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Abstract 

Suppose the data consists of a set S of points ,1, Jjx j ≤≤  

distributed in a bounded domain ,
N

RD ⊂  where N and J are large 

numbers. In this paper, an algorithm is proposed for checking whether 

there exists a manifold M  of  low dimension near which many of the 

points of S lie and finding such M  if it exists. There are many 

dimension reduction algorithms, both linear and non-linear. Our 

algorithm is simple to implement and has some advantages compared 

with the known algorithms. If there is a manifold of low dimension near 

which most of the data points lie, the proposed algorithm will find it. 

Some numerical results are presented illustrating the algorithm and 

analyzing its performance compared to the classical PCA (principal 

component analysis) and Isomap. 
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1. Introduction 

There is a large literature on dimension reduction. Without trying to describe the 

published results, we refer the reader to the reviews [3] and [7] and references 

therein. Our algorithm is simple, it is easy to implement, and it has some advantages 

over the known algorithms. We compare its performance with PCA and Isomap 

algorithms. The main point in this short paper is the new algorithm for computing a 

manifold M  of low dimension in a neighborhood of which most of the data points 

lie, or finding out that there is no such manifold. 

In Section 2, we describe the details of the proposed algorithm. In Section 3, we 

analyze the performance of the algorithm and compare its performance with PCA and 

Isomap algorithms’ performances. In Section 4, we show some numerical results. 

2. Description of the Algorithm 

Let S be the set of the data points ,,1,
N

jj RDxJjx ⊂∈≤≤  where D is a 

unit cube and J and N are very large. Divide the unit cube D into a grid with step size 

.10 ≤< r  Let 
r

a
1

=  be the number of intervals on each side of the unit cube D. Let 

V be the upper limit of the total volume of the small cubes LCm ,  be the lower limit 

of the number of the data points near the manifold ,M  and p be the lower limit of the 

number of the data points in a small cube mC  with the side r. By a manifold in this 

paper, a union of piecewise-smooth manifolds is meant. By a smooth manifold is 

meant a smooth lower-dimensional domain in ,
N
R  for example, a line in ,

3
R  or a 

plane in .
3
R  The one-dimensional manifold that we construct is a union of 

piecewise-linear curves, a linear curve is a line. 

Let us describe the algorithm, which is a development of an idea in [8]. The 

steps of this algorithm are: 

1. Take ,1aa =  and .21 =a  

2. Take ,
N

aM =  where M is the number of the small cubes with the side r. 
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Denote these small cubes by .1, MmCm ≤≤  Scan the data set S by moving the 

small cube with the step size r and calculating the number of points in this cube for 

each position of this cube in D. Each of the points of S lie in some cube .mC  Let 

mµ  be the number of the points of S in .mC  Neglect the small cubes with ,pm <µ  

where p is the chosen lower limit of the number of the data points in a small cube 

.mC  One chooses ,Sp <<  for example, ,005.0 Sp =  where S  is the number of 

the data points in S. Let tV  be the total volume of the cubes that we keep. 

3. If ,0=tV  we conclude that there is no manifold found. 

4. If ,VVt >  we set .2 12 aaa ==  If ,2
N Sa >  we conclude that there is no 

manifold found. Otherwise, repeat steps 2 and 3. 

5. If ,VVt <  then denote by ,1, MKkCk <<≤≤  the small cubes that we 

keep ( ).pk ≥µ  Denote the centers of KC  by kc  and let .:
1 k

K
k

C
=

= ∪C�  

6. If the total number of the points in C  is less than L, where L is the chosen 

lower limit of the number of the data points near the manifold ,M  then we conclude 

that there is no manifold found. 

