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Abstract 

Two thought experiments are described in which ruler measurements of 

spatial intervals are performed in different reference frames. They 

demonstrate that such intervals are frame-independent as well as 

independent of the nature of the space-time transformation equations. As 

explained in detail elsewhere, the ‘length contraction’ effect of 

conventional special relativity theory is therefore spurious and unphysical. 

1. Introduction 

The concept of a ‘ruler measurement’ of a spatial interval is a very familiar one 

in the everyday world. A ‘ruler’ is a flat object with a rectilinear boundary furnished 

with equally spaced ‘marks’, M, specifying positions along the boundary, labeled by 

ordinal numbers: ( ) .,3,2,1, …=IIM  In order to perform a length measurement, 

‘pointers’ on the objects, the spatial separation of which is to be determined, are 

placed against the ruler and the closest marks to the pointers ( ) ( ) ( )IJJMIM >,  

are noted. The ruler measurement of the spatial separation of the pointers is then 

IJ −  in units of the inter-mark separation, with a maximum uncertainty of one unit. 
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A mathematical calculus to rigorously specify such measurements, in terms of 

pointer-mark coincidences (PMC), was proposed in [1], but for the purposes of the 

present paper the simple definition given above is sufficient. 

In the case that the to-be-measured objects are at rest relative to the ruler, time 

plays no role in the measurement. However, if they are in uniform or accelerated 

motion, with the same or different velocities parallel to the edge of the ruler, the 

times at which the PMCs, constituting the raw measurements, are observed are 

important. Two distinct situations are possible: 

(1) The objects have different velocities. 

(2) The objects have the same (possibly time-varying) velocity at all times. 

In the first case, the spatial interval between the objects changes with time and a 

measurement of the spatial separation at any epoch
1
 requires the simultaneous 

recording of the two PMCs. In case (2), which represents the examples to be 

discussed in this paper, simultaneous observation of the PMCs is also required to 

define the spatial separation of the objects, but the latter is a time-independent 

quantity. Note that the spatial separation in case (2) is a constant, independent of both 

time and the velocity of the objects, provided that the latter is the same at all epochs. 

This statement is valid for both uniform and accelerated motion of the two objects. 

Using the above definitions it will now be shown, using two simple examples, 

that ruler measurements of the spatial separation of two objects undergoing similar 

motion give the same result in both an inertial frame from which their motion is 

observed, or in the co-moving reference frame of the two objects. Furthermore, this 

equality is independent of the transformation equations relating space and time 

coordinates in the two frames. A corollary is that the ‘length contraction’ and 

‘relativity of simultaneity’ effects of conventional special relativity are illusory [2, 3, 

4, 5]. 

The first example is the thought experiment shown in Figure 1. Two ‘pointer 

trams’, PT1 and PT2, are at rest on straight tracks aligned with two mark poles M3 

                                                           

1
The word ‘epoch’ denotes a particular instant of time in some reference frame. It can be operationally 

defined as a particular PMC corresponding to a spatial coincidence between the moving hand of an 

analogue clock at rest in the frame (the pointer) and a mark on its dial.  
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and M4, respectively, separated by the distance L. The ruler measurement of the 

initial separation of the trams is thus L. Two further mark poles, M1 and M2, are 

displaced from M3 and M4, respectively, by a distance 3L in the direction of motion 

of the trams. All of the mark poles are equipped with lamps. Mark poles M3 and M4 

are also equipped with local synchronized clocks connected to the lamps and the 

system controlling the motion of the adjacent tram. Because the clocks are at rest in 

the same inertial frame, they may be synchronized by any convenient method; for 

example, by ‘pointer transport’ as described in [1], or by clock transport from a 

suitably placed master clock equidistant from M3 and M4. On the assumption of light 

speed isotropy in the frame of the mark poles the clocks may also be synchronized by 

exchange of light signals, according to the Einstein procedure [6]. Even without 

assuming light speed isotropy, the clocks may be externally synchronized by 

reception of essentially parallel-moving light signals transmitted simultaneously by a 

distant source equidistant from M3 and M4. In this case the clocks are stopped with 

the same setting, and are started on receipt of the signals. Since the clocks and the 

signal source are at rest in the same frame during the synchronization procedure there 

is no necessity to consider any putative ‘relativity of simultaneity’ which may occur 

when synchronized clocks are observed in different inertial frames. 

The lamps attached to M3 and M4 flash when the trams start to move, in an 

identical manner, down the tracks while those attached to M1 and M2 flash at the 

epoch when the front ends of the moving trams are aligned with them. The 

simultaneity of the signals of the lamps on M1 and M2 or M3 and M4 endorses the 

validity of the corresponding ruler measurements. 

