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Abstract 

In this paper, we propose quantile generated family of distributions, where 

the generator is given by the quantile density function of a continuous 

random variable. Some statistical properties associated with this new 

family of distributions are obtained. A special case of this new family of 

distributions is associated to a non-linear regression problem. 

1. Introduction 

Eugene et al. [1] proposed the beta-generated family of distributions, where the 

beta distribution with PDF say b is used as the generator. The CDF of the beta 

generated distribution is then defined as 

( ) ( )
( )

,
0∫=

xF

dttbxG  
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where F is the CDF of any random variable. If X is continuous, the corresponding 

PDF of the beta generated distribution is 

( )
( )

( )
( ) ( )( ) 11 1

,
−β−α −

βα
= xFxF

B

xf
xg  

,0,0 >β>α  where ( )βα,B  is the beta function. The PDF of the beta-generated 

distribution can be considered as a generalization of the distribution of order statistic 

[1, 2]. By applying different ( ),xF  many authors have studied variants of the beta-

generated distribution and its applications, and for examples, see [3, 4, 5]. 

Alzaatreh et al. [6] proposed a general method by replacing the beta PDF of 

Eugene et al. [1] with a general PDF say r of a continuous random variable say T and 

replacing ( ),xF  the CDF of X, with a weighted version, ( )( ),xFW  where ( )( )xFW  

admits the following properties 

(a) ( )( ) [ ],, baxFW ∈  

(b) W is a monotone increasing and differentiable function, 

(c) ( )( ) axFWx =−∞→lim  and ( )( ) ,lim bxFWx =+∞→  

where [ ]ba,  is the support of the random variable T for .∞≤<≤−∞ ba  The CDF 

of the ( )WXT −  family is then defined as 

( ) ( )
( )( )

.∫=
xFW

a
dttrxG  

If R is the CDF of T, then the CDF of the ( )WXT −  family can be written as 

( ) ( )( )( )xFWRxG =  

and the corresponding PDF (if it exists) can be written as 

( ) ( )( )( ) ( )( ).xFW
dx

d
xFWrxg =  

By applying different ( )xF  and W, variants of the ( )WXT −  family have been 

investigated, for examples, see [7, 8, 9]. 
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Aljarrah et al. [10] proposed a generalization of the method of Alzaatreh et al. 

[6] by introducing a new weight function that is based on the quantile function 

associated with a random variable Y. Let YQ  be the quantile function associated with 

the random variable Y whose CDF is continuous and strictly increasing, then the CDF 

of the ( )YXT −  family is then defined as 

( ) ( )
( )( )

.∫=
xFQ

a

Y
dttrxG  

If R is the CDF of T, then the CDF of the ( )YXT −  family can be written as 

( ) ( ( )( ))xFQRxG Y=  

and the corresponding PDF is given by 

( )
( )

( ( )( ))
( ( )( )),xFQr

xFQp

xf
xg Y

Y

=  

where p is the PDF of Y. Variants of the ( )YXT −  family have been explored, for 

example, see [11]. 

This paper is organized as follows. In Section 2, we describe a new technique 

which is also a “quantile approach” which differs from Aljarrah et al. [10], and in 

Section 3, we give some families for the new technique arising from the ( )WXT −  

family. In Section 4, we discuss some statistical properties. In Section 5, a special 

distribution arising from the new technique is presented, and we discuss Moors’ 

kurtosis and Galtons’ skewness based on quantile function. In Section 6, the special 

distribution is associated to a non-linear regression problem. 

2. The New Technique 

Consider the ( )WXT −  family of Alzaatreh et al. [6] and the ( )YXT −  family 

of Aljarrah et al. [10]. Since T has an absolutely continuous distribution with PDF 

( )tr  and CDF ( ),tR  then the quantile function ( )tQ  is written as ( ) ( ),1 tRtQ −=  

,10 << t  and the quantile density function is written as ( )
( )

( )( )
,

1

tQrdt

tdQ
tq ==  

.10 << t  
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To summarize, since T has an absolutely continuous distribution, we replace the 

integrand of ( )WXT −  family with the quantile density function associated with T 

and do the same for the ( )YXT −  family. Thus the quantile generated distribution 

arising from the ( )WXT −  family which we call the ( )WXqT −  family has CDF 

defined as 

( )
( )( )

( )( )
dt

tQr
xG

xFW

a∫=
1

 

and the quantile generated distribution arising from the ( )YXT −  family which we 

call the ( )YXqT −  family has CDF defined as 

( )
( )( )

( )( )
.

