Fundamental Journal of Mathematics and Mathematical Sciences

p-ISSN: 2395-7573; e-ISSN: 2395-7581 Volume 19, Issue 2, 2025, Pages 177-187

This paper is available online at http://www.frdint.com/

Published online November 9, 2025

TAIL-DEPENDENCE PROPERTIES OF SOME NEW TYPES OF COPULA MODELS (PART II)

DIETMAR PFEIFER

Institut für Mathematik
Fakultät V
Carl-von-Ossietzky Universität Oldenburg
Germany
e-mail: dietmar.pfeifer@uni-oldenburg.de

Abstract

We continue the investigation of the tail-dependence behaviour of some new types of copula models, published recently in [5] and [6].

1. Introduction

For the sake of simplicity, we concentrate our investigations to the two-dimensional case. Let U_1 , U_2 be standard random variables, i.e., they follow a uniform distribution over the interval [0,1] each. Let further T_1 , T_2 be real continuous functions over \mathbb{R}^2 and $W_1 = T_1(U_1, U_2)$, $W_2 = T_2(U_1, U_2)$. If W_1 , W_2 already follow a continuous uniform distribution over [0,1] each, then (W_1, W_2) is a representative of

Keywords and phrases: copula construction, tail dependence.

2020 Mathematics Subject Classification: 062H05, 062H20.

Received October 24, 2025; Accepted October 31, 2025

© 2025 Fundamental Research and Development International

a two-dimensional copula. Otherwise, $(V_1, V_2) := (F_1(W_1), F_2(W_2))$ is a representative of a two-dimensional copula if F_i denotes the continuous c.d.f. of W_i , i = 1, 2.

Of particular interest especially for financial markets or risk management is the tail dependence of copulas which was explicitly treated for dependence-of-unity copulas in [2], [3] and [4], and for the new approach in [6], which we shall continue here. The simplest definition of the coefficient λ_U of upper and λ_L of lower tail dependence is

$$\lambda_U = \lim_{t \uparrow 1} \frac{P(W_1 > F_1^{-1}(t), W_2 > F_2^{-1}(t))}{1 - t},$$

$$\lambda_L = \lim_{t \downarrow 0} \frac{P(W_1 \leq F^{-1}(t), W_2 \leq G^{-1}(t))}{t},$$

see, e.g., [1], Def. 7.36, p. 247.

In case that ${\it F}_1 = {\it F}_2$, i.e., ${\it W}_1$ and ${\it W}_2$ have same distribution, we also have

$$\lambda_U = \lim_{s \uparrow \infty} \frac{P(W_1 > s, W_2 > s)}{1 - F(s)}, \qquad \lambda_L = \lim_{s \downarrow -\infty} \frac{P(W_1 \le s, W_2 \le s)}{F(s)}.$$

2. Particular Cases

Case 1. Here we consider the choice

$$W_1 = T_1(U_1, U_2) = U_1 + U_2, \qquad W_2 = T_2(U_1, U_2) = \max(U_1, U_2).$$

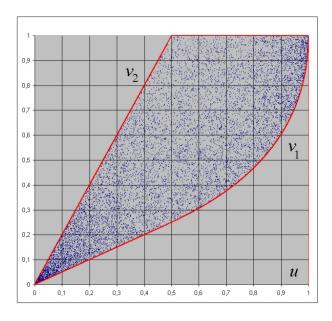
It is easy to see that the corresponding c.d.f.'s are given by

$$F_1(x) = \begin{cases} \frac{x^2}{2}, & 0 \le x \le 1, \\ 1 - 2\left(1 - \frac{x}{2}\right)^2, & 1 \le x \le 2 \end{cases}$$

and

$$F_2(x) = x^2, \quad 0 \le x \le 1.$$

The following graph shows 10,000 simulations of $(V_1, V_2) = (F_1(W_1), F_2(W_2))$.



