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Abstract 

To describe the property of the anomalous diffusion, we consider the 

distribution of persistent length which is the number of successive steps in 

the same direction. We used the non-Markovian models showing the 

anomalous diffusions by enhancing the memory for the previous step with 

the time and found that the persistent length distribution follows the 

power-law behavior ( ) β−
ssp ~  with the exponent 2≈β  within a 

characteristic length which depends exponentially on the Hurst exponent. 

It indicates that the scale-free property of the persistent length distribution 

might be a key describing the underlying mechanism of the anomalous 

diffusions. 

1. Introduction 

Anomalous diffusion phenomena have attracted considerable attentions in the 

field of statistical physics for few decades [1-4]. It is compared to the well-known 
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normal diffusion which is described by the random walk problem [5]. The key 

separating the normal and the abnormal is the different power-law behavior of the 

fluctuation of displacement, i.e., the quantity, the mean squared displacement (MSD). 

The MSD grows linearly with time for the normal diffusion, however, it behaves in 

nonlinear way for the anomalous diffusions which have been observed in many 

different systems such as hydrologic [6-7], chaotic [8], biophysical [9-12], and 

economic systems [13-14], etc. The nonlinear behavior of the MSD ( )tx2  is 

characterized as 

 ( ) .~ 22 Httx  (1) 

Here ⋯  means average over independent realizations, i.e., ensemble average, in 

general, in non-equilibrium. H is called as the anomalous diffusion or the Hurst 

exponent. It classifies superdiffusion in which 21>H  and thus the past and future 

random variables are positively correlated and thus persistence is exhibited, and 

subdiffusion in which 210 << H  and the random variables are negatively 

correlated showing antipersistence. 

The representative models describing the underlying mechanism of anomalous 

diffusions are the fractional Brownian motion (fBM) [1], the Lévy flights [4], and the 

continuous time random walks (CTRW) [2, 3]. Recently, various microscopic non-

Markovian models with memory effect which may be a key origin were proposed 

[15-18]. Above mentioned various models propose the different origins for 

anomalous diffusions separately, however they do not give any universal mechanism 

of the nonlinearity of the MSD. Therefore, it is necessary to consider another aspect 

to be able to characterize the anomalous diffusive phenomena. The nonlinearity of 

the MSD is related to the persistent (or antipersistent) behavior of a walker so that it 

is meaningful to investigate the property of the persistent behavior more directly. 

Therefore, in this work, we study the characteristics of persistent (or antipersistent) 

behavior in anomalous diffusion by measuring the distribution of the persistent length 

using the models with time-varying correlations between the past and the future steps 

which describe well the nature of superdiffusion and subdiffusion both [18]. 
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2. Models 

The non-Markovian stochastic model in which the memory of the previous step 

is enhanced with time was used [18]. The rule of the model is given as follows. The 

random walker starts at origin and randomly moves either one step to the right or the 

left at time ,1=t  so the position of the walker becomes ,11 σ=x  where σ  is 

random variable with the value of 1+  or .1−  Then for ,1>t  1+σt  is given by 
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Over time, the probability of taking the same direction with the latest step increases 

and the larger value of parameter α  is, the much faster the probability grows with 

time. That is, in this model the persistence with the previous step is enhanced with 

time of which degree is controlled by the parameter .α  When ,0=α  it is reduced to 

the original random walk. We shall refer to this model as the model A. The relation 

between the Hurst exponent H and the parameter α  is given by α+= 12H  

showing superdiffusive behaviors in the model A [18]. Meanwhile in Eq. (2) if the 

rule tt σ−=σ +1  is taken, the correlation between two successive steps is negative 

and thus antipersistence is enhanced with time. We call it the model B in which 

subdiffusion is shown and the relation α−= 12H  is given. 