1
dt

tQr
xK

xFQ

a

Y

∫=  

Note that the CDF of the ( )WXqT −  family is 

( ) ( )( )( )xFWQxG =  

and the CDF of the ( )YXqT −  family is 

( ) ( ( )( )).xFQQxK Y=  

The PDF of the ( )WXqT −  family is given by 

( )
( )( )( )( )

( )( )xFW
dxxFWQr

xg
11

=  

and the PDF of the ( )YXqT −  family is given by 

( )
( ( ( )( )))

( )
( ( )( ))

.
1

xFQp

xf

xFQQr
xk

YY

=  

3. Some Families Arising from ( )WXqT −  

Theorem 3.1. Assume the support of T is [ ),,0 ∞  then we have the following 

(a) If ( )( ) ( ),xHxFW =  then ( )
( )
( )( )

,
xGr

xh
xg =  where ( )xh  is the Hazard 
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function of the random variable X with CDF ( )XF  and ( )xH  is the cumulative 

Hazard function of the random variable X with CDF ( ).XF  

(b) If ( )( )
( )

( )
,

1 xF

xF
xFW

−
=  then ( )

( )

( )[ ] ( )( )
.

1
2

xGrxF

xf
xg

−
=  

(c) If ( )( ) ( ( )),1log xFxFW α−−=  then ( )
( ) ( )

[ ( )] ( )( )
.

1

1

xGrxF

xFxf
xg

α

−α

−

α
=  

(d) If ( )( )
( )

( )
,

1 xF

xF
xFW

α

α

−
=  then ( )

( ) ( )

[ ( )] ( )( )
.

1
2

1

xGrxF

xFxf
xg

α

−α

−

α
=  

Proof. In all cases the proof follows from the definition of ( )xG  and ( ).xg  

Moreover, in the case of (a), we note that ( ) ( )( )xFxH −−= 1log  and 

( )
( )

( )
.

1 xF

xf
xh

−
=  

Theorem 3.2. Assume the support of T is ( ),, ∞−∞  then we have the following 

(a) If ( )( ) ( )( )( ),1loglog xFxFW −−=  then 

( ) =xg
( )

[ ( ) ] ( )( )[ ] ( )( )
.

1log1 xGrxFxF

xf

−−
 

(b) If ( )( )
( )

( )
,

1
log 








−
=

xF

xF
xFW  then ( )

( )
( ) ( )( )

,
xGrxF

xh
xg =  where ( )xh  is the 

Hazard function of the random variable X with CDF ( ).XF  

(c) If ( )( ) ( ( ( ))),1loglog xFxFW α−−=  then 

( ) =xg
( ) ( )

( ( ) )[ ( ( )] ( )( )
.

1log1

1

xGrxFxF

xFxf

αα

−α

−−

α
 

(d) If ( )( )
( )

( )
,

1
log 











−
=

α

α

xF

xF
xFW  then ( )

( )

( )( ( )) ( )( )
.

1 xGrxFxF

xf
xg

α−

α
=  

Proof. In all cases the proof follows from the definition of ( )xG  and ( ).xg  
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Moreover, in the case of (b), we note that ( )
( )

( )
.

1 xF

xf
xh

−
=  

Theorem 3.3. Assume the support of T is [ )∞,0  and let ( )( ) log−=xFW  

( )( ),1 xF−  then we have the following 

(a) If T follows the Exponential distribution with parameter ,θ  then ( ) =xg  

( )
( )( )

,
1 xH

xh

−θ
 where ( )xh  is the Hazard function of the random variable X with 

CDF ( )XF  and ( )xH  is the cumulative Hazard function of the random variable X 

with CDF ( ).XF  

(b) If T follows the Weibull distribution with parameters ,, λk  then ( ) =xg  

( ) ( )
( )( )

,
1

1

xHk

xhxm k

k

−

λ
−

 where ( )xh  is the Hazard function of the random variable X with 

CDF ( ),XF  ( )xH  is the cumulative Hazard function of the random variable X with 

CDF ( ),XF  and ( )
( )

.
1

1
ln 








−
=

xH
xm  

(c) If T follows the Rayleigh distribution with parameter ,σ  then ( ) =xg  

( )

( ) ( )( )
,

12 xHxm

xh

−

σ
 where ( ) ( )xHxh ,  and ( )xm  are defined as before. 

