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Abstract 

Factorization in normal order form provides positive energy solutions, 

while the alternative anti-normal order form provides negative energy 

solutions of the time-independent Schroedinger equation for a linear 

harmonic oscillator. The positive and negative energy state spaces are 

related by quantum conjugation effected through sign-reversal of Planck’s 

quantization constant .ℏ  Photons occupying negative energy states have 

the same displacement x̂  and Hamiltonian H, but opposite momentum 

p̂−  compared to photons occupying the corresponding positive energy 

partner states. Emission of positive energy photons from a positive energy 

quantum state is equivalent to absorption of negative energy photons into 

a negative energy quantum state, leading to state lowering, while 

absorption of positive energy photons into a positive energy quantum state 

is equivalent to emission of negative energy photons from a negative 

energy quantum state, leading to state raising. The complete positive-

negative energy spectrum of the quantized oscillator may then be 
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interpreted as a photon-antiphoton system. We have discovered new ℏ -

dependent quantized oscillator polynomials and their quantum conjugates 

defining positive and negative energy state eigenfunctions. These 

polynomials satisfy corresponding second order ordinary differential 

equations. 

1. Introduction 

The one-dimensional time-independent Schroedinger equation for a linear 

harmonic oscillator of mass m, angular frequency ,ω  total energy E and 

displacement x is obtained as 

 ( ) ( )xExxm
dx

d

m
ψ=ψ


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ℏ
 (1a) 

which on introducing parameter s defined by 

 xms ω=  (1b) 

for ease of physical interpretation takes the form 

 ( ) ( ).
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2

2
2 s
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ψ

ω
=ψ
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







+− ℏ  (1c) 

It has always been assumed that the Schroedinger equation (1a) applies only to non-

negative energy, ,0≥E  states ( ).xψ  Indeed, standard methods generally applied to 

solve equation (1a) or its alternative form (1c) yield only the expected positive 

energy spectrum. 

We observe that operator ordering in an effective factorization procedure well 

developed in the present author’s book [1] provides for both positive and negative 

energy solutions, even though only the familiar positive energy solutions based on the 

normal order form have been comprehensively presented in the book. We develop 

the solution procedure for the anti-normal order form yielding the largely ignored 

negative energy spectrum in the present paper. Negative energy states are generally 

known to exist and are associated with anti-matter within the general framework of 

relativistic quantum mechanics and quantum field theory [3-7]. What has remained 

unknown is that negative energy states also exist in non-relativistic quantum 

mechanics, which we establish here through solutions of the Schroedinger equation 

(1a). 
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1.1. Factorization 

To develop the factorization procedure, we consider the Schroedinger equation 

in the form (1c). Noting that the operator ,2

2

2
2 s

ds

d
+− ℏ  we apply an effective 

factorization procedure [1] to express equation (1c) in two alternative factorized 

forms 

,
2

ψ





 −

ω
=ψ






 +





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E
s

ds

d
s
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d
 (2a) 
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 +

ω
=ψ


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 +−




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E
s

ds

d
s

ds

d 2
 (2b) 

which differ by operator ordering. 

To determine the nature of the operator orderings, we divide equations (2a)-(2b) 

by 2 and introduce operators 

 





 +−=






 += s

ds

d
as
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d
a ℏℏ

2

1†ˆ;
2

1
ˆ  (2c) 

to rewrite equations (2a)-(2b) in the corresponding forms 

,
2

1
ˆ†ˆ ψ






 −

ω
=ψ ℏ
ℏ

E
aa  (2d) 

.
2

1†ˆˆ ψ





 +

ω
=ψ ℏ
ℏ

E
aa  (2e) 

Subtracting equation (2d) from equation (2e) and dropping the arbitrary ψ  gives the 

commutation bracket 

 [ ] .†ˆ,ˆ ℏ=aa  (2f) 

It will become clear later that the operators â  and †â  defined in equation (2c) are 

annihilation and creation operators, respectively, of the quantized oscillator. We have 

deliberately excluded Planck’s quantization constant ℏ  from the definitions of †ˆ,ˆ aa  

for consistency in the application of conjugation procedure developed in Section 4. 