The red lines (u, v) represent the (sharp) lower and upper envelopes of the copula, which are given by

$$v_1 = v_{lower} = \begin{cases} \frac{u}{2} \,, & \text{if } u \leq \frac{1}{2} \,, \\ \left(1 - \sqrt{\frac{1-u}{2}} \,\right)^2, & \text{otherwise} \end{cases}$$

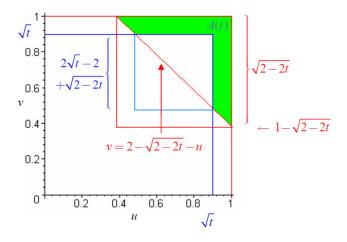
and

$$v_2 = v_{upper} = \begin{cases} 2u, & \text{if } u \le \frac{1}{2}, \\ 1, & \text{if } u > \frac{1}{2}. \end{cases}$$

The lower bound is reached if V_1 and V_2 are close to each other, while the upper bound is reached if one of V_1 or V_2 is close to zero.

The subsequent graph explains our arguments for the calculation of the coefficient λ_U of upper tail dependence, which is given by $\lambda_U = 0$.

We start with some preliminary inequalities.



We have, for $t > \frac{1}{2}$, with μ denoting Lebesgue measure,

$$\begin{split} &P\big(W_1 > F_1^{-1}(t), \, W_2 > F_2^{-1}(t)\big) \\ &= P\big(\max(U_1, \, U_2) > \sqrt{t}, \, U_2 > 2 - \sqrt{2-t} - U_1\big) \\ &= \mu\big(A(t)\big) = \frac{1}{2}\left(\sqrt{2-2t}^2 - \left(2\sqrt{t} - 2 + \sqrt{2-2t}\,\right)^2\right) \end{split}$$

or, by a Taylor expansion around the point t = 1,

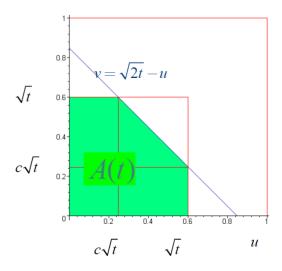
$$\mu(A(t)) = \sqrt{2}(1-t)^{3/2} + \mathcal{O}((1-t)^2)$$
, hence $\lambda_U = \lim_{t\to 1} \frac{\mu(A(t))}{1-t} = 0$,

as stated.

The subsequent graph explains our arguments for the calculation of

the coefficient λ_L of lower tail dependence, which is given by $\lambda_L=2(\sqrt{2}-1)=0.828427...$.

We start again with some preliminary inequalities.



We have, for $t > \frac{1}{2}$, with $c = \sqrt{2} - 1$,

$$\begin{split} &P\big(\max(U_1,\,U_2) \leq F_2^{-1}(t),\,U_1 + U_2 \leq F_1^{-1}(t)\big) \\ &= P\big(\!\!\max(U_1,\,U_2) \leq \sqrt{t}\,,\,U_2 \leq \sqrt{2t} - U_1\big) \\ &= \mu(A(t)) = t - \frac{\{(1-c)\sqrt{t}\,\}^2}{2} = t \bigg(1 - \frac{(1-c)^2}{2}\bigg) = 2ct \end{split}$$

and hence $\lambda_L=\lim_{t\downarrow 0}\frac{\mu(A(t))}{t}=2c=2(\sqrt{2}-1)=0.828427...$, as stated.

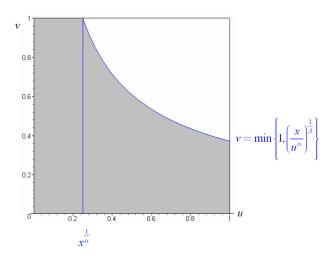
Case 2. Here we consider the choice

$$W_1 = T_1(U_1, U_2) = U_1^{\alpha}U_2^{\beta}, \ W_2 = T_2(U_1, U_2) = U_1^{\beta}U_2^{\alpha}$$
 with real $\alpha, \beta > 0$. For simplicity, let $U \coloneqq U_1, \ V \coloneqq U_2$.

The common c.d.f. of U and V is given by

$$F(x) = \frac{\alpha}{\alpha - \beta} x^{\frac{1}{\alpha}} - \frac{\beta}{\alpha - \beta} x^{\frac{1}{\beta}}, \qquad 0 < x < 1$$

which can be seen as follows.



