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Abstract

In this paper, we propose quantile generated family of distributions, where
the generator is given by the quantile density function of a continuous
random variable. Some statistical properties associated with this new
family of distributions are obtained. A special case of this new family of

distributions is associated to a non-linear regression problem.
1. Introduction

Eugene et al. [1] proposed the beta-generated family of distributions, where the
beta distribution with PDF say b is used as the generator. The CDF of the beta

generated distribution is then defined as

F(x)
G(x) = Jo b(t)dt,
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where F is the CDF of any random variable. If X is continuous, the corresponding

PDF of the beta generated distribution is

) = S PO ) 1= P

o >0, >0, where B(a, B) is the beta function. The PDF of the beta-generated

distribution can be considered as a generalization of the distribution of order statistic

[1, 2]. By applying different F(x), many authors have studied variants of the beta-

generated distribution and its applications, and for examples, see [3, 4, 5].

Alzaatreh et al. [6] proposed a general method by replacing the beta PDF of
Eugene et al. [1] with a general PDF say r of a continuous random variable say T and

replacing F(x), the CDF of X, with a weighted version, W (F(x)), where W (F(x))

admits the following properties

(@) W(F(x)) € [a, b],

(b) Wis a monotone increasing and differentiable function,

(©) lim,_,_, W(F(x)) = a and lim,_,_ ., W(F(x)) = b,
where [a, b] is the support of the random variable T for —eo < g < b < oo, The CDF
of the T — X (W) family is then defined as

W (F(x))

Glx) = I F(t)dt.

a

If R is the CDF of T, then the CDF of the T — X (W) family can be written as
G(x) = R(W(F(x)))

and the corresponding PDF (if it exists) can be written as

8(x) = rW (F(x)) <L W(F ().

By applying different F(x) and W, variants of the 7' — X(W) family have been

investigated, for examples, see [7, 8, 9].
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Aljarrah et al. [10] proposed a generalization of the method of Alzaatreh et al.
[6] by introducing a new weight function that is based on the quantile function

associated with a random variable Y. Let Oy be the quantile function associated with

the random variable ¥ whose CDF is continuous and strictly increasing, then the CDF

of the T — X (Y) family is then defined as

G(x) = J.QY(F(X)) r(t)dt.

a

If R is the CDF of 7, then the CDF of the T — X (Y) family can be written as

G(x) = R(Qy (F(x)))
and the corresponding PDF is given by

f(x)

mr(Qy(F(x))),

g(x) =

where p is the PDF of Y. Variants of the T — X (Y) family have been explored, for
example, see [11].
This paper is organized as follows. In Section 2, we describe a new technique

which is also a “quantile approach” which differs from Aljarrah et al. [10], and in

Section 3, we give some families for the new technique arising from the 7 — X (W)

family. In Section 4, we discuss some statistical properties. In Section 5, a special
distribution arising from the new technique is presented, and we discuss Moors’
kurtosis and Galtons’ skewness based on quantile function. In Section 6, the special

distribution is associated to a non-linear regression problem.
2. The New Technique

Consider the T — X (W) family of Alzaatreh et al. [6] and the T — X (Y) family
of Aljarrah et al. [10]. Since T has an absolutely continuous distribution with PDF
r(t) and CDF R(t), then the quantile function Q(f) is written as Q(r) = R™\(z),
) = do(t) 1

d Q)

0 <1 <1, and the quantile density function is written as g(

O0<t<l1.
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To summarize, since T has an absolutely continuous distribution, we replace the

integrand of 7 — X (W) family with the quantile density function associated with T
and do the same for the T — X(Y) family. Thus the quantile generated distribution
arising from the 7 — X (W) family which we call the g7 — X (W) family has CDF

defined as

L ED)
=" gm

and the quantile generated distribution arising from the 7 — X (Y) family which we

call the g7 — X (Y) family has CDF defined as

(o (F()
ko= [ g

Note that the CDF of the g7 — X (W) family is
G(x) = QW (F(x)))
and the CDF of the gy — X (Y) family is
K(x) = 0(Qy (F(x))).
The PDF of the g7 — X (W) family is given by

1 1

= owE@) @ FW)

g(x)

and the PDF of the g7 — X (Y) family is given by

1 f(x)
(Q(Qy (F(x))) p(Qy (F(x))

k(x) = ;.

