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Abstract 

We consider a canonical construction principle for multivariate copula 

models on the basis of independent standard random variables which is 

in particular well suited for Monte Carlo Studies. 

1. Introduction 

There are many approaches to copula modelling in the literature, cf., 

e.g., the papers listed in References section. Now for our investigations, 

let { }
N∈= kkUU  be a sequence of independent standard random 

variables, i.e., each kU  has a continuous uniform distribution over the 

interval [ ].1,0  Let further ,...,,1 nTT  N∈n  be real continuous functions 
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over N
R  and ( )Uii TV =  for ni ...,,1=  with a continuous uniform 

distribution over [ ]1,0  each. Then ( )nVV ...,,1=V  is a representative of 

an n -dimensional copula. 

Note that if ( )Uii TW =  is not directly uniformly distributed then 

( )iii WFV =  is so if iF  denotes the c.d.f. of .iW  

2. Particular Cases 

Consider the following special cases of a construction as indicated in 

the Introduction. 

Case 1. Let 2=n  and ( ) ,11 UT =U  ( ) ( ) ,1 2122 UUTW α−+α== U  

.
2

1
0 ≤α<  It can easily be shown that the c.d.f. 2F  is given by 
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The following graphs show 000,5  simulations of V  each, for various 

values of .α  
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Scatterplot of ,V  .
2
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Scatterplot of ,V  .
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Scatterplot of ,V  .
4

1
=α  

The red lines ( )vu,  represent the lower and upper envelopes of the 

copula, which are given by 2uvlower β=  and ( ) ,11
2

uvupper −β−=  

10 << u  with 
( )

.
12 α−

α
=β  This follows from (1) since ∈α≥ 12 UW  

[ ]α,0  and ( )
( ) ( )
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UW
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α
≥

α−α
≥α=  which implies 

the lower envelope. Note also that if 2U  is close to zero, then 2V  is close 

to 
( )

2
1

2
1

12
U

U
β=

α−

α
 which implies that the lower envelope is sharp. The 

upper envelope follows by symmetry reasons. 

Case 2. Let 2=n  and ( ) ,211 UUW +=U  ( ) .212 UUW ⋅=U  It is easy 

to see that the c.d.f. 2F  is given by 

( ) ( )( ) ,ln12 xxxF ⋅−=       10 ≤< x  
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and 
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(cf. Case 1 for ).
2

1
=α  

This follows from the observation that ( )( )U2lnW−  represents the 

sum of two independent standard exponentally distributed random 

variables, hence is gamma-distributed. The following graph shows 000,5  

simulations of .V  

 

Scatterplot of .V  

The red lines ( )vu,  represent the lower and upper envelopes of the 

copula, which are given by 
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.10 << u  Note also that if 2U  is close to ,1U  then the upper envelope is 

reached. The lower envelope is reached if 2U  is close to .1  

Case 3. Let 3=n  and ( ) ,11 UT =U  ( ) ( ) .3
212
U

UUT ⋅=U  Note that 

( )U22 TV =  is already uniformly distributed over [ ]1,0  since for 

10 << x  

( ) ( ( ) ( ))xVPxVP lnln 33 −≥−=≤  
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(note that ( ) ( )21 lnln UU −−  is gamma-distributed). 

The following graph shows 000,5  simulations of .V  



REFLECTIONS ON A CANONICAL CONSTRUCTION … 

 

103 

 

Scatterplot of .V  

Case 4. Let 3=n  and ( ) ,
2

1
1 U

U
W =U  ( ) ( ) .3

212
U

UUT ⋅=U  Note that 

the c.d.f. 1F  of ( )U1W  is given by 
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while ( )U2T  is already continuous uniformly distributed over [ ],1,0  cf. 

Case 4. 

The following graph shows 000,5  simulations of .V  
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Scatterplot of .V  

Case 5. Let 2=n  and ( ) ,
2

1
1 U

U
W =U  ( ) .212 UUW +=U  For the 

corresponding c.d.f.s, see Cases 4 and 2. 

The following graph shows 000,5  simulations of .V  

 

Scatterplot of .V  
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The red line ( )vu,  represents the upper envelope of the copula, which is 

given by .
2

1
21

2



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



−−= uv  Note that if 2U  is close to ,1  then 1V  is close 

to 
2
1U  and 2V  is close to 

2
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implies that the envelope is sharp. 

Case 6. Let 2=n  and ( ) ( ),,min 211 UUW =U  ( ) .212 UUW ⋅=U  

Clearly (cf. (2)), ( ) ( )21 11 xxF −−=  and ( ) ( )( ) ,ln12 xxxF ⋅−=  .10 ≤< x  

The following graph shows 000,5  simulations of .V  

 

Scatterplot of .V  

The red lines ( )vu,  represent the lower and upper envelopes of the 

copula, which are given by ( ) ( ( ))uuvlower −−−⋅−−= 11ln2111
2

 

and ( ) ( ( )),11ln111 uuvupper −−−⋅−−=  .10 << u  This can be 
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seen as follows: we have ( )2211 11 UUV ∧−−=  with ( )baba ,min=∧  

for real ,a  b  or .11 121 VUU −−=∧  It follows 

( ) ( ) 12121
2

21
2

1 1111 VUUUUUUV −−=∧≤⋅≤∧=−−  

and, since the map ( ) ( )( )zzzgz ln1: −⋅=→  with ( ) ( ) ,0ln >−=′ zzg  

( ]1,0∈z  is monotonically increasing we have 

( ) ( (( ) )) ( )212
2

1
2

1 11ln111 UUgVVV ⋅=≤−−−⋅−−  

( ) ( ( ))11 11ln111 VV −−−⋅−−≤  

which proves the statement. Note that if 1U  is close to ,2U  then the 

lower envelope becomes sharp while the upper envelope becomes sharp if 

1U  or 2U  is close to zero. 
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