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Abstract 

In this paper, we introduce a new four-parameters model called the 

Exponentiated Generalized Flexible Weibull Extension (EG-FWE) 

distribution which exhibits bathtub-shaped hazard rate. Some of its 

statistical properties are obtained including ordinary and incomplete 

moments, quantile and generating functions, reliability and order statistics. 

The method of maximum likelihood is used for estimating the model 

parameters and the observed Fisher’s information matrix is derived. We 

illustrate the usefulness of the proposed model by applications to real data. 
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1. Introduction 

In recent years new classes of distributions were proposed based on 

modifications of the Weibull distribution to cope with bathtub hazard failure rate; see 

Xie and Lai [21]. Among of these modeling lifetime distributions were exponentiated 

Weibull family, Mudholkar and Srivastava [18], beta-Weibull distribution, Famoye et 

al. [6], generalized modified Weibull distribution, Carrasco et al. [3], a flexible 

Weibull extension, Bebbington et al. [2]. The Flexible Weibull Extention (FWE) 

distribution, Bebbington et al. [2] has a wide range of applications including life 

testing experiments, reliability analysis, applied statistics and clinical studies. If X is a 

random variable, we can say to have the Flexible Weibull Extension (FWE) 

distribution with parameters 0>βα,  if its probability density function (pdf) is 

given by 
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while the cumulative distribution function (cdf) is given by 
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The survival function is given by the equation 
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and the hazard function is 
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Gupta and Kundu [7] proposed a generalization of the exponential distribution 

named as Generalized Exponential (GE) distribution. The two-parameter GE 

distribution with parameters ,0, >γϑ  has the following distribution function 

 ( ) ( ) .0,0,0,1,; >>>−= − baxebaxF
bax  (1.5) 
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This equation is simply the bth power of the standard exponential cumulative 

distribution. For a full discussion and some of its mathematical properties, see Gupta 

and Kundu [8]. In a similar manner, Nadarajah and Kotz [9] proposed the 

exponentiated gamma ( ),EΓ  exponentiated Frechet (EF) and exponentiated Gumbel 

(EGu) distributions, although the way they defined the cdf of the last two 

distributions is slightly different. 

In this article, we propose a new class of distributions that extend the 

exponentiated type distributions and obtain some of its structural properties, a new 

class of univariate continuous distributions called the exponentiated generalized class 

of distribution [11]. If ( )xG  is the baseline cumulative distribution function (cdf) of 

a random variable X, we define the exponentiated generalized (EG) class of 

distributions by 

 ( ) [ { ( )} ] ,0,11 >−−= xxGxF
ba

 (1.6) 

where 0>a  and 0>b  are two additional shape parameters. 

The baseline distribution ( )xG  is clearly a special case of Eq. (1.6) when 

.1== ba  Setting 1=a  gives the exponentiated type distributions defined by 

Gupta et al. [10]. Further, the EE and ΓE  distributions are obtained by taking ( )xG  

to be the exponential and gamma cumulative distributions, respectively. For 1=b  

and if ( )xG  is the Gumbel and Frechet cumulative distributions, we obtain the EGu 

and EF distributions, respectively, as defined by Nadarajah and Kotz [9]. Thus, the 

class of distributions Eq. (1.6) extends both exponentiated type distributions. The 

probability density function (pdf) of the new class has the form 

 ( ) ( ) ( ){ } [ ( ){ } ] ,111
11 −− −−−= baa

xGxGxabgxf  (1.7) 

where 0,0,0 >>> bax  and ( )xg  is the probability density function (pdf) of 

( ).xG  

The EG family of densities Eq. (1.7) allows for greater flexibility of its tails and 

can be widely applied in many areas of engineering and biology. In this article, we 

present a new distribution depending on flexible Weibull extension distribution 
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called the exponentiated generalized-flexible Weibull extension (EG-FWE) 

distribution by using the class of univariate distributions defined above. 

This paper is organized as follows, we define the cumulative, density and hazard 

functions of the exponentiated generalized flexible Weibull extension (EG-FWE) 

distribution in Section 2. In Sections 3 and 4, we introduced the statistical properties 

including, quantile function, median, the mode, skewness and kurtosis, rth moments 

and moment generating function. The distribution of the order statistics is expressed 

in Section 5. The maximum likelihood estimation of the parameters is determined in 

Section 6. Real data sets are analyzed in Section 7 and the results are compared with 

existing distributions. Finally, Section 8 concludes. 