3. Some Families Arising from g; — X (W)

Theorem 3.1. Assume the support of T is [0, o), then we have the following

h(x)

@ If W(F() = H), then g(x) = oot

where h(x) is the Hazard
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function of the random variable X with CDF F(X) and H(x) is the cumulative

Hazard function of the random variable X with CDF F(X).

F(x)
1-F(x)

f(x)

(b) If W(F(x)) = : :
[1 - F(P r(G(x)

, then g(x) =

af ()F %~ (x)

© If W(F(x)) = —log(1 — F*(x)), then g(x) = .
) 8 T P @6)

Fo(x) of (x)F (x)
) If W(F(x)) = ———, then g(x) = .
e T I PR P HGW)

Proof. In all cases the proof follows from the definition of G(x) and g(x).

Moreover, in the case of (a), we note that H(x)=—log(l— F(x)) and

_ f
) =150

Theorem 3.2. Assume the support of T is (—oo, ), then we have the following
(@) If W(F(x)) = log(~1log(1 - F(x))), then

. £(3)
¢0) = TF (o)~ 1Tiogli - FO)IG)"

F(x)
1- F(x)

B h(x) .
), then g(x) = FOrGO)’ where h(x) is the

(b) If W(F(x)) = 1og[

Hazard function of the random variable X with CDF F(X).
() If W(F(x)) = log( —log(1 — F*(x))), then

af (0F *'(x)

(x) = .
ST R0 - Dol - F()IHG()
@) If W(F(x)) = o [mj then g(x) = of (x) .
£ 1- F*(x # F(x)(1 - F*(x))r(G(x))

Proof. In all cases the proof follows from the definition of G(x) and g(x).
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__ S

Moreover, in the case of (b), we note that A(x) = .
1-F(x)

Theorem 3.3. Assume the support of T is [0, ) and let W(F(x)) = —log
(1- F(x)), then we have the following

(a) If T follows the Exponential distribution with parameter 0, then g(x)=

L, where h(x) is the Hazard function of the random variable X with
0(1 - H(x))

CDF F(X) and H(x) is the cumulative Hazard function of the random variable X

with CDF F(X).

(b) If T follows the Weibull distribution with parameters k, A, then g(x)=

1-k
%(l)cz—m , where h(x) is the Hazard function of the random variable X with

CDF F(X), H(x) is the cumulative Hazard function of the random variable X with

CDF F(X), and m(x) = ln(l—;H(x))'

(¢) If T follows the Rayleigh distribution with parameter ©, then g(x)=

oh(x) , where h(x), H(x) and m(x) are defined as before.

V2m(x)(1 - H(x))

(d) If T follows the Lomax distribution with parameters o, A, then g(x)=

_ Milx) where V(x)=(1—H(x))é, and h(x) and H(x) are defined as

(XV(X)OH—I ’
before.

Proof. (a) Follows from the definition of g(x) and noting that r(z) = 0e 7%,

0 =R, where R(t)=1-¢%, and H(x) and h(x) are defined as before.

k-1
(b) Follows from the definition of g(x) and noting that r(z) = %(%)
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o g
e ‘M and 0 = R7!, where R(t)=1- e_(ﬂ .
22

(c) Follows from the definition of g(x) and noting that r(z) = Lz e 20° , and
c

2

0 =R"", where R(t)=1-e¢ 267

(d) Follows from the definition of g(x) and noting that r(t):%
1
MI—(1—-1)%

p —(a+1)
[1 +ﬂ ,and Q = R™', where R(t) = 1
(=

Theorem 3.4. Assume support of T is (—oo, ) and W(F(x)) = log(H(x)),

where H(x) is defined as before, then we have the following

(a) Assume T follows Cauchy distribution with parameters ty and v, then

(21og(H(x)) - )m

_ m tan®(B()) + 1Ja(x)
2

g(x) ) :
and h(x) are defined as before.