According to standard operator ordering definitions [2], equation (2d) and its original 

expression (2a) are in normal order form, while equation (2e) and its original 
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expression (2b) are in anti-normal order form. Since both forms arise from 

factorization of the same equation (1c), they represent alternative solutions of the 

original Schroedinger equation (1a). We obtain these solutions below, starting with 

the normal order form, which provides the familiar positive energy states in Section 

2, followed by the anti-normal order form, which provides the generally ignored 

negative energy states in Section 3. A quantum conjugation theory for transforming 

the positive energy states into their negative energy partner states, leading to the 

discovery of quantum conjugate oscillator polynomials, is developed in Section 4. 

2. Normal Order Form: Quantized Oscillator Polynomials and 

Positive Energy Spectrum 

The normal order form in equation (2a) is an eigenvalue equation with 

eigenvalue .
2E

ℏ−
ω

 It has a lower bound of zero eigenvalue obtained as 

 ,
2

1
0

22
0

0 ω=⇒=−
ω

≡−
ω

ℏℏℏ E
EE

 (3a) 

where 0E  denotes the lowest value of E obtained at zero eigenvalue. The 

corresponding lowest order eigenfunction ( )s0ψ  at zero eigenvalue 







=−

ω
0

2 0
ℏ

E
 

is determined through equation (2a) under the condition (3a) according to 
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Applying Hermitian conjugation of the operators 





 +− s

ds

d
ℏ  and 






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d
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reversing the sign of ℏ  according to (see Section 4) 
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in equation (3b) gives 
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which on multiplying from the left by the ( ℏ -sign reversed) Hermitian conjugate 
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( )s
†

0ψ  of the lowest order eigenfunction ( )s0ψ  takes the form 
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† 2
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†

0 =ψ





 +⇒=ψ






 +






 +ψ ss
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The basic equation for the lowest order eigenfunction ( )s0ψ  then follows from 

equation (3e) in the form 

 ( ) 00 =ψ





 + ss

ds

d
ℏ  (4a) 

with a simple solution 

 ( )
2

2

1

0

s
es ℏ

−
=ψ  (4b) 

noting that the integration constant evaluated at 0=s  is ( ) .100 =ψ  

Eigenfunctions ( )snψ  of general order are generated through repeated 

application of the conjugate operator 





 +− s

ds

d
ℏ  on the lowest order eigenfunction 

( )s0ψ  according to 

 ( ) ( ) ∞=ψ





 +−=ψ ...,,3,2,1,0;0 nss

ds

d
s

n

n ℏ  (4c) 

which on substituting ( )s0ψ  from equation (4b) and evaluating for 1,0=n  gives 

the first two lower order eigenfunctions in the form 

 ( ) ( ) ( ).2, 01
2

1

0

2

ssses
s

ψ=ψ=ψ
−
ℏ  (4d) 

To evaluate higher order eigenfunctions ( ) ,2, ≥ψ nsn  we derive a simplifying 

formula for any functions ( ) ( )ssf φ,  in the form 

 φ−φ


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
 +−=φ
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
 +−

ds
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d
ffs
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d
ℏℏℏ  (4e) 

and apply the general relation 

 ( ) ( ) ...,3,2,1,0;1 =ψ





 +−=ψ + nss

ds

d
s nn ℏ  (4f) 
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which follows easily from equation (4c) by setting .1+→ nn  

For ( ),2 sψ  equation (4f) gives 

 ( ) ( )ss
ds

d
s 12 ψ






 +−=ψ ℏ  (5a) 

which on substituting ( ) ( )sss 01 2 ψ=ψ  from equation (4d) and applying the formula 

(4e) with ( ),,2 0 ssf ψ=φ=  then using equation (4f) in the final step gives 

 ( ) ( ( ) ( )).2 012 ssss ψ−ψ=ψ ℏ  (5b) 

Proceeding in the same manner for 

 ( ) ( ) ( ) ( )ss
ds

d
sss
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d
s 3423 ; ψ





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 +−=ψψ


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

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easily gives the forms 

 ( ) ( ( ) ( )) ( ) ( ( ) ( )).32;22 234123 ssssssss ψ−ψ=ψψ−ψ=ψ ℏℏ  (5d) 