(d) If T follows the Lomax distribution with parameters ,, λα  then ( ) =xg  

( )

( )
,

1+αα

λ

xV

xh
 where ( ) ( )( ) ,1

1

α−= xHxV  and ( )xh  and ( )xH  are defined as 

before. 

Proof. (a) Follows from the definition of ( )xg  and noting that ( ) ,tetr θ−θ=  

,1−= RQ  where ( ) ,1 tetR θ−−=  and ( )xH  and ( )xh  are defined as before. 

(b) Follows from the definition of ( )xg  and noting that ( )
1−









λλ
=

k
tk

tr  
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,

k
t

e








λ
−

 and ,1−= RQ  where ( ) .1

k
t

etR 







λ
−

−=  

(c) Follows from the definition of ( )xg  and noting that ( ) ,
2

2

2
2

σ
−

σ
=

t

e
t

tr  and 

,1−= RQ  where ( ) .1
2

2

2σ
−

−=

t

etR  

(d) Follows from the definition of ( )xg  and noting that ( )
λ

α
=tr  

( )
,1

1+α−







λ
+

t
 and ,1−= RQ  where ( )

( )

( )

.

1

11

1

1

λ

λ

−









−−λ

=

t

t

tR  

Theorem 3.4. Assume support of T is ( )∞−∞,  and ( )( ) ( )( ),log xHxFW =  

where ( )xH  is defined as before, then we have the following 

(a) Assume T follows Cauchy distribution with parameters 0t  and ,γ  then 

( )
[ ( )( ) ] ( )

( )
,

1tan2

xH

xhxB
xg

+πγ
=  where ( )

( )( )( )
,

2

1log2 π−
=

xH
xB  and ( )xH  

and ( )xh  are defined as before. 

(b) Assume T follows Gumbel or Type I Extreme Value distribution with 

parameters σ  and ,µ  then ( )
( ) ( )

( ) ( )
,

xHxZ

xhe
xg

xZσ
=  where ( )

( )( )
,

log

1
ln 






=

xH
xZ  

( )xH  and ( )xh  are defined as before. 

(c) Assume T follows Laplace distribution with parameters µ  and b, and let 

( )
( )

,
22

1

xH
xC

−
=  then 

( )

( ) ( )
( )

( )

( )

( )[ ]
( )













µ<

µ≥
=

,

,
2

2

1

xHif
xH

xbh

xHif
xH

xCxbh

xg

b
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where ( )xH  and ( )xh  are defined as before. 

Proof. (a) Follows from the definition of ( ),xg  and noting that ( )
πγ

=
1

tr  

( )
,

22
0

2













γ+−

γ

tt
 and ,1−= RQ  where ( ) .

2

1
tan

1 01 +







γ

−

π
= − tt

tR  

(b) Follows from the definition of ( ),xg  and noting that ( ) ( ) ( ) ,
1 tnetntr −

σ
=  

where ( )
( )

,σ

µ−
−

=

t

etn  and ,1−= RQ  where ( ) ( ).tnetR −=  

(c) Follows from the definition of ( ),xg  and noting that 

( )










µ<

µ≥
=

µ−

−µ

te
b

te
btr

b

t

b

t

if
2

1

,if
2

1

 

and ,1−= RQ  where 

( )

( )

( )














µ<













−−

µ≥













−+

=
µ−

µ−
−

.if1
2

1

2

1

,if1
2

1

2

1

te

te

tR

b

t

b

t

 

4. Some Statistical Properties of ( )WXqT −  Family 

We will write TQ  for the quantile function associated with the continuous 

random variable T, and write ( )WXqT
Q −  for the quantile function arising from 

( )WXqT −  family given by W. 

Theorem 4.1. Assume the support of T is [ ),,0 ∞  then we have the following 

(a) ( ) ( )( ) ( ( ) ) .10,11 <λ<−=λ λ−−
λ−

R
HXq eFQ

T
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(b) ( ) ( )
( )

( )
( )

.10,
1

1

1
<λ<








λ+

λ
=λ −









λ−

λ
− R

R
FQ

F

F
XqT

 

Proof. (a) By definition, ( ) ( )( ) ( ),1 λ=λ −
λ− GQ HXqT

 where ( ) ( )( )λ=λ HQG T  

and ( ) ( )( ).1log λ−−=λ FH  Since ,1−= RQT  it is enough to check that 

( ( ) ( )( ) ) ( ) ( )( ) ( )( ) .or λ=λλλ=λ λ−λ− GQQG HXqHXq TT
 

(b) By definition, ( ) ( )
( )