3. Results 

We measured the distribution ( )sp  of persistent lengths which is the number of 

the successive steps in the same direction. Figure 1 shows the plot of the cumulative 

distribution ( )sp  of the psersistent length versus the persistent length s for the model 

A with the various control parameter .α  The cumulative distribution is defined as 

( ) ( ).∫
∞

=
s

sdspsP  The solid line is the guide line whose slope is 1, which indicates 

that the cumulative distribution follows the power-law, 

 ( ) 1~ +β−ssP  (3) 
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with 2≈β  and thus the distribution ( )sp  scales as ( ) .~ β−ssp  However, the range 

of s following the power-law is dependent on the control parameter .α  The larger α  

is, the longer the range is. It indicates that the nonlinearity of the MSD results from 

the power law behavior of the persistent length distribution and the Hurst exponent is 

related to the range following the power law. The quantitative relation between the 

range and the Hurst exponent can be found out from the scaling function of the 

persistent length distribution. 

 

Figure 1. The cumulative distribution of persistent length ( ) ssP vs  for the model A 

with the control parameter ,7.0,6.0,5.0,4.0,3.0,2.0,1.0=α  and 0.8 from the left 

to the right. 

We found that the cumulative distribution of the persistent length ( )α,sP  for 

the various α  obeys a scaling form of the following type, 

 ( )
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( )xf  is a scaling function satisfying the followings: 

( ) ( ),for,const. α<<= cssxf  

( ) ( ).for,0 α>>→ cssxf  (5) 

( )αcs  is a characteristic length. Figure 2 shows the data collapse of the distribution 

of the persistent length ( )α,sP  with 2=β  and the characteristic length ( )αcs  

which is given by 

 ( ) ( ),exp~ αα Asc  (6) 

where A is a constant with the value ( ).21.13=A  They fall on a single curve very 

well for various .α  It indicates that the characteristic length cs  grows exponentially 

with the parameter α  and from the relation between α  and ,H  cs  behaves as with 

the Hurst exponent H in the model, 

 ( ) ( )[ ].12exp~ −α HAsc  (7) 

Thus the exponentially growing power-law range strengthens the superdiffusive 

behavior. For the model B, it is meaningful to measure the antipersistent lengths 

which are the number of successive steps changing the direction at each step. Figure 

3 shows the plot of the cumulative distribution ( )sP  of antipersistent lengths for the 

model B with the various parameters .α  The solid line is the guide line whose slope 

is 1. It indicates that the distribution follows the power-law behavior like the 

persistent length distribution, which results from the same method in enhancing the 

memory with time although the behavior of a walker is oppositely directed to the 

previous step. It also shows the same scaling behavior of the cumulative distribution 

of antipersistent lengths like Eq. (4). Figure 4 shows the data collapse of the 

cumulative distribution of antipersistent lengths ( )α,sP  with 1=β  and 

( ).27.15=A  They also fall on a single curve very well for various .α  
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Figure 2. The data collapse of the cummulative distribution of the persistent length. 

5. Conclusion 

In conclusion, we have measured the distribution of persistent (antipersistent) 

length in superdiffusion (subdiffusion) by using the non-Markovian model with the 

memory enhancement with time for the previous step. It is found that the persistent 

(antipersistent) length distribution follows the power-law behavior with the exponent 

2 within the characteristic range which depend on the Hurst exponent exponentially. 

Although it may be a result due to the specific property of the rule of the model in 

which the memory for the previous step is enhanced with the power of the time, it 

proposes the possibility of that the nonlinearity of the MSD in anomalous diffusions 

is induced by the power-law behavior of the persistent (antipersistent) length. And 

thus it is necessary to study further the generalization of the effect of the persistent 

(antipersistent) length on anomalous diffusions. 
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Figure 3. The cumulative distribution of antipersistent length ( ) ssP vs  for the 

model A with the control parameter ,7.0,6.0,5.0,4.0,3.0,2.0,1.0=α  and 0.8 

from the left to the right. 
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Figure 4. The data collapse of the cummulative distribution of the antipersistent 

length. 
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