We arrive at the important general result that higher order eigenfunctions are 

obtained in the form of a recurrence relation 

 ( ) ( ( ) ( )) ....,,3,2,1,0,2 11 ∞=ψ−ψ=ψ −+ nsnsss nnn ℏ  (5e) 

Setting ...,3,2,1,0=n  in equation (5e) and substituting lower order eigenfunctions 

as appropriate, recalling ( )s0ψ  from equation (4b) or (4d), we obtain the general 

eigenfunction ( )snψ  in the form 

 ( ) ( ) ,...,3,2,1,0,,

2

2

1

==ψ
−

nesHs
s

nn
ℏℏ  (6a) 

where ( )ℏ,sHn  is a polynomial depending explicitly on the parameter s and 

Planck’s quantization constant .ℏ  We shall call ( )ℏ,sHn  the quantized oscillator 

polynomial. Using equation (4b) in equation (4c) and substituting the result on the 

l.h.s. of equation (6a) provides the general relation for generating the quantized 

oscillator polynomials in the form 

 ( ) ....,,2,1,0,,
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1
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Using equation (4b) together with its ( ℏ -sign reversed) Hermitian conjugate 

 ( )
2

2

1
†
0

s
es ℏ=ψ  (6c) 

in equation (6b) defines the quantized oscillator polynomials in terms of the lowest 

order eigenfunction according to 

 ( ) ( ) ( )., 0
†
0 ss

ds

d
ssH

n

n ψ





 +−ψ= ℏℏ  (6d) 

Explicit forms of ( )ℏ,sHn  are easily obtained using a recurrence relation derived in 

the next subsection. 

2.1. Recurrence relations for ( )ℏ,sHn  

Setting 1+→ nn  in equation (6b) and inserting 1

22

2

1

2

1

=
− ss

ee ℏℏ  as 

appropriate, then using equation (6b) gives the relation 

 ( ) ( )
22

2

1

2

1

1 ,,
s

n

s

n esHs
ds

d
esH ℏℏ ℏℏℏ

−

+ 





 +−=  (7a) 

which is easily evaluated to obtain the first recurrence relation for the polynomials 

( )ℏ,1 sHn+  in the form 

 ( ) .1,,,,21 +==−=+ nnmsHH
ds

dH
sHH mm

n
nn ℏℏ  (7b) 

Setting 0=n  in equation (6b) gives 

 .10 =H  (7c) 

Setting 3,2,1,0=n  in equation (7b) then provides the first five quantized 

oscillator polynomials as 

 224
4

3
3

2
210 124816;128;24;2;1 ℏℏℏℏ +−=−=−=== ssHssHsHsHH  (7d) 

taking the general expansion 
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n

m
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n s
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n
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!
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−
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=
∑ −

−
=

ℏ
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which clearly displays the explicit dependence of the polynomials on the quantization 

constant ,ℏ  thus suggesting the reference quantized oscillator polynomials. The 

symbol 






2

1
 in the summation means that m runs over integer values up to the integer 

part of ,
2

n
 e.g., .1,0,3 == mn  The quantized oscillator polynomials take the same 

form as the Hermite polynomials [1, 8-10], but differ only on the ℏ  factors in the 

various terms. Setting 1=ℏ  in equation (7e) gives the corresponding Hermite 

polynomials ( )sHn  in the general expansion form [9] 

 ( )
( )

( )
( )( )mn

n

m

m

n s
mmn

n
sH

2
2

0

2
!!2

1! −







=
∑ −

−
=  (7f) 

which would arise if we defined the parameter s in the dimensionless form 

x
m

s
ℏ

ω
=  instead of the form in equation (1b). 