where B(x) = , and H(x)

(b) Assume T follows Gumbel or Type I Extreme Value distribution with

Gez(x)h(x) 1
parameters ¢ and |, then g(x)zm, where Z(x) =In —log(H(X)) )

H(x) and h(x) are defined as before.

(c) Assume T follows Laplace distribution with parameters | and b, and let

1

C(X) = m, then
1
2bh(x)C(x)p .
o(x) = THR) if H(x)2p,
Ph) if H(x) <

[H(x)]*
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where H(x) and h(x) are defined as before.

Proof. (a) Follows from the definition of g(x), and noting that r(z) = %

}, and Q = R™!, where R(t) = %tan_l(%) +

N —

.
(t—19)* +7

(b) Follows from the definition of g(x), and noting that r(z) = %n(t)e_”(t ),

(=)
where n(t)=e © , and Q = R™', where R(t) = ¢™"®).

(c) Follows from the definition of g(x), and noting that

1 =t
L, b : >
~ Zbe if t2p,
r(t) = i~
1 — .
5 ¢ if r<p

and Q = R_l, where

—

2
R(t) =

| G
S+5[1-e if 1>,

2 2

(G
1—lll—e ] if t <.

4. Some Statistical Properties of g — X (W) Family

We will write Qp for the quantile function associated with the continuous

random variable T, and write Q, _x(w) for the quantile function arising from

gr — X (W) family given by W.

Theorem 4.1. Assume the support of T'is [0, o), then we have the following

(a) QO\')KIT—X(H(X)) = F_l(l - E_R(M ), 0<A<l1.
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R(L)
1+ R

() 00, —x( L)) = ) Jo<n<r

Proof. (a) By definition, QO‘)qT—X(H(X)) =G '(A), where G(A) = Or(H(A))
and H(A) = —log(l — F(A)). Since Qr = R7!, itis enough to check that

GOMN) g, —x(rny) = * or QMg _x (112 (GV) = A

(b) By definition, Q) X( ?))j G'(A), where G(A)=0r

( F(A)

= F(k))' Since Q7 = R™', itis enough to check that

G(Q(x)qT_ X[%)j =X or Q(A) ar— X( F()) )(G(x)) =\

—F(A)

Theorem 4.2. Assume the support of T is (—oo, =), then we have the following

_ RO
(a) QO“)qT—X(log(H(l))) =F 1(1 —e ), 0 <A<l

)

ROV

J,O<7»<1.
1+e

a2 =

Proof. (a) By definition, Q(MqT—X(log(H(l))) =G '(A), where G(A)= Or

(log(H(A))) and H(A) = —log(l — F(X)). Since Qf = R7!, it is enough to check

that

G(OM) g, —x (tog(r () ) = A 01 Q) 4 x (10g(r1 (1)) (G(R)) = 2.

(b) By definition, Q(A),._ X(log(l (?))D G'(A), where G(A)=0Q

(log( I fg‘()}»))) Since Qr = R_l, it is enough to check that

G(Q(Mqr—X(log(%Dj =Aor Q(MqT—X(log(%D =(G(A) = A
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Theorem 4.3. Assume X follows the family of distributions given by Theorem

3.1(a), then the Shannon Entropy of X, Sy is given by
Sy =-E[log f{F'(1-¢ ")} -pr +vr,
where Wr and Yy are the mean and Shannon Entropy for the random variable T

. 1
with pdf m .

