
oAy
dlog[L] 0
oAy
dlog[L] _
2% =0.

6.2. Comparison with empirical distribution and histogram
By modifying the symbolic MLE procedure described in [7] and using
Mathematica’s Find Root procedure, we found upon taking x; to be the Wheaton

river data, Table 6 [1] and using appropriate initial conditions in Find Root that the

MLE in the TUEGL distribution are given by
(6, &3, Ay, &) = (0.1134, 53192, 3.0133, —0.065271).

On the other hand the MLE for 6, A3, A4 in the Uniform-Exponential (Generalized

Lambda) family of distributions are recorded in Table 7 [1]. Thus we have the

following

| {4] ] 30 40 50 &

Figure 5. The CDF of TUEGL (0.1134, 5.3192, 3.0133, —0.065271) (green)
and Fy 1134,53192,3.0133(x) (red) fitted to the empirical distribution (black) of Table

6[1].
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Figure 6. The PDF of TUEGL (0.1134, 5.3192, 3.0133, —0.065271) (green)

and £ 1134,5.3192,3.0133(x) (red) fitted to the histogram of Table 6 [1].

6.3. General observation

From the figures in the previous section, we see the

TUEGL (0.1134, 5.3192, 3.0133, —0.065271). distribution is equivalent to the

UEGL distribution with parameters
(6. A5, Ay ) = (0.1134, 53192, 3.0133).

In particular, both distributions would be suitable for data that are right skewed with

long tail.
7. Some Properties of TUEGL

7.1. The survival function

Theorem 7.1. The survival function of the TUEGL(8, A3, Ay, &) is given by
So.nq.0,.6(%) = 1= Fg a;0,,6(x),

where
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2
Fo,03.0.6(x) = (1 + 8)Go ny 2, (%) — &[G 4,2, (¥)]

with x, 0, A3, Ay >0, -1 <& <1 and

1 - p—
Ge,x3,x4(X)=E[1+(1—e Ox A3 _(, eX)x4]

and
1 —e[ —0x \A3-1 -8 x-1]
ge,;%’;%(x):EGe M3 (1= e )37 + Ag(e™™ )|
10p
-D.B-—.:
0al
10 0 30 40 ] &0

Figure 7. The survival function of TUEGL(0.1134,5.3192, 3.0133,
—0.065271).
7.2. The hazard rate function

Theorem 7.2. The hazard rate function of the TUEGL(0, A3, Ay, &) is given by

Jo,03,2,8(%)
L= Fy oy n,.6(x)

Hg jgng,6(x) =

where

fo. 05, 04,6(X) = go,04,0, (X[ + & = 28Gg 35,2, ()],
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Fopyng.t(0) = 1+ E)Gg a0, (1) — E[Gg 2 2, (0]
with x, 0, A3, Ay >0, -1 <& <1 and
G (x) = 1[1 [ =t Az o —6x 7»4]
9,7\.3,7\,4 X)_E +( e ) (e ) >
and

1 - - - — _
80,150y (1) = 300 Py (1 = 0 (70 e

Figure 8. The hazard rate function of TUEGL(0.1134, 5.3192, 3.0133,
—-0.065271).

7.3. The rth moment of TUEGL(0, 2, 1, 0)

Theorem 7.3. The rth moment of TUEGL(®, 2, 1, 0) is given by
=27 =143-27)07T( + r),
where >0, r=1,2,3, -, and T'(z) = J.:tz_le_tdt.

Proof. It is obtained by evaluating the following integral
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W, = J- x” %Ge_zex( —2 + 3¢%)ax.
0

7.4. The moment generating function of TUEGL(6, 2, 1, 0)

Theorem 7.4. Assuming X ~ TUEGL(0, 2, 1, 0), then the moment generating
function is given by

oo

.
My (t) = Z% 27 (Z14+3.27)97 (1 + 1),
r=0

where © > 0, and T'(z) = I:tz_le_tdt.

Proof. Given u, from Theorem 7.3, and the fact that fy 1 o(x) = %ee_zex

(=2 +3¢¥), we deduce the following

My (1) = E[e"™]

=1, e fo,2.1,0(x)dx

Jo 2!

oo 2
= {1 + X + ﬂ + ~-}f9’2’1’0(x)dx

oo
)

tr
= 0 27 .xrfe’ z’l’o(x)dx

r=0

X .r

Do

r=0

and the result follows.
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7.5. Order statistics of the TUEGL(6, L3, A4, §) distribution

First we recall the following, for example, see [8]:

Definition 7.5. If X (1) X (2)> """ X (n) denotes the order statistics of a random

sample X, X,,---X, from a continuous population with CDF Fy (x) and PDF

fx (x), then the PDF of X ;) is given by

Py ) = Gy fx L 11 P (],

j=Dn - j)
Thus from the above, it follows that we have the following:

Theorem 7.6. The PDF of the jth order TUEGL random variable X jy is given

by

kX(j) (x; 9, 7\,3, 7\44, g)

B (j—1)+(!n—j)!fe’7‘3’7“4’i(x)[l:9, 7~3s7~4,€(x)]j_1[1 —Fy, 7»3’7~4~i(x)]n_j’

where

fo. 05, 04,6(%) = go,04,2, (X)[1 + & = 28Gg 35,2, ()],

Fo, a5, 04, (%) = (14 8)Go 25,0, (x) = E[Go, 25,2, )]%,

where x, 0, A3, Ay >0, -1 <& <1 and
Go, az.0y (%) = %[1 +(1—e )3 _ (o™ )14]
and
202,24, (¥) = %Ge“’x[}g(l e S |

From the above theorem we have the following:
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Corollary 7.7. The PDF of the 1st order TUEGL random variable X y) is given

by

kx (5 6, A3, A, §) = nfy, Az g, & (X) [1 = Fy, x3,x4,§(x)]n_l,
where

fo, 05 04,6(%) = 80,04, 2, (W [1+ & = 28Gg 3 2, (¥)],
Fo g g, e (x) = (1+ 8)G 3,0, (x) = E[Gg 25,0, )
where x, 0, A3, Ay >0, -1 <& <1 and
Gonag (9= [+ (1703 — (e8]
and
801y () = 3 0 (1= 70 P g o0 ]

Corollary 7.8. The PDF of the nth order TUEGL random variable X, is

given by
-1
kx(n)(x; 0, A3, Ay, &) = nfe, x3,x4,§(x)[Fe, x3,x4,§(x)]n >
where

fo, 05 00,6(%) = 80,05, 2, (W [1+ & = 28Gg 3 2, (¥)],

Fo g g, £ (x) = (1+ 8)Gg 3,0, (x) = E[Gg 25,0, )

where x, 0, A3, Ay >0, -1 <E <1 and

1 - p—
GQ,?»3,7L4(X)=E[1+(1—e GX)ZG —(e 9x>7»4]
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7.6. Random number generation from TUEGL(9, 2, 1, 0)

Theorem 7.9. Random numbers from TUEGL(8, 2, 1, 0) can be obtained from

Lo -3+ 41+ 8u
N T
e 9’

where © > 0 and u ~ U(0, 1).

(1]

(2]

(3]

(4]

(5]

(6]

Proof. It follows from solving the following equation for y, where u ~ U(0, 1)

%(1—6—‘” F(—e )= u
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