2. The Exponentiated Generalized Flexible Weibull Extension Distribution 

In this section, we study the four parameters exponentiated generalized flexible 

Weibull extension (EG-FWE) distribution. ( )xG  and ( )xg  are used to obtain the cdf 

and pdf of Eqs. (1.6) and (1.7). The cumulative distribution function cdf of the 

Exponentiated Generalized Flexible Weibull Extension distribution (EG-FWE) is 

given by 
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The pdf corresponding to Eq. (2.1) is given by 
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where ,0>x  and, 0,, βα  are two additional shape parameters. 

The survival function ( ),xS  hazard rate function ( ),xh  reversed hazard rate 

function ( )xr  and cumulative hazard rate function ( )xH  of ~X  EG-FWE 
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( )βα,,, ba  are given by 
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and 
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respectively, 0>x  and .0,,, >βαba  

Figures (1-6) display the cdf, pdf, survival, hazard rate, reversed hazard rate 

function and cumulative hazard rate function of the EG-FWE ( )βα,,, ba  

distribution for some parameter values. 



MUSTAFA, EL-DESOUKY and AL-GARASH 

 

80 

 

Figure 1. The cdf of the EG-FWE for different values of parameters. 

 

Figure 2. The pdf of the EG-FWE for different values of parameters. 

 

Figure 3. The survival function of the EG-FWE for different values of parameters. 



THE EXPONENTIATED GENERALIZED FLEXIBLE WEIBULL … 

 

81 

 

Figure 4. The hazard rate function of the EG-FWE for different values of 

parameters. 

 

Figure 5. The reversed hazard rate function of the EG-FWE for different values of 

parameters. 
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Figure 6. The cumulative hazard rate function of the EG-FWE for different values of 

parameters. 

3. Statistical Properties 

In this section, we study the statistical properties for the EG-FWE distribution, 

specially quantile function and simulation median, skewness, kurtosis and moments. 

3.1. Quantile and median 

In this subsection, we determine the explicit formulas of the quantile and the 

median of EG-FWE distribution. The quantile qx  of the EG-FWE ( )βα,,, ba  is 

given by 

 ( ) [ ] .10, <<=≤= qqqxPxF qq  (3.1) 

From Eq. (2.1), we have 
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we obtain qx  by solving the following equation: 

 ( ) ,0
2 =β−−α qq xqkx  (3.3) 

where 
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So, the simulation of the EG-FWE random variable is straightforward. Let U be a 

uniform random variable on unit interval ( ).1,0  Thus, by means of the inverse 

transformation method, we consider the random variable X given by 

 
( ) ( )

.
2

4
2

α

αβ+±
=

ukuk
X  (3.4) 

Since the median is 50% quantile, so the median of EG-FWE distribution can be 

obtained by setting 5.0=q  in Eq. (3.3). 

3.2. The mode 

In this subsection, we will derive the mode of the EG-FWE distribution by 

derivation of its pdf with respect to x and equate it to zero. The mode is the solution 

of the following equation with respect to x. 

 ( ) .0=′ xf  (3.5) 

Since 

( ) ( ) ( ),,,,;,,,;,,,; βαβα=βα baxSbaxhbaxf  

from Eq. (3.5), we have 

 [ ( ) ( )] ( ) ,0,,,;,,,;,,,; 2 =βαβα−βα′ baxSbaxhbaxh  (3.6) 

where ( )βα,,,; baxh  is hazard function of EG-FWE distribution Eq. (2.4), and 

( )βα,,,; baxS  is survival function of EG-FWE Eq. (2.3). 

From Figure 2, the EG-FWE is unimodal distribution. It is not possible to get an 

analytic solution in x to Eq. (3.6) in the general case. It has to be obtained 

numerically by using methods such as fixed-point or bisection method. 
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3.3. Skewness and Kurtosis 

The analysis of the variability Skewness and Kurtosis on the shape parameters 

βα,  can be investigated based on quantile measures. The shortcomings of the 

classical Kurtosis measure are well-known. The Bowely’s skewness based on 

quartiles is given by, Kenney and Keeping [13], 
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and the Moors’ Kurtosis is based on octiles, Moors [17], 
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where ( ).q  represents quantile function. 

3.4. The Moments 

In this subsection, we discuss the rth moment for EG-FWE distribution. 

Moments are important in any statistical analysis, especially in applications. It can be 

used to study the most important features and characteristics of a distribution (e.g., 

tendency, dispersion, skewness and kurtosis). 

Theorem 3.1. If X has EG-FWE ( )βα,,, ba  distribution, then the rth moments 

of random variable X, is given by the following 
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Proof. We start with the well known distribution of the rth moment of the 

random variable X with probability density function ( )xf  given by 
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0
∫
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Substituting from Eq. (2.2) into Eq. (3.10), we get 
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By using the definition of gamma function in the form, Zwillinger [23], 
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finally, we obtain the rth moment of EG-FWE distribution in the form 
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This completes the proof. 