Proof. From h(x) = 1—]03;6())0 , G(x) = Or(H(x)) and H(x) = —log(l - F(x)),

observe that
Sx = E[-log{g(X)}]
= —E[log{f (X )}] + Ellog{(1 - F(X ))}] + E[— log{_r(czx))H‘

Since T = —log(l — F(X)) has PDF ;, then

r(Qr (1))

Ellog{f(X)}] = E[log f{F'(1-¢7")}]
and
Ellog{(1 - F(X))}] = E[-T]= -E[T] = —ur

and

# el ety | 2Ll

Theorem 4.4. Assume X follows the family of distributions given by Theorem
3.1(b), then the Shannon Entropy of X, Sx is given by

4 T
Sy = —E[log f{F 1(m)H = Wyog(147) T Y75

where Wioo(147) Is the mean of the random variable log(1+T) with PDF
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1 and Yr is the Shannon Entropy of the of the random variable T with PDF

r(Qr (1))
1

r(0r(t)
Proof. By definition,
Sx = E[-log(g(X))] = —E[log(f(X))]

+ 2E[log(1 - F(X))] + E[— log{mﬂ.

F(X) 1

Since T = T-F0) has PDF 00 it implies that E[log(f(X))]=E

[log f {F _1(%)}} On the other hand E[— log{mﬂ =FE
1 _ . . _ B

[— log{mﬂ = yr. Since the random variable V = —log(l — F(X)) also has

PD it follows that the relationship between the random variables 7 and

1
F —7
r(Qr (1))
Vis given by V =log(1+ 7). Thus

Ellog(1 - F(X))] = E[-V] = ~E[V] = -1y = ~Wiog(147)-
5. A Special Case of g; — X (W) Family

Let the support of T be (0, 1) = (0, o) and W(F(x)) = —log(l — F(x)), where
F(x) is the CDF of X. In particular, let T follow the (standard) Power distribution
with parameter r > 0, and X follow the (standard) Pareto distribution with parameter

a>0.

Theorem 5.1. The quantile function of the (standard) Power distribution is

1
givenby Qr(t)=t",0<t <1, and r > 0.

Proof. Q7 (t) = F _1, where F is the CDF of (standard) Power distribution.
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Figure 1. Quantile function of Power distribution for various values of the parameter

r.

Remark 5.2. Since T follows the Power distribution and X follows the Pareto

distribution, we will call this special case of the gr — X(W) family, the Quantile
Power-Pareto Distribution induced by W.
Theorem 5.3. The CDF of the Quantile Power-Pareto Distribution induced by
1 1
W, is given by, G(x) = a” (log(x))", where a >0, r > 0, and x > 0.
Proof. It follows from the definition of G(x), and noting that F(x) is the CDF

of (standard) Pareto distribution with parameter a > 0 and Q is given by Theorem

5.1.

Figure 2. CDF of Quantile Power-Pareto Distribution induced by W for various

values of the parameters r and a.

Theorem 5.4. The PDF of the Quantile Power-Pareto Distribution induced by

1 Ior
ar (log(x)) 7
rx

Wis given by g(x) = , where a >0, r >0, and x > 0.

Proof. One can obtain it directly from the definition of g(x) or by noting that
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g(x) = % G(x), where G(x) is the CDF of the Quantile Power-Pareto Distribution

induced by W.

—  a=l2=

a=1/4=173

—  a=1/5¢=1/6

Figure 3. PDF of Quantile Power-Pareto Distribution induced by W for various

values of the parameters r and a.

In order to discuss Moors’ Kurtosis [12] and Galton’s Skewness [13], we need
the quantile function of the Quantile Power-Pareto Distribution induced by W. In

particular, we have the following

Theorem 5.5. The quantile function of the Quantile Power-Pareto Distribution

1

.
induced by W is given by Q(x) = 10" m(x) = x—l, 0<x<l,r>0a>0.

2
a’

Proof. Q = G_l, where G is the CDF of the Quantile Power-Pareto Distribution

induced by W.

Figure 4. Quantile function of Quantile Power-Pareto Distribution induced by W for

various values of the parameters r and a.