Substituting 

( ) ( ) ( ) ( ) ( ) ( )
222

2

1

11
2

1

2

1

11 ,;,;,
s

nn

s

nn

s

nn esHsesHsesHs ℏℏℏ ℏℏℏ
−

−−

−−

++ =ψ=ψ=ψ  

into equation (5e) gives the second recurrence relation for the quantized oscillator 

polynomials in the form 

 ( ) ( ) ( ).,2,2, 11 ℏℏℏℏ sHnssHsH nnn −+ −=  (7f) 

Comparing the first recurrence relation (7b) and the second recurrence relation (7f) 

easily provides the third recurrence relation for the quantized oscillator polynomials 

in the form 

 ( ).,,2 1 ℏsHHnH
ds

dH
mmn

n == −  (7g) 

Applying 
ds

d
ℏ  on equation (7g) gives 

 .2 1

2

2

ds

dH
n

ds

Hd nn −= ℏℏ  (8a) 
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Using equation (7e) together with the result of setting 1+→ nn  in equation (7g) 

gives 

 n
nn nH

ds

dH
s

ds

dH
n 222 1 −=−
ℏ  (8b) 

which we substitute into equation (8a) to obtain the differential equation for the 

quantized oscillator polynomials in the form 

 ( )ℏℏ ,,022
2

2

sHHnH
ds

dH
s

ds

Hd
nnn

nn ==+−  (8c) 

which differs from the familiar Hermite differential equation [1, 8-10] only due to the 

factor .ℏ  Setting 1=ℏ  reduces equation (8c) to the Hermite differential equation. 

2.2. Positive energy spectrum 

Substituting 

 ( ) ( )
2

2

1

,
s

nn essH ℏℏ ψ=  (9a) 

from equation (6a) into equation (8c) and reorganizing gives the final result 

 ( ) ( ) ( )snss
ds

d
nn ψ+=ψ










+− 122

2

2
2

ℏℏ  (9b) 

which confirms that the eigenfunctions ( )snψ  satisfy the original Schroedinger 

equation in the form (1c), with 
ω

E2
 taking the corresponding discrete form ( )12 +nℏ  

specifying quantization. 

Comparing equations (1c) and (9b), noting nEE →  gives 

 ( )12
2

+=
ω

n
En

ℏ  (9c) 

which provides the positive energy spectrum for the quantized linear harmonic 

oscillator in the usual form 

 ....,,3,2,1,0,
2

1
∞=






 +ω= nnEn ℏ  (9d) 

This is the positive energy spectrum arising from the solution of the Schroedinger 
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equation factorized in the normal order form (2a). 

2.3. Algebraic operations with †ˆˆ a,a  

Applying the operator s
ds

d
+ℏ  on the general eigenfunction ( ) =ψ sn  

( )
2

2

1

,
s

n esH ℏℏ
−

 and evaluating gives 

 

2

2

1
s

n
n e

ds

dH
s

ds

d
ℏℏℏ

−
=ψ






 +  (10a) 

which on using the third recurrence relation (7f) and then substituting 

 ( ) ( )
2

2

1

11 ,
s

nn esHs ℏℏ
−

−− =ψ  (10b) 

takes the final form 

 ( ) ( ).2 1 snss
ds

d
nn −ψ=ψ






 + ℏℏ  (10c) 

This operation with s
ds

d
+ℏ  is essentially the reverse of the operation with its 

conjugate s
ds

d
+− ℏ  on ( )snψ  obtained earlier in equation (4f). Bringing the two 

together gives the complete pair of reverse algebraic operations on the general 

eigenfunction according to 

 ( ) ( ) ( ) ( ).2; 11 snss
ds

d
sss

ds

d
nnnn −+ ψ=ψ






 +ψ=ψ






 +− ℏℏℏ  (10d) 

It follows that 

 ( ) ( ) ( ) ( ) ( ).12; 11 snss
ds

d
sss

ds

d
nnnn ψ+=ψ






 +ψ=ψ






 +− +− ℏℏℏ  (10e) 

Successive operations in normal and anti-normal order then easily give eigenvalue 

equations 

( ) ( );2 snss
ds

d
s

ds

d
nn ψ=ψ






 +





 +− ℏℏℏ  

( ) ( ) ( ).12 snss
ds

d
s

ds

d
nn ψ+=ψ






 +−





 + ℏℏℏ  (10f) 
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Dividing these through by 2 and introducing the annihilation and creation operators 

â  and †â  as defined in equation (2c) gives 

 ( ) ( ) ( ) ( ) ( ).1†ˆˆ;ˆ†ˆ snsaasnsaa nnnn ψ+=ψψ=ψ ℏℏ  (11a) 

Effective operations with â  and †â  consistent with the set of equations (10d), (10f) 

and (11a) take the algebraic form ( )( )sψ=ψ  

 .ˆ;†ˆ 11 −+ ψ=ψψ=ψ nnnn naa ℏ  (11b) 

Notice that substituting equation (2c) for â  and †â  separately into equation (10d) 

would leave factors 
2

1
 and 2  as appropriate on the r.h.s. of each equation in 

(11b), which would effectively yield the result of successive operations in equation 

(11a). Hence, the effective algebraic operations with the annihilation and creation 

operators †ˆ,ˆ aa  take the form in equation (11b). 