4. The Moment Generating Function 

The moment generating function (mgf) ( )tM X  of a random variable X provides 

the basis of an alternative route to analytic results compared with working directly 

with the pdf and cdf of X. 
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Theorem 4.1. The moment generating function (mgf) of EG-FWE distribution is 

given by 
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Proof. We start with the well known definition of the ( )tM X  of the random 

variable X with probability density function ( )xf  given by 

 ( ) ( ) ,,,,;

0

dxbaxfetM
tx

X ∫
∞

βα=  (4.2) 

using series expansion of ,
tx

e  we have 

 ( ) ( ) .
!

,,,;
!

0
0

0

µ′=βα= ∑∫∑
∞

=

∞∞

= r

r
r

r

r

X r

t
dxbaxfx

r

t
tM  (4.3) 

Substituting from Eq. (3.9) into Eq. (4.3), we get 
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This completes the proof. 

5. Order Statistics 

In this section, we derive closed form expressions for the PDFs of the rth order 

statistic of the EG-FWE distribution. Let nnnn XXX ::2:1 ,,, ⋯  denote the order 

statistics obtained from a random sample nxxx ,,, 21 ⋯  which is taken from a 
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continuous population with cumulative distribution function cdf ( )ϕ;xF  and 

probability density function pdf ( ),; ϕxf  then the probability density function of 

nrX :  is given by 
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where ( ) ( )ϕϕ ;,; xFxf  are the pdf and cdf of EG-FWE ( )ϕ  distribution given by 

Eq. (2.2) and Eq. (1.7), respectively, ( )βα=ϕ ,,, ba  and ( )..,B  is the Beta 
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last order statistics as ( ).,,,max 21: nnn XXXX ⋯=  Since ( ) 1;0 <ϕ< xF  for 

,0>x  we can use the binomial expansion of ( )[ ] rn
xF

−ϕ− ;1  given as follows 

 ( )[ ] ( )( ) ( )[ ] .;1;1

0

ii
rn

i
i

rn
xF

rn
xF ϕ−

−
=ϕ− ∑

−

=

−
 (5.2) 

Substituting from Eq. (5.2) into Eq. (5.1), we obtain 

 ( )
( )

( ) ( )
( ) ( )[ ] .;;

!!1!

!1
,,,;

0

1
: ∑

−

=

−+ϕϕ
−−−

−
=βα

rn

i

ri
i

nn xFxf
irnri

n
baxf  (5.3) 

Substituting from Eq. (2.1) and Eq. (2.2) into Eq. (5.3), we obtain the probability 

density function for rth order statistics. 

Relation (5.3) shows that ( )ϕ;: xf nr  is the weighted average of the 

Exponentiated Generalized Flexible Weibull Extension distribution with different 

shape parameters. 

6. Parameters Estimation 

In this section, point and interval estimation of the unknown parameters of the 

EG-FWE distribution are derived by using the maximum likelihood method based on 

a complete sample. 
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6.1. Maximum likelihood estimation 

Let nxxx ,,, 21 ⋯  denote a random sample of complete data from the EG-FWE 

distribution. The Likelihood function is given as 

 ( ),,,,;

1
∏

=

βα=

n

i

i baxfL  (6.1) 

substituting from (2.2) into (6.1), we have 
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The log-likelihood function is 
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=
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The maximum likelihood estimation of the parameters are obtained by differentiating 

the log-likelihood function L  with respect to the parameters α,, ba  and β  and 

setting the result to zero, we have the following normal equations. 
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where .1

1−β
−α

β
−α
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The MLEs can be obtained by solving the previous nonlinear equations, (6.3)-

(6.6), numerically for α,, ba  and .β  

6.2. Asymptotic confidence bounds 

In this section, we derive the asymptotic confidence intervals of these parameters 

when 0,, >αba  and 0>β  as the MLEs of the unknown parameters 0,, >αba  

and 0>β  can not be obtained in closed forms, by using variance covariance matrix 

,
1−

I  see Lawless [16], where 1−I  is the inverse of the observed information matrix 

which is defined as follows 
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The second partial derivatives included in I are given as follows 
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where 
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We can derive the ( ) %1001 δ−  confidence intervals of the parameters α,, ba  and 

β  by using variance matrix as in the following forms 

( ) ( ) ( ) ( ) ,ˆvarˆ,ˆvarˆ,ˆvarˆ,ˆvarˆ

2222

β±βα±α±± δδδδ ZZbZbaZa  

where 

2

δZ  is the upper 





 δ

2
-th percentile of the standard normal distribution. 