( ),1

1
λ=λ −









λ−

λ
− GQ

F

F
XqT

 where ( ) TQG =λ  

( )
( )

.
1









λ−

λ

F

F
 Since ,1−= RQT  it is enough to check that 

( ) ( )
( )

( ) ( )
( )

( )( ) .or
11

λ=λλλ=







λ









λ−

λ
−








λ−

λ
− GQQG

F

F
Xq

F

F
Xq TT

 

Theorem 4.2. Assume the support of T is ( ),, ∞−∞  then we have the following 

(a) ( ) ( ( )( ) ) (
( )

) .10,11
log <λ<−=λ

λ−−
λ−

R

T

e
HXq eFQ  

(b) ( ) ( )
( )

( )
( )

.10,
1

1

1
log <λ<











+

λ
=λ

λ
−

















λ−

λ
− R

R

F

F
Xq

e

e
FQ

T
 

Proof. (a) By definition, ( ) ( )( )( ) ( ),1
log λ=λ −

λ− GQ HXqT
 where ( ) TQG =λ  

( )( )( )λHlog  and ( ) ( )( ).1log λ−−=λ FH  Since ,1−= RQT  it is enough to check 

that 

( ( ) ( )( )( ) ) ( ) ( )( )( ) ( )( ) .or loglog λ=λλλ=λ λ−λ− GQQG HXqHXq TT
 

(b) By definition, ( ) ( )
( )

( ),1

1
log λ=λ −

















λ−

λ
− GQ

F

F
XqT

 where ( ) TQG =λ  

( )
( )

.
1

log 















λ−

λ

F

F
 Since ,1−= RQT  it is enough to check that 

( ) ( )
( )

( ) ( )
( )

( )( ) .or
1

log
1

log λ=λ=λλ=







λ

















λ−

λ
−
















λ−

λ
− GQQG

F

F
Xq

F

F
Xq TT
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Theorem 4.3. Assume X follows the family of distributions given by Theorem 

3.1(a), then the Shannon Entropy of ,X  XS  is given by 

[ { ( )}] ,1log 1
TT

T
X eFfES γ+µ−−−= −−  

where Tµ  and Tγ  are the mean and Shannon Entropy for the random variable T 

with pdf 
( ( ))

.
1

tQr T

 

Proof. From ( )
( )

( )
( ) ( )( )xHQxG

xF

xf
xh T=

−
= ,

1
 and ( ) ( )( ),1log xFxH −−=  

observe that 

( ){ }[ ]XgES X log−=  

( ){ }[ ] ( )( ){ }[ ]
( )( )

.
1

log1loglog 











−+−+−=

XGr
EXFEXfE  

Since ( )( )XFT −−= 1log  has PDF 
( ( ))

,
1

tQr T

 then 

( ){ }[ ] [ { ( )}]TeFfEXfE −− −= 1loglog 1  

and 

( )( ){ }[ ] [ ] [ ] TTETEXFE µ−=−=−=−1log  

and 

( )( ) ( ( ))
.

1
log

1
log T

T tQr
E

XGr
E γ=














−=











−  

Theorem 4.4. Assume X follows the family of distributions given by Theorem 

3.1(b), then the Shannon Entropy of ,X  XS  is given by 

( ) ,2
1

log 1log
1

TTX T

T
FfES γ+µ−























+
−= +

−  

where ( )T+µ 1log  is the mean of the random variable ( )T+1log  with PDF 



QUANTILE-GENERATED FAMILY OF DISTRIBUTIONS … 

 

23 

( ( ))tQr T

1
 and Tγ  is the Shannon Entropy of the of the random variable T with PDF 

( ( ))
.

1

tQr T

 

Proof. By definition, 

( )( )[ ] ( )( )[ ]XfEXgES X loglog −=−=  

( )( )[ ]
( )( )

.
1

log1log2 











−+−+

XGr
EXFE  

Since 
( )

( )XF

XF
T

−
=

1
 has PDF 

( ( ))
,

1

tQr T

 it implies that ( )( )[ ] EXfE =log  

.
1

log 1























+
−

T

T
Ff  On the other hand 

( )( )
E

XGr
E =











−

1
log  

( ( ))
.