Configurations observed in the rest frame, S, of the mark poles are shown in 

Figures 1a and 1b. At ,0=t  as recorded by a clock at rest in S, synchronous signals 

from the local clocks at M3 and M4 cause the lamps at M3 and M4 to flash and PT1 

and PT2 to start to move towards M1 and M2. At time ,Tt =  when the 

instantaneous velocity of PT1 and PT2 is ( ) ,Tv  the front of PT1 is aligned with M1 

and the front of PT2 is aligned with M2. At this instant the lamps on M1 and M2 

flash. The measured spatial separation of the two trams is then L, the same as when 

they were at rest, demonstrating the time-independence of their separation for case 

(2). 

The same journey of the trams between the mark poles, as observed in the co-

moving frame S′  of the trams, is shown in Figures 1a and 1c. If t′  is the epoch 
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recorded by a clock at rest in the frame ,S′  then at ,0=′= tt  S′  is identical to S, so 

the configuration is again that of Figure 1a. Observers at rest in the trams will see the 

mark poles M1 and M2 start to move simultaneously towards them, with identical 

motion, so that at the time ,Tt ′=′  when their observed velocity is ( ),Tv ′′  they arrive 

simultaneously at the front ends of PT1 and PT2, respectively, when their lamps flash 

(Figure 1c). For this ruler measurement, showing that the separation of M1 and M2, 

as measured in ,S′  is also L, the roles of the trams and mark poles are inverted. The 

ends of the trams constitute the marks and the moving poles the pointers. It is evident 

that the flashes of the lamps on M1 and M2 are simultaneous in both S and S′  -  

there is no ‘relativity of simultaneity’ effect.  

 

Figure 1. Spatial configurations in frames S [(a), (b)] and S′  [(a), (c)] of a thought 

experiment in which the pointer trams PT1 and PT2 are simultaneously accelerated in 

a similar manner so as to pass from positions of spatial coincidence with stationary 

mark poles M3 and M4 at 0=′= tt  [(a)] to simultaneous spatial coincidence with 

M1 and M2 at time T in S [(b)] or time T ′  in S′  [(c)]. Time coincident events are 

signaled by simultaneous flashes of lamps on M3 and M4 in (a) and on M1 and M2 

in (b) and (c). See text for discussion. 

The conclusions of the thought experiment - the invariance of the results of ruler 

measurements of the spatial separations of PT1 and PT2 or M1 and M2 performed in 



RULER MEASUREMENTS GIVE SPACE-TIME- … 

 

5 

different frames in relative motion and the absence of any relativity of simultaneity 

effect - follow only from the initial postulate of identical motion of the trams in the 

frame S, and are independent of the form of the space-time transformation equations 

relating t′  to t. Suppose the acceleration of PT1 or PT2 is some arbitrary function of 

( ).: tat  The velocity at epoch t of PT1 or PT2 is then 

 ( ) ( ) tdtatv

t

′′= ∫0  (1) 

and the spatial displacement, ( ),td  at epoch t is 

 ( ) ( ) ( ) .
00 0 ∫∫ ∫

′′
′′′′=′′′′=

tt t

tdtatdtdtvtd  (2) 

The spatial separations ( )txPT∆  and ( )txPT
′′∆  in S and ,S′  respectively are, from 

the geometry of Figure 1 

( ) ( ) ( )12 PTxPTxtxPT −≡∆  

[ ( )] ( )][ tdLtdL −−−= 34  

( ) ( ).0 txxL PTPT
′′∆=∆==  (3) 

Space-time transformation equations yield from ( )ta  the corresponding acceleration 

( )ta ′′  of M1 and M2 as observed in the frame .S′  Similarly for (1) and (2) above, it 

follows that 

( ) ( ) ,
0

tdtatv

t

′′′′′′′=′′ ∫
′

 (4) 

( ) ( ) ( ) .
000

tdtatdtdtvtd

ttt

′′′′′′′′′=′′′′′=′′ ∫∫∫
′′′′

 (5) 

The spatial separations ( )txM
′∆  and ( )txM∆  of M1 and M2 in S′  and S are 

( ) ( ) ( )12 MxMxtxM
′−′≡′′∆  

[ ( )] ( )tdtdL ′′−′′+=  

( ) ( ).0 txxL MM ∆=′∆==  (6) 
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The world lines of PT1, PT2, M1 and M2 in S and S′  for different acceleration 

programs and space-time transformation equations are shown in Figure 2 for the 

following examples 

(i) ‘Parabolic motion’ in special relativity [7, 8, 9, 10, 11] 