7. Otherwise, we have a set of small cubes MKkCk <<≤≤1,  with the side 

r, which has total volume less than V and the number of the data points .L≥  

Given the set of small cubes ,1, KkCk ≤≤  one can build the sets sL  of 

dimension ,Ns <<  in a neighborhood of which maximal amount of points Sx j ∈  

lie. For example, to build ,1L  one can start with the point 11 : cy =  where 1C  is the 

small cube closest to the origin, and join 1y  with 22 cy =  where 2C  is the small 

cube closest to .1C  Continuing joining K small cubes, one gets a one-dimensional 

piecewise-linear manifold .1L  To build ,2L  one considers the triangles kT  with 

vertices .21,,, 21 −≤≤++ Kkyyy kkk  The union of kT  forms a two-dimensional 

manifold .2L  Similarly, one can build s-dimensional manifold sL  from the set of 

.kC  
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While building manifolds ,sL  one can construct several such manifolds because 

the closest to 1−iC  cube iC  may be non-unique. However, each of the constructed 

manifolds contains the small cubes ,kC  which have totally at least L data points. For 

example, for SL 9.0=  each of these manifolds contains at least S9.0  data points. 

Of course, there could be a manifold containing S99.0  and another one containing 

.9.0 S  But if the goal is to include as many data points as possible, the experimenter 

can increase L, for example, to .95.0 S  

Choice of ,, LV  and p 

The idea of the algorithm is to find a region containing most of the data points 

( )L≥  that has small volume ( )V≤  by neglecting the small cubes kC  that have p<  

data points. 

Depending on how sparse the data set is, one can choose an appropriate L. If the 

data set has a small number of outliers (an outlier is an observation point that is 

distant from other observations), one can choose ,9.0 SL =  as in the first numerical 

experiment in Section 3. If the data set is sparse, one can choose ,8.0 SL =  as in the 

second numerical experiment in Section 3. In general, when the experimenter does 

not know how sparse the data are, one can try L to be SS 9.0,95.0  or .8.0 S  

One should not choose V too big, for example ,5.0≥  because it does not make 

sense to have a manifold with big volume. One should not choose V too small 

because then either one cannot find a manifold or the number of small cubes kC  is 

the same as the number of data points. So, the authors suggest V to be between 3.0  

and 4.0  of the volume of the original unit cube where the data points are. 

The value p is used to decide whether one should neglect the small cubes .kC  

So, it is recommended to choose .Sp <<  Numerical experiments show that 

Sp 005.0=  works well. The experimenter can also try smaller values of p but then 

more computation time is needed. 
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3. Performance Analysis 

In the algorithm one doubles a each time and .2 N Sa ≤≤  So the main step 

runs at most N Slog  or S
N

log
1

 times. For each a one calculates the number of 

points of the data set S in each of aM  small cubes. The total computational time is 

.log
1

S
N

MS a  In N-dimensional space, calculating the distance between two 

points takes N operations. Thus, the asymptotic speed of the algorithm is 

( )S
N

MSNO a log
1

 or ( ).log SMSO a  Since ,SM a ≤  in the worst case, the 

asymptotic speed is ( ).log2 SSO  

If one compares this algorithm with the principal component analysis (PCA) 

algorithm, which has asymptotic speed ( ),3SO  one sees that our algorithm is much 

faster than the PCA algorithm. PCA theory is presented in [5]. 

In paper [1], the fastest algorithm for finding a manifold of lower dimension 

containing many points of S, called Isomap, has the asymptotic speed of 

( ),log SSslO  where s is the assumed dimension of the manifold and l is the 

number of landmarks. However, in the Isomap algorithm one has to use a priori 

assumed dimension of the manifold, which is not known a priori, while our algorithm 

finds the manifold and its dimension. Also, in the Isomap algorithm one has to 

specify the landmarks, which can be arbitrarily located in the domain D. Our 

algorithm is simpler to implement than the Isomap algorithm. For large ,S  one can 

make our algorithm faster by putting the upper limit for a. For example, instead of 

,1 N Sa ≤≤  one can require .1 2N Sa ≤≤  

4. Numerical Results 

In the following numerical experiments, we use different data sets from paper [2] 

and [6]. We apply our proposed algorithm above to each data set and get the results 

as shown in the pictures. The first picture of each data set shows the original data 
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points (as blue points) and the found small cubes (as red points). The second picture 

of each data set shows the found manifold. 