7. Application 

In this section, we present the analysis of a real data set using the EG-FWE 

( )βα,,, ba  model and compare it with many known distributions such as a flexible 

Weibull (FW), Weibull (W), modified Weibull (MW), reduced additive Weibull 

(RAW) and extended Weibull (EW) distributions, [2, 14, 21, 24], using Kolmogorov 

Smirnov (K-S) statistic, as well as Akaike information criterion (AIC), [1], Akaike 

Information Citerion with correction (AICC), Bayesian information criterion (BIC), 

Hannan-Quinn information criterion (HQIC) and Schwarz information criterion (SIC) 

[20] values. The data have been obtained from [19], it is for the time between failures 

(thousands of hours) of secondary reactor pumps. 

Table 1. Time between failures of secondary reactor pumps [19] 

2.160 0.746 0.402 0.954 0.491 6.560 4.992 0.347 

0.150 0.358 0.101 1.359 3.465 1.060 0.614 1.921 

4.082 0.199 0.605 0.273 0.070 0.062 5.320  

Table 2 gives MLEs of parameters of the WGFWE and K-S Statistics. The values of 

the log-likelihood functions, AIC, AICC, BIC, HQIC, and SIC are in Table 3. 
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Table 2. MLEs and K-S of parameters for secondary reactor pumps 

Model α̂  β̂  λ̂  â  b̂  K-S 

EG-FWE 0.667 1.9410 - 0.033 0.114 0.0639 

FW 0.0207 2.5875 - - - 0.1342 

W 0.8077 13.9148 - - - 0.1173 

MW 0.1213 0.7924 0.0009 - - 0.1188 

RAW 0.0070 1.7292 0.0452 - - 0.1619 

EW 0.4189 1.0212 10.2778 - - 0.1057 

Table 3. Log-likelihood, AIC, AICC, BIC, HQIC and SIC values of models fitted 

Model L AIC AICC BIC HQIC SIC 

EG-FEW –29.52 67.0400 69.2622 71.5820 10.5731 71.5820 

FW –83.3424 170.6848 171.2848 172.9558 12.5416 172.9558 

W –85.4734 174.9468 175.5468 177.2178 12.5915 177.2178 

MW –85.4677 176.9354 178.1986 180.3419 12.6029 180.3419 

RAW –86.0728 178.1456 179.4088 181.5521 12.6168 181.5521 

EW –86.6343 179.2686 180.5318 182.6751 12.6296 182.6751 

Substituting the MLE’s of the unknown parameters βα,,, ba  into (6.7), we get 

estimation of the variance covariance matrix as the following 

.
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−
I  

The approximate 95% two sided confidence intervals of the unknown parameters 

α,, ba  and β  are [ ] [ ] [ ]228.1,106.0,184.0,044.0,15.0,0  and [ ],862.2,02.1  

respectively. 
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To show that the likelihood equation has unique solution, we plot the profiles of 

the log-likelihood function of α,, ba  and β  in Figures 7 and 8. 

  

Figure 7. The profile of the log-likelihood function of a, b. 

  

Figure 8. The profile of the log-likelihood function of ., βα  

The nonparametric estimate of the survival function using the Kaplan-Meier 

method and its fitted parametric estimations when the distribution is assumed to be 

RAWMW,W,FW,FWE,-EG  and EW  are computed and plotted in Figure 9. 
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Figure 9. The Kaplan-Meier estimate of the survival function for the data. 

Figures 10 and 11 give the form of the hazard rate and cdf for the 

RAWMW,W,FW,FWE,-EG  and EW  which are used to fit the data after 

replacing the unknown parameters included in each distribution by their MLE. 

 

Figure 10. The fitted hazard rate function for the data. 
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Figure 11. The fitted cumulative distribution function for the data. 

We find that the EG-FWE distribution with the four-number of parameters 

provides a better fit than the previous new modified flexible Weibull extension 

distribution (FWE) which was the best in Bebbington et al. [2]. It has the largest 

likelihood, and the smallest AIC, AICC, BIC, HQIC and SIC values among those 

considered in this paper. 

8. Conclusions 

A new distribution, based on exponentiated generalized method distribution, has 

been proposed and its properties are studied. The idea is to add two parameters to 

flexible Weibull extension distribution, so that the hazard function is either 

increasing or more importantly, bathtub shaped. Using exponentiated generalized 

method, the distribution has flexibility to model the second peak in a distribution. We 

have shown that the exponentiated generalized flexible Weibull extension 

distribution fits certain well-known data sets better than existing modifications of the 

exponentiated generalized method of probability distribution. 
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