( ) ( ) ,113
2

0

0

2

21













−








+−=−=

c

ta

a

c
LLtxtx PTPT  (7) 

( ) ( ) .1cosh 0

0

2

21 





−

′
=−′′=′′

c

ta

a

c
Ltxtx MM  (8) 

(ii) Constant acceleration in Galilean relativity 

( ) ( ) ,
2

1
3 2

021 taLLtxtx PTPT −=−=  (9) 

( ) ( ) .
2

1 2
021 taLtxtx MM

′=−′=′  (10) 

These world lines are the ∞→c  limits of (7) and (8) 

 

Figure 2. World lines of PT1, PT2, M1 and M2 in S (a) or ,S′  (b) for different 

acceleration programs and space-time transformation equations. ,10 == ac  =L  

.31  Ruler measurements of the spatial separations of PT1 and PT2 or M1 and M2 

are indicated by the vertical dot-dashed lines for the three different cases considered. 

See text for discussion. 



RULER MEASUREMENTS GIVE SPACE-TIME- … 

 

7 

(iii) Uniform motion after impulsive acceleration in special relativity 

( ) ( ) ,321 vtLLtxtx PTPT −=−=  (11) 

( ) ( ) ,21 vttvLtxtx MM γ=′′=−′=′  (12) 

where ( ) .1
2

cv−≡γ  The constant velocity, ,v  is chosen according to the 

equations [11]: 

,1
3

1 0

0

−







+=

c

La

a

c
T  (13) 

( )
,

1

0

2
0

0

T

Ta

c

Ta

Ta
v

γ
−=









+

−=  (14) 

( ) ( ).sinh 0
0

TvTTa
c

Ta
cv γ−==

′
=′  (15) 

In this way, PT1 and PT2 have the same velocity after impulsive acceleration as 

they have when arriving at M1 and M2 in case (i) above. It corresponds to the limits 

0,0 →∞→ Ta  in Equations (14) and (15) for finite values of vTa ,0  and .v′  

Since the ∞→c  (Galilean) and 0, →′tt  limit of (7) and (8) are the same, for 

the choice of units and parameters 31,10 === Lac  in Figure 2, the world lines 

of PT1, PT2 in S (Figure 2a) and of M1, M2 in S′  (Figure 2b) are indistinguishable, 

for 5.0, <′tt  between cases (i) and (ii). For case (ii) the shapes of the world lines of 

M1 and M2 in S′  are mirror images of those of PT1 or PT2 in S. The different 

shapes of the world lines of M1 and M2 in S′  to those of PT1 or PT2 in S for case (i) 

are due to the time dilation effect. In fact, at corresponding values of t and ,t′  the 

slopes of the world lines of M1 and M2 in S′  are γ  times the slopes of those of PT1 

or PT2 in S [11]. The straight world lines of PT1 or PT2 in S and of M1 and M2 in 

S′  for case (iii) have, due to the time dilation effect, slopes in the ratio ,:1 γ  where  

2=γ  corresponding to 23cv −=  or 3,1 0 == Tac  in Equations (14) and 

(15). 

The lines A ( ),A′  which are tangential to the world lines of PT2 in Figure 2a 
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and M1 in Figure 2b, for case (i), where they intersect those of M2 and PT1, 

respectively, are parallel to the world lines of PT1 or PT2 (M1 or M2) for case (iii). 

The spatial separation of PT1 and PT2 or M1 and M2 is equal to L at all times in 

both S and .S′  Ruler measurements of this separation for the three different cases in 

both frames are indicated by the labeled vertical dot-dashed lines. It can be seen in 

Figure 2 that the constancy and frame invariance of the spatial separations of PT1 

and PT2 or M1 and M2 is a necessary geometrical consequence of the identical 

shapes of their world lines in each frame in all cases. This identity of shape is, in 

turn, a necessary consequence of the identical nature of the acceleration programs to 

which they are subjected. The invariance of the separation is also independent of the 

form of the space-time transformation equations by which the shape of the world 

lines in S′  may be derived from those in S. 

The initial configuration of the second thought experiment is shown in Figure 3a. 