As usual, equation (11b) reveals that the creation operator †â  is a raising 

operator, while the annihilation operator â  is a lowering operator for the positive 

energy eigenfunctions ( )snψ  obtained as solutions of the normal order form (2a). 

The form of the algebraic operations in equation (11b) is different from the Dirac 

form in standard quantum mechanics textbooks [8], but it is more useful in the 

physical interpretation of operations with the creation and annihilation operators. The 

transition to the familiar Dirac algebraic form is presented in [1]. 

First we note an important feature that in the basic operator algebraic relations 

obtained in equation (11b), the quantity ℏn  is equal to the well known quantized 

orbital angular momentum. Secondly, according to equation (11b), the operation of a 

creation operator †â  on ( )snψ  represents photon absorption process at the n-th 

quantum state, where the number of photons absorbed as the quantum state is raised 

to the ( )1+n -th state described by ( )sn 1+ψ  remains hidden, i.e., absorbed photons 

are internal and are not externally observable. On the other hand, the operation of an 

annihilation operator â  on ( )snψ  represents photon emission process at the n-th 

quantum state, where the number of photons emitted (n) as the quantum state is 

lowered to the ( )1−n -th state described by ( )sn 1−ψ  is revealed, i.e., emitted 

photons are external and are directly observable. 
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3. Anti-normal Order Form: Conjugate Quantized Oscillator 

Polynomials and Negative Energy Spectrum 

The anti-normal order form in equation (2b) is an eigenvalue equation with 

eigenvalue .
2

ℏ+
ω

E
 It has an upper bound of zero eigenvalue obtained as 

 ,
2

1
0

22
0

0 ω−=⇒=+
ω

≡+
ω

ℏℏℏ E
EE

 (12a) 

where 0E  denotes the highest value of E obtained at zero eigenvalue in the anti-

normal order form. 

The negative value ω−= ℏ
2

1
0E  represents a negative energy at the highest 

level in the anti-normal order energy spectrum. The corresponding highest order 

negative energy eigenfunction (highest order anti-eigenfunction) ( )s0ψ  at zero 

eigenvalue 







=+

ω
0

2 0
ℏ

E
 is determined through equation (2b) under the condition 

(12a) according to 

( ) ( ) ( ) .0;
2

1
000 =ψ






 +−





 +⇒ψ=ψω−== ss

ds

d
s

ds

d
ssEE ℏℏℏ  (12b) 

Applying ℏ -sign reversed Hermitian conjugation of the operators 





 + s

ds

d
ℏ  and 







 +− s

ds

d
ℏ  according to 

 
†






 +−=






 + s

ds

d
s

ds

d
ℏℏ  (12c) 

in equation (12b) gives 

 0
†

0 =ψ





 +−






 +− s

ds

d
s

ds

d
ℏℏ  (12d) 

which on multiplying from the left by the ( ℏ -sign reversed) Hermitian conjugate 

( )s
†

0ψ  of the highest order anti-eigenfunction ( )s0ψ  takes the form 
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( ) ( ) ( ) .00
† 2

00
†

0 =ψ





 +−⇒=ψ






 +−






 +−ψ ss

ds

d
ss

ds

d
s

ds

d
s ℏℏℏ  (12e) 