1
log T

T tQr
γ=














−  Since the random variable ( )( )XFV −−= 1log  also has 

PDF 
( ( ))

,
1

tQr T

 it follows that the relationship between the random variables T and 

V is given by ( ).1log TV +=  Thus 

( )( )[ ] [ ]VEXFE −=−1log [ ]VE−= Vµ−= ( ) .1log T+µ−=  

5. A Special Case of ( )WXqT −  Family 

Let the support of T be ( ) ( )∞⊂ ,01,0  and ( )( ) ( )( ),1log xFxFW −−=  where 

( )xF  is the CDF of X. In particular, let T follow the (standard) Power distribution 

with parameter ,0>r  and X follow the (standard) Pareto distribution with parameter 

.0>a  

Theorem 5.1. The quantile function of the (standard) Power distribution is 

given by ( ) ,10,

1

<<= tttQ r
T  and .0>r  

Proof. ( ) ,1−= FtQT  where F is the CDF of (standard) Power distribution. 
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Figure 1. Quantile function of Power distribution for various values of the parameter 

r. 

Remark 5.2. Since T follows the Power distribution and X follows the Pareto 

distribution, we will call this special case of the ( )WXqT −  family, the Quantile 

Power-Pareto Distribution induced by W. 

Theorem 5.3. The CDF of the Quantile Power-Pareto Distribution induced by 

W, is given by, ( ) ( )( ) ,log

11

rr xaxG =  where ,0,0 >> ra  and .0>x  

Proof. It follows from the definition of ( ),xG  and noting that ( )xF  is the CDF 

of (standard) Pareto distribution with parameter 0>a  and Q is given by Theorem 

5.1. 

 

Figure 2. CDF of Quantile Power-Pareto Distribution induced by W for various 

values of the parameters r and a. 

Theorem 5.4. The PDF of the Quantile Power-Pareto Distribution induced by 

W is given by ( )
( )( )

,
log

11

rx

xa
xg

r

r
r

−

=  where ,0,0 >> ra  and .0>x  

Proof. One can obtain it directly from the definition of ( )xg  or by noting that 
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( ) ( ),xG
dx

d
xg =  where ( )xG  is the CDF of the Quantile Power-Pareto Distribution 

induced by W. 

 

Figure 3. PDF of Quantile Power-Pareto Distribution induced by W for various 

values of the parameters r and a. 

In order to discuss Moors’ Kurtosis [12] and Galton’s Skewness [13], we need 

the quantile function of the Quantile Power-Pareto Distribution induced by W. In 

particular, we have the following 

Theorem 5.5. The quantile function of the Quantile Power-Pareto Distribution 

induced by W is given by ( ) ( ) ( ) .0,0,10,,10

2

1

1

>><<== arx

a

x
xmxQ

r

r
xm

 

Proof. ,1−= GQ  where G is the CDF of the Quantile Power-Pareto Distribution 

induced by W. 

 

Figure 4. Quantile function of Quantile Power-Pareto Distribution induced by W for 

various values of the parameters r and a. 

Now we have the following characterization of Galton’s Skewness based on the 

quantile function of the Quantile Power-Pareto Distribution induced by W. 
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Theorem 5.6. The Quantile Power-Pareto Distribution induced by W is 

symmetric if the parameter r is sufficiently large 

Proof. By definition, .
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8
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8

6


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
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 QQ  Thus, the distribution is symmetric if 
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In terms of Theorem 5.5, (7) becomes 
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If there exist 0>r  such that ,
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Thus if r is sufficiently large, then equality holds in (8) and the distribution is 

symmetric. Clearly symmetry of distribution is independent of the parameter .0>a  

Theorem 5.9. The Quantile Power-Pareto Distribution induced by W is right 

skewed .
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Proof. ( )⇒  Suppose 0>S  but .
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 QQ  Since ,0>S  we consider two 

cases 
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Case I. 

,
8

4
2

8

2

8

6






>






+






 QQQ  

.
8

2

8

6






>






 QQ  

Case II. 

,
8

4
2

8

2

8

6






<






+






 QQQ  

.
8

2

8

6






<






 QQ  

If we combine Case II with ,
8

2

8

4






≤






 QQ  then there is nothing to prove. 

Considering Case I with 





≤








8

2

8

4
QQ  yields ,

8

6

8

2






=






 QQ  which is a 

contradiction (the denominator of S cannot be zero). 

( )⇐  Suppose 





>








8

2

8

4
QQ  but .0≤S  Without loss of generality, we may 

assume ,0=S  then by Theorem 5.6 
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which is a contradiction. 

Theorem 5.10. The Quantile Power-Pareto Distribution induced by W is left 

skewed .
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Case I. 
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which is a contradiction. 