Now we have the following characterization of Galton’s Skewness based on the

quantile function of the Quantile Power-Pareto Distribution induced by W.
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Theorem 5.6. The Quantile Power-Pareto Distribution induced by W is

symmetric if the parameter r is sufficiently large
6 4 2
of§)-2{5)+o5)
6 2
ofs)-<(3)
. 6 2 O .
if Q(g) * Q(g) Thus, the distribution is symmetric if
6 2) 4
o) d5)-els) v

In terms of Theorem 5.5, (7) becomes
1

& & G

1 1 1

Proof. By definition, § =

. Obviously, S makes sense

<=
<=

2 2 2
10¢  +10¢ =2-10¢ . (®)
1 1 1
If there exist r > 0 such that (g)r = (%)r = (%)r, then equality holds in (8).

However, there is no such r > 0. Now observe that

1 1 1
. (6\r . (2Yr . (4\r
tim (G = Jim (3] = im )
Thus if r is sufficiently large, then equality holds in (8) and the distribution is

symmetric. Clearly symmetry of distribution is independent of the parameter a > 0.

Theorem 5.9. The Quantile Power-Pareto Distribution induced by W is right

skewed < Q(%) > Q(%)

Proof. (=) Suppose S > 0 but Q(%) < Q(%) Since S > 0, we consider two

cases
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Case 1.

ey
e

If we combine Case II with Q(%) < Q(%), then there is nothing to prove.

)
J-

oolcr\
ooll\)

Considering Case 1 with Q(%) < Q(%) yields Q(%) :Q(g), which is a

contradiction (the denominator of S cannot be zero).

(&) Suppose Q(%) > Q(%) but S < 0. Without loss of generality, we may

assume S = 0, then by Theorem 5.6

~—
S | =

lim 104 > Lim 104
F—>o0 r—>o0

which is a contradiction.

Theorem 5.10. The Quantile Power-Pareto Distribution induced by W is left
skewed & Q(%) < Q(%)

Proof. (=) Suppose S < 0 but Q(%) > Q(%) Since S < 0, we consider two

cases
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Case 1.

Case I1.

If we combine Case II with Q(%) > Q(%), then there is nothing to prove.

Considering Case I with Q(%) > Q(%) yields Q(%)= Q(g), which is a

contradiction (the denominator of S cannot be zero).

(&) Suppose Q 2 > Q 4 but S > 0. Without loss of generality, we may
8 8

assume S = 0, then by Theorem 5.6

which is a contradiction.

By definition Moors’ Kurtosis is given by

o di)ds) o))
ofs)-<[§)

If we use Theorem 5.5 in the above, we get the following
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Figure 5. Kurtosis of Quantile Power-Pareto Distribution induced by W for
2<r<10 and 2 <a <10.

From the figure, we see that for the “range” of parameter values, the Kurtosis is
increasing, it must be the case the tail of the Quantile Power-Pareto Distribution

induced by W is heavy.

6. A Non-linear Regression Application

We are interested in the following problem: Given n points {(x;, y;),
(x5, ¥2), ==+, (x,, ¥,, )}, which function p(x) is closest to the given points? Recall
by the method of least squares the “best” function p(x) is the one whose coefficients

minimize the function L, where
n
2
L= v - plx)P.
i=1

If p(x) is a linear function, say p(x) = a + bx, then we have the following

Theorem 6.1 (Theorem 10.4.1 [14]). Given n points {(x;, y1), (x5, y5),

-, (x> ¥, )}, the straight line y = a + bx minimizing

L= lyi-plx)l
i=1

has slope
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_ nzz’;l i _(Z; xi)(zzlzl y"j
(2 ) ()

and y-intercept

n b n
a4 = Zizl Ji Zizl !
- .

When the relationship between x and y is nonlinear it is often possible to
“transform” x and y into a new set of variables - x” and y’- that are linearly related,
and the previous theorem can be applied to the (x;, y;)’s. Once the straight line has

been applied to the (x;, y;)’s, we can then transform back to the original data.