The basic equation for the highest order anti-eigenfunction ( )s0ψ  then follows from 

equation (13e) in the form 

 ( ) 00 =ψ





 +− ss

ds

d
ℏ  (13a) 

with a simple solution 

 ( )
2

2

1

0

s
es ℏ=ψ  (13b) 

noting that the integration constant evaluated at 0=s  is ( ) .100 =ψ  

Anti-eigenfunctions ( )snψ  of general order are generated through repeated 

application of the conjugate operator 





 + s

ds

d
ℏ  on the highest order anti-

eigenfunction ( )s0ψ  according to 

 ( ) ( ) ∞=ψ





 +=ψ ,...,,3,2,1,0;00 nss

ds

d
s

n

ℏ  (13c) 

which on substituting ( )s0ψ  from equation (13b) and evaluating for 1,0=n  gives 

the first two highest order anti-eigenfunctions in the form 

 ( ) ( ) ( ).2, 00
2

1

0

2

ssses
s

ψ=ψ=ψ ℏ  (13d) 

To evaluate lower order anti-eigenfunctions ( ) ,2, ≥ψ nsn  we derive a simplifying 

formula as in equation (4e) for any functions ( ) ( )ssf φ,  in the form 

 φ+φ





 +=φ






 +

ds

df
s

ds

d
ffs

ds

d
ℏℏℏ  (13e) 

and apply the general relation 

 ( ) ( ) ...,3,2,1,0,1 =ψ





 +=ψ + nss

ds

d
s nn ℏ  (13f) 

which follows easily from equation (13c) by setting .1+→ nn  
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For several values 1≥n  in equation (13f), we apply the formula (13e) and 

proceed in the same manner elaborated in the previous section to obtain general 

result for lower order anti-eigenfunctions in the form of a recurrence relation 

 ( ) ( ( ) ( )) ....,,3,2,1,0,2 11 ∞=ψ+ψ=ψ −+ nsnsss nnn ℏ  (14) 

Setting ...,3,2,1,0=n  in equation (14) and substituting higher order anti-

eigenfunctions as appropriate, recalling ( )s0ψ  from equation (13b) or (13d), we 

obtain the general anti-eigenfunction ( )snψ  in the form 

 ( ) ( ) ,...,3,2,1,0,,

2

2

1

==ψ nesHs
s

nn
ℏℏ  (15a) 

where ( )ℏ,sHn  is the conjugate quantized oscillator polynomial. 

Using equation (13b) in equation (13c) and substituting the result on the l.h.s. of 

equation (15a) provides the general relation for generating the conjugate quantized 

oscillator polynomials in the form 

 ( ) ....,,2,1,0,,

22

2

1

2

1

∞=





 +=

−
nes

ds

d
esH

sns

n
ℏℏ ℏℏ  (15b) 

Using equation (13b) together with its ( ℏ -sign reversed) Hermitian conjugate 

 ( )
2

2

1
†
0

s
es ℏ

−
=ψ  (15c) 

in equation (15b) defines the conjugate quantized oscillator polynomials in terms of 

the highest order anti-eigenfunction according to 

 ( ) ( ) ( ),, 0
†
0 ss

ds

d
ssH

n

n ψ





 +ψ= ℏℏ  (15d) 

Explicit forms of ( )ℏ,sHn  are easily obtained using a recurrence relation derived in 

the next subsection. 

3.1. Recurrence relations for ( )ℏ,sHn  

Setting 1+→ nn  in equation (15b) and inserting 1

22

2

1

2

1

=
− ss

ee ℏℏ  as 

appropriate, then applying equation (15b) gives the relation 
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 ( ) ( )
22

2

1

2

1

1 ,,
s

n

s

n esHs
ds

d
esH ℏℏ ℏℏℏ 






 +=

−

+  (16a) 

which is easily evaluated to obtain the first recurrence relation for the polynomials 

( )ℏ,sHn  in the form 

 ( ) .1,,,,21 +==+=+ nnmsHH
ds

Hd
HsH mm

n
nn ℏℏ  (16b) 

Setting 0=n  in equation (15b) gives 

 .10 =H  (16c) 

Setting ...,3,2,1,0=n  in equation (16b) then provides the first five conjugate 

quantized oscillator polynomials as 

;24;2;1
2

210 ℏ+=== sHsHH   

224
4

3
3 124816;128 ℏℏℏ ++=+= ssHssH  (16d) 

taking the general expansion 

 ( )
( )

( )
( )( )mn

n

m

m

n s
mmn

n
sH

2
2

0

2
!!2

!
,

−







=
∑ −

=
ℏ

ℏ  (16e) 

which are evidently related to the corresponding quantized oscillator polynomials in 

equations (7d)-(7e) through ℏ -sign reversed conjugation ( ),ℏℏ −→  leading us to 

refer to the polynomials ( )ℏ,sHn  as the conjugate quantized oscillator polynomials. 