The measuring rod MR, of length L, is used to set the separations of the ruler-mark 

objects 32211 A,B,A,B,A  and 3B  of the ruler R. The separations of 

222111 B-A,A-B,B-A  and 33 B-A  are set to L, and that of 32 A-B  to 2L. 

The front and back ends of MR (as viewed from the left side of the ruler in Figure 3a) 

are denoted by F and B, respectively. As discussed above, if the ends of the moving 

object are simultaneously aligned with any two of the mark-objects in the proper 

frame of the ruler, the length of the moving object is defined to be equal to the 

separation of the mark-objects in the proper frame of the ruler. 

The ruler R is subjected to an acceleration program similar to that in case (i) 

above, specified by the parameter ,0a  in such a sense that, in the proper frame, S′  of 

R, MR is observed to move to the right. The equations describing the world lines of 

the ends of MR as observed in ,S′  are then similar to (8) above: 

 ( ) ( ) .1cosh 0

0

2







−

′
=−′=′

c

ta

a

c
LBxFx  (16) 

In Figure 3a, the length of MR at rest, L, is measured by the separation of 1A  

and .B1  It follows from (16) that the length of MR is also measured to be L by 

simultaneous coincidence of F and R with 1B  and 2A  at the epoch .693.0 01 act =′  

In Figures 3-5, units and dimensions are chosen so that .140 === Lca  Similar 
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measurements are performed by 2A  and 2B  at 02 962.0 act =′  and by 3A  and 

3B  at .46.1 03 act =′  As in [11], it is assumed that the acceleration halts when 

( ) 0
2

acFx =′  at the epoch in :S′  

 ( )
00

317.12arccosh
a

c

a

c
tacc ==′  (17) 

so that for epochs ,acctt ′≥′  S′ is an inertial frame and v′  is constant. 

 

Figure 3. Four measurements of a stationary measuring rod MR are performed by a 

moving ruler R. The measurements as observed in the proper frame, ,S′  of R are 

shown. In (a), MR is at rest relative to R. In (b) and (c) measurements are made while 

R is accelerating. In (d) the ruler moves uniformly relative to MR. In all cases MR is 

measured to have the same length L - there is no ‘length contraction’ effect. 

The world lines of F and B in S′  and the four measurements of the length of MR 

- one at rest, two during accelerated motion and one during uniform motion - are 

plotted in Figure 4. Again, each concordant ruler measurement is indicated by a 

vertical dot-dashed line. This figure shows clearly that the physical basis for the 

equality of all the length measurements is that the first member of (16) may be 

transposed to give: 

 ( ) ( ) ,,, LtFxtBx =′′−′′  (18) 
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where the t′  dependence of each term is shown explicitly. Thus the world line of B is 

derived from that of F by displacing it with the distance L along the positive x′ -axis. 

The operation Lxx +′→′  corresponds to moving the origin of the coordinates by a 

distance L. The shape of the world line of one end of MR is invariant under this 

transformation, and so manifests translational invariance. 

 

Figure 4. World lines of the front (F) and back (B) ends of the stationary measuring 

rod MR, as viewed from the proper frame of the ruler R, showing the epochs 

210 ,, ttt ′′′  and 3t′  of the four concordant measurements of the length of MR as 

indicated by the vertical dot-dashed lines. 

For definiteness, the case of ‘hyperbolic motion’ of the ruler, according to 

Equation (16), was considered above, but it is clear that the invariance of length 

measurements of MR must be independent of the acceleration program of R. In 

Figure 5, for example, a series of impulsive accelerations of sign +−+−+ ,,,,  are 

applied, yielding equal length measurements at the epochs 3210 ,,, tttt ′′′′  and 4t′  as 
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shown. One measurement corresponds to a simultaneous coincidence of 1A-F  and 

,B-B 1  three to simultaneous coincidences of 2A-F  and ,B-B 2  and one to a 

simultaneous coincidence of 3A-F  and .B-B 3  

Discussion of the reason for the spurious nature of the correlated ‘length 

contraction’ and ‘relativity of simultaneity’ effects of conventional special relativity 

[6] may be found in [1, 2, 3, 4, 5]. In particular it is shown in [2], that these effects 

result from the neglect of certain additive constants in the space-time Lorentz 

transformation equations, mentioned by Einstein [6], but not implemented by him, 

that are required to correctly describe synchronized clocks at different spatial 

positions. 

 

Figure 5. World lines of the front (F) and back (B) ends of the stationary measuring 

rod MR, as viewed from the proper frame of the ruler R, when the latter is subjected 

to a series of impulsive accelerations. Five concordant measurements of the length of 

MR, indicated by the vertical dot-dashed lines, at epochs 3210 ,,, tttt ′′′′  and 4t′  are 

obtained. 
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