Among mammals, the relationship between the age at which an animal develops
locomotion and the age at which it first begins to play has been widely studied. Listed
below from Table 10.4.6 [14] are typical “onset” times for locomotion and for play in

11 different species (see page 617 of [14]).

Species Tocomotion begins, X(i) (days) |Play begins, y(i) (days

Homo sapiens 360 90
Gorilla gorilla 165 105
Felis catus 21 21
Canis familiaris 23 26
Rattus norvegicus 1T 12
Turdus merula 18 28
Macaca rulatta 18 21
Tan troglodytes 150 105
Saimiri sciurens 45 [1]
Cercocebus alb. 45 75
Tamiasciureus hud. 18 46

Figure 6. “Onset” times for locomotion and for play.

When the data was graphed in Figure 10.4.7 [14], it was observed via Theorem

0.56

6.1, that the equation y = 5.42x was a good fit.

DPlay begins(days)
100

2

= L - Locomotion bagins (days)
100 150 200 250 300 350

Figure 7. Regression of play onset versus locomotion onset.
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In this section, we want to know if the Quantile Power-Pareto Distribution
induced by W is a “best” function to play onset versus locomotion onset. For this

reason let y = g(x), and notice that we can write the PDF of the Quantile Power-

Pareto Distribution induced by Was y" = a” + x’, where

y = log(y),

7 Cl7
~1

a 0y

and

x = I=r log[log(x)] + log[l}.
r x

. 7. . . 1 ’ 7 4 .
Since x is not independent of r, let us fix r = 3 then y" = a” + x can be written
as y” =a” + x”, where

y' =y =log(y),

a” = log[2a°],

x” = log[log(x)] + log[%}

Therefore, we transform (x;, y;) to (x;, y;), and apply Theorem 6.1 to find a,
. 1. .
since r = 3 is fixed.

When we make the transformation of the data in Figure 6, (xi, yi), to (xlf', ylf' ),

Theorem 6.1 implies the line of best fit is given by y” = —0.738033x” + 1.9697.

When the line of best fit is fitted to the transformed data, we get the following
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Transiormad Play bagins{days)

w b b
L [T
i

[

[=]
.
N

I _Tranziemad Locomotion begins (days)

Figure 8. Regression of transformed play onset versus transformed locomotion onset.

From the above figure, we have a negative relationship between play onset and

locomotion onset which is contradictory to Figure 7, which shows there is a positive

relationship, therefore if we fix r = 3 the Quantile Power-Pareto Distribution

induced by W would not be a good fit or a “best function”. By solving 10g[2a2] =
1.9697, we get a, and then by back-transforming and fitting to the original data, we

get the following

Dlay bagins{days)

=
.

Locomotion bagins (days)
100 150 200 250 300 350

Figure 9. Regression of play onset versus locomotion onset.

However, we can still show that play onset versus locomotion onset is Quantile

Power-Pareto Distributed with respect to W. We begin with the following

Theorem 6.2. The Quantile Power-Pareto Distribution induced by W can be

written as

provided x is its upper bound.

Proof. Notice that

—r<% for r>0 and log(x) < x for x>0. Now

observe that
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’_ 1-r l
¥=— log[log(x)] + log[x}

<

N =

log[log(x)] + log(%)

<

N =

log(x) + log(%j

= %log(x) —log(x)

I=r log(x).
r

Therefore if x” is its upper bound, then y" = a’ + x” can be written as

1

= .
r

" log(x)

ar
log(y) = log — |t

and it follows that

1
= 1-r
a” ——

y=—x1".
’

Corollary 6.3. Onset play versus locomotion play is Quantile Power-Pareto

1
5.42\136 1
j dr=1s¢"

Distributed with respect to Wif a = (ﬁ =

Proof. From the previous theorem, we get y = 5.42x9-3.

Remark 6.4. The function in Corollary 6.3 has been graphed in Figure 7 with

the original data.
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