By definition Moors’ Kurtosis is given by 
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If we use Theorem 5.5 in the above, we get the following 
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Figure 5. Kurtosis of Quantile Power-Pareto Distribution induced by W for 

102 << r  and .102 << a  

From the figure, we see that for the “range” of parameter values, the Kurtosis is 

increasing, it must be the case the tail of the Quantile Power-Pareto Distribution 

induced by W is heavy. 

6. A Non-linear Regression Application 

We are interested in the following problem: Given n points {( ),, 11 yx  

( ) ( )},,,,, 22 nn yxyx L  which function ( )xp  is closest to the given points? Recall 

by the method of least squares the “best” function ( )xp  is the one whose coefficients 

minimize the function L, where 

[ ( )] .
2

1
∑

=

−=

n

i

ii xpyL  

If ( )xp  is a linear function, say ( ) ,bxaxp +=  then we have the following 

Theorem 6.1 (Theorem 10.4.1 [14]). Given n points {( ) ( ),,,, 2211 yxyx  

( )},,, nn yxL  the straight line bxay +=  minimizing 

[ ( )]2

1
∑

=

−=

n

i

ii xpyL  

has slope 
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When the relationship between x and y is nonlinear it is often possible to 

“transform” x and y into a new set of variables - x′  and y′ - that are linearly related, 

and the previous theorem can be applied to the ( )ii yx ′′ , ’s. Once the straight line has 

been applied to the ( )ii yx ′′ , ’s, we can then transform back to the original data. 

Among mammals, the relationship between the age at which an animal develops 

locomotion and the age at which it first begins to play has been widely studied. Listed 

below from Table 10.4.6 [14] are typical “onset” times for locomotion and for play in 

11 different species (see page 617 of [14]). 

 

Figure 6. “Onset” times for locomotion and for play. 

When the data was graphed in Figure 10.4.7 [14], it was observed via Theorem 

6.1, that the equation 56.042.5 xy =  was a good fit. 

 

Figure 7. Regression of play onset versus locomotion onset. 
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In this section, we want to know if the Quantile Power-Pareto Distribution 

induced by W is a “best” function to play onset versus locomotion onset. For this 

reason let ( ),xgy =  and notice that we can write the PDF of the Quantile Power-

Pareto Distribution induced by W as ,xay ′+′=′  where 

( ),log yy =′  



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

=′
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log  
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( )[ ] .
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logloglog
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−
=′

x
x

r

r
x  

Since x′  is not independent of r, let us fix ,
2

1
=r  then xay ′+′=′  can be written 

as ,xay ′′+′′=′′  where 

( ),log yyy =′=′′  

[ ],2log 2aa =′′  

( )[ ] .
1

logloglog




+=′′

x
xx  

Therefore, we transform ( )ii yx ,  to ( ),, ii yx ′′′′  and apply Theorem 6.1 to find a, 

since 
2

1
=r  is fixed. 

When we make the transformation of the data in Figure 6, ( ),, ii yx  to ( ),, ii yx ′′′′  

Theorem 6.1 implies the line of best fit is given by +′′−=′′ xy 738033.0 .9697.1  

When the line of best fit is fitted to the transformed data, we get the following 
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Figure 8. Regression of transformed play onset versus transformed locomotion onset. 

From the above figure, we have a negative relationship between play onset and 

locomotion onset which is contradictory to Figure 7, which shows there is a positive 

relationship, therefore if we fix ,
2

1
=r  the Quantile Power-Pareto Distribution 

induced by W would not be a good fit or a “best function”. By solving [ ] =22log a  

,9697.1  we get a, and then by back-transforming and fitting to the original data, we 

get the following 

 

Figure 9. Regression of play onset versus locomotion onset. 

However, we can still show that play onset versus locomotion onset is Quantile 

Power-Pareto Distributed with respect to W. We begin with the following 

Theorem 6.2. The Quantile Power-Pareto Distribution induced by W can be 

written as 

r

r
r

x
r

a
y

−

=

1
1

 

provided x′  is its upper bound. 

Proof. Notice that 
rr

r 11
<

−
 for 0>r  and ( ) xx ≤log  for .0>x  Now 

observe that 
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Therefore if x′  is its upper bound, then xay ′+′=′  can be written as 
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Corollary 6.3. Onset play versus locomotion play is Quantile Power-Pareto 

Distributed with respect to W if 
56.1

1

56.1

42.5






=a  and .

56.1

1
=r  

Proof. From the previous theorem, we get .42.5 56.0xy =  

Remark 6.4. The function in Corollary 6.3 has been graphed in Figure 7 with 

the original data. 
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