For 0 < x < 1, there holds

$$F(x) = P(U^{\alpha}V^{\beta} \le x) = P\left(V \le \left(\frac{x}{U^{\alpha}}\right)^{\frac{1}{\beta}}\right)$$

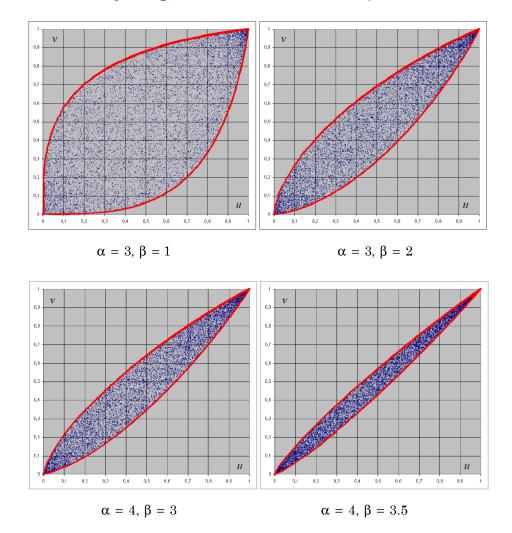
$$= \int_{0}^{1} P\left(V \le \left(\frac{x}{u^{\alpha}}\right)^{\frac{1}{\beta}}\right) du = \int_{0}^{1} \min\left\{1, \left(\frac{x}{u^{\alpha}}\right)^{\frac{1}{\beta}}\right\} du$$

$$= x^{\frac{1}{\alpha}} + x^{\frac{1}{\beta}} \int_{\frac{1}{x^{\alpha}}}^{1} \frac{1}{u^{\alpha}} du = x^{\frac{1}{\alpha}} + \frac{\beta}{\beta - \alpha} x^{\frac{1}{\beta}} \left[1 - x^{\left(\frac{1}{\alpha} - \frac{1}{\beta}\right)}\right]$$

$$= \frac{\alpha}{\alpha - \beta} x^{\frac{1}{\alpha}} - \frac{\beta}{\alpha - \beta} x^{\frac{1}{\beta}} = P(U^{\beta}V^{\alpha} \le x)$$

by symmetry reasons.

The following graphs show 10,000 simulations each of the copula given by $(F(W_1),\,F(W_2))$, for different values of α and β .



The red lines (u, v) represent the (sharp) lower and upper envelopes of the copula, which are given by

$$v_{lower} = F\left((F^{-1}(u))^{\frac{\beta}{\alpha}}\right)$$
 and $v_{upper} = F\left((F^{-1}(u))^{\frac{\alpha}{\beta}}\right)$, $0 < u < 1$.

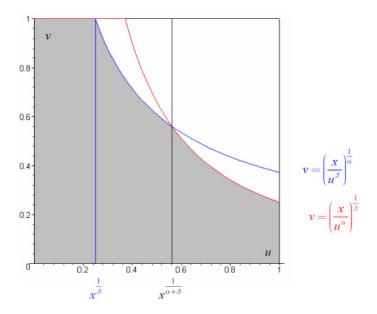
Alternatively, the lower envelope can be described by the points $\left[F(u),\,F\left(u^{\frac{\beta}{\alpha}}\right)\right]$ and the upper envelope by the points $\left[F(u),\,F\left(u^{\frac{\alpha}{\beta}}\right)\right]$, 0 < u < 1.

Note that for $\alpha >> \beta$, the copula tends to the independence copula, and for $\alpha \approx \beta$, we obtain the upper Fréchet bound. Note also that the copula is symmetric in α , β .

The subsequent graph explains our arguments for the calculation of the coefficient λ_L of lower tail dependence, which is given by $\lambda_L = 0$.

First notice that for 0 < x < 1, the intersection point of $\left(\frac{x}{u^{\alpha}}\right)^{\frac{1}{\beta}}$ and

$$\left(\frac{x}{u^{\beta}}\right)^{\frac{1}{\alpha}}$$
 is given by $u_x = x^{\frac{1}{\alpha+\beta}}$ with value u_x .