1. Consider the data set from paper [2]. This is a 2-dimensional set containing 

308=S  points in a 2-dimensional Cartesian coordinate system. Below we take the 

integer value for p nearest to p and larger than p. 

 

Figure 1. A data set from paper [2] with 308=S  and .56.1005.0 == Sp  

 

Figure 2. A data set from paper [2] with 308=S  and .56.1005.0 == Sp  

Run the algorithm with 5.0=V  (i.e., the final set of kC  has to have total 

volume less than ) SL ×= 9.0,5.0  (the manifold has to contain at least 90% of the 

initial data points), and 56.1005.0 == Sp  (we take 2=p  and neglect the small 
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cubes that have 1≤  point). One finds the manifold 1L  when ,161,16 == ra  the 

number of small cubes kC  is ,89=M  which has total volume of 35.0  and contains 

S92.0  data points. 

2. Consider another data set from paper [2]. This set has 296=S  data points. 

 

Figure 3. Another data set from paper [2] with 296=S  and .5.1005.0 == Sp  

 

Figure 4. Another data set from paper [2] with 296=S  and .5.1005.0 == Sp  

Run the algorithm with 5.0=V  (i.e., the final set of kC  has to have total 

volume less than ) SL ×= 8.0,5.0  (since some part of the data is uniformly 

distributed), and 5.1005.0 == Sp  (we take 2=p  and neglect the small cubes 
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that have 1≤  point). One finds the manifold 1L  when ,161,16 == ra  the number 

of small cubes kC  is ,76=M  which has total volume of 3.0  and contains S83.0  

data points. 

3. Use the data set from paper [2] as in the second experiment. In this 

experiment, 4=p  was used. This is to show that one can try different values of p 

(besides the suggested one )Sp 005.0=  and may find a manifold with a smaller 

number of small cubes. 

 

Figure 5. Another data set from paper [2] with 296=S  and .4=p  

 

Figure 6. Another data set from paper [2] with 296=S  and .4=p  
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Choose 5.0,4 == Vp  and .8.0 SL ×=  One finds the manifold 1L  when 

,81,8 == ra  the number of small cubes kC  is 30=M  (less than 76 in 

experiment 2), which has total volume of 47.0  and the total number of points 

.89.0 S  The conclusion is: one can try different values for p and can have different 

manifolds. 

4. Consider a data set from paper [4] (Figure 7). 

 

Figure 7. A data set from paper [4] with .235=S  

Run the algorithm with SLV ×== 8.0,5.0  and let p run from 1 to 10. For 

any p, one cannot find a set of kC  which has total volume V≤  and contains at least 

S8.0  data points. This data set does not have a manifold of lower dimension in a 

neighborhood of which most of the data points lie. 

5. Consider a data set from paper [6]. This set has 373=S  data points. 
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Figure 8. A data set from paper [6] with 373=S  and .4=p  

 

Figure 9. A data set from paper [6] with 373=S  and .4=p  

Run the algorithm with 5.0=V  (i.e., the final set of kC  has to have total 

volume less than ) SL ×= 8.0,5.0  (since some part of the data is uniformly 

distributed), and 4=p  (we neglect the small cubes that have 3≤  points). One finds 

the manifold 1L  when ,81,8 == ra  the number of small cubes kC  is .26=M  

6. Use the data set from paper [6] as in the fifth experiment. In this experiment, 

2=p  was used. 

This is to show that one can try different values of p (besides the suggested one 
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)4=p  and may find a different manifold. 

 

Figure 10. A data set from paper [6] with 373=S  and .2=p  

 

Figure 11. A data set from paper [6] with 373=S  and .2=p  

Choose 5.0,2 == Vp  and .8.0 SL ×=  One finds the manifold 1L  when 

,161,16 == ra  the number of small cubes kC  is .72=M  The conclusion is: one 

can try different values for p and can have different manifolds. 

5. Conclusion 

We conclude that our proposed algorithm can compute a manifold M  of low 
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dimension in a neighborhood of which most of the data points lie, or find out that 

there is no such manifold. Our algorithm is simple, it is easy to implement, and it has 

some advantages over the known algorithms (PCA and Isomap). 
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