Next we have

$$P(U^{\alpha}V^{\beta} \leq x, U^{\beta}V^{\alpha} \leq x)$$

$$= x^{\frac{1}{\beta}} + \int_{\frac{1}{x^{\frac{1}{\beta}}}}^{\frac{1}{\alpha+\beta}} \left(\frac{x}{u^{\beta}}\right)^{\frac{1}{\alpha}} du + \int_{\frac{1}{x^{\frac{1}{\alpha+\beta}}}}^{1} \left(\frac{x}{u^{\alpha}}\right)^{\frac{1}{\beta}} du = x^{\frac{2}{\alpha+\beta}}$$

with

$$\frac{F(x)}{P(U^{\alpha}V^{\beta} \leq x, U^{\beta}V^{\alpha} \leq x)} = \frac{\alpha}{\alpha - \beta} x^{\frac{\beta - \alpha}{\alpha \cdot (\alpha + \beta)}} - \frac{\beta}{\alpha - \beta} x^{\frac{\alpha - \beta}{\alpha \cdot (\alpha + \beta)}}$$

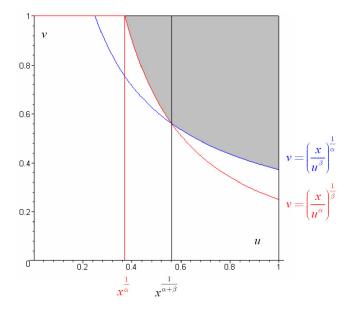
and hence

$$\lim_{x \to 0} \frac{F(x)}{P(U^{\alpha}V^{\beta} \le x, U^{\beta}V^{\alpha} \le x)} = \infty, \text{ i.e.,}$$

$$\lim_{x\to 0} \frac{P(U^{\alpha}V^{\beta} \le x, U^{\beta}V^{\alpha} \le x)}{F(x)} = 0 = \lambda_L.$$

The subsequent graph explains our arguments for the calculation of the coefficient λ_U of upper tail dependence, which is given by

$$\lambda_U = \frac{2\beta}{\alpha + \beta} > 0 \text{ if } \alpha > \beta.$$



If $\alpha > \beta$,

$$P(U^{\alpha}V^{\beta} > x, U^{\beta}V^{\alpha} > x) = 1 - x^{\frac{1}{\alpha}} - \int_{x^{\frac{1}{\alpha}}}^{\frac{1}{x^{\alpha+\beta}}} \left(\frac{x}{u^{\alpha}}\right)^{\frac{1}{\beta}} du - \int_{x^{\frac{1}{\alpha+\beta}}}^{1} \left(\frac{x}{u^{\beta}}\right)^{\frac{1}{\alpha}} du$$
$$= 1 - \frac{2\alpha}{\alpha - \beta} x^{\frac{1}{\alpha}} + \frac{\beta}{\alpha - \beta} x^{\frac{2}{\alpha+\beta}}$$

with, by a Taylor expansion around x = 1,

$$\frac{P(U^{\alpha}V^{\beta} > x, U^{\beta}V^{\alpha} > x)}{1 - F(x)} = \frac{2\beta}{\alpha + \beta} - \frac{2(\alpha - \beta)}{3(\alpha + \beta)^2}(x - 1) + \mathcal{O}((x - 1)^2),$$

hence $\lambda_U = \frac{2\beta}{\alpha + \beta} > 0$.

References

- [1] A. J. McNeill, R. Frey and P. Embrechts, Quantitative Risk Management: Concepts, Techniques and Tools, rev. ed., Princeton University Press, New Jersey, 2015.
- [2] D. Pfeifer, H. A. Tsatedem, A. M\u00e4ndle and C. Girschig, New copulas based on general partitions-of-unity and their applications to risk management, Depend. Model. 4 (2016), 123-140.
- [3] D. Pfeifer, A. Mändle and O. Ragulina, New copulas based on general partitions-ofunity and their applications to risk management (part II), Depend. Model. 5 (2017), 246-255.
- [4] D. Pfeifer, A. Mändle O. Ragulina and C. Girschig, New copulas based on general partitions-of-unity (part III) - the continuous case, Depend. Model. 7 (2019), 181-201.
- [5] D. Pfeifer, Reflections on a canonical construction principle for multivariate copula models, Fundamental J. Math. Math. Sci. 19(1) (2025), 97-107.
- [6] D. Pfeifer, Tail-dependence properties of some new types of copula models, Fundamental J. Math. Math. Sci. 19(1) (2025), 109-121.