They seem to be a new set of polynomials (special functions), having arisen here for 

the first time in the solution of the anti-normal order form (2b) of the factorized 

Schroedinger equation which has never been achieved before in both physics and 

mathematics. Setting 1=ℏ  in equation (17d) gives the corresponding ℏ -

independent case ( ),sHn  which we may call conjugate Hermite polynomials, arising 

from the solutions of the anti-normal order equation if we defined the parameter s in 

the dimensionless form x
m

s
ℏ

ω
=  instead of the form in equation (1b). 

Substituting 
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( ) ( ) ( ) ( ) ( ) ( )
222

2

1

11
2

1

2

1

11 ,;,;,
s

nn

s

nn

s

nn esHsesHsesHs ℏℏℏ ℏℏℏ −−++ =ψ=ψ=ψ  

into equation (14) gives the second recurrence relation for the conjugate quantized 

oscillator polynomials in the form 

 ( ) ( ) ( ).,2,2, 11 ℏℏℏℏ sHnsHssH nnn −+ +=  (16f) 

Comparing the first recurrence relation (16b) and the second recurrence relation (16f) 

easily provides the third recurrence relation for the conjugate quantized oscillator 

polynomials in the form 

 ( ).,,2 1 ℏsHHHn
ds

Hd
mmn

n == −  (16g) 

Applying 
ds

d
ℏ  on equation (16g) gives 

 .2 1

2

2

ds

Hd
n

ds

Hd nn −= ℏℏ  (17a) 

Using equation (16f) together with the result of setting 1+→ nn  in equation (16g) 

gives 

 
ds

Hd
sHn

ds

Hd
n n

n
n 222 1 −=−

ℏ  (17b) 

which we substitute into equation (17a) to obtain the differential equation for the 

conjugate quantized oscillator polynomials in the form 

 ( )ℏℏ ,,022
2

2

sHHHn
ds

Hd
s

ds

Hd
nnn

nn ==−+  (17c) 

which is clearly related to the differential equation for the quantized oscillator 

polynomials obtained earlier in equation (8c) by ℏ -sign reversed conjugation. It is a 

new second order ordinary differential equation, which emerges through the solution 

of the Schroedinger for a linear harmonic oscillator factorized in anti-normal order 

form (2b). We are not aware of its equivalent in the current physics and mathematics 

literature, in contrast to its ℏ -sign reversed conjugate differential equation (8c), 

which is equivalent to the Hermite differential equation for .1=ℏ  

Setting 1=ℏ  reduces equation (17c) to the differential equation for the ℏ -
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independent conjugate Hermite polynomials ( )sHn  (new in physics and 

mathematics) taking the form 

( ) .;,022:1
2

2

x
m

ssHHHn
ds

Hd
s

ds

Hd
nnn

nn

ℏ
ℏ

ω
===−+=  (17d) 

As observed earlier, ( ),sHn  which are obtained here by setting 1=ℏ  in equation 

(15b) giving 

 ( ) ∞=





 +==

−
...,,2,1,0,:1

22

2

1

2

1

nes
ds

d
esH

sns

nℏ  (17e) 

arise in the solution of the anti-normal order equation (2b) with parameter s defined 

in the dimensionless form given above in equation (17d). This is the usual definition 

of the parameter s which would lead to solutions of the normal order form (2a) in 

terms of the familiar Hermite polynomials. The solutions in terms of the Hermite 

polynomials, including Hermite differential equation, are easily obtained by setting 

1=ℏ  in all the expressions in the previous section, but now defining .x
m

s
ℏ

ω
=  

3.2. Negative energy spectrum 

Substituting 

 ( ) ( )
2

2

1

,
s

nn essH ℏℏ ψ=  (18a) 

from equation (15a) into equation (17c) and reorganizing gives the final result 

 ( ) ( ) ( )snss
ds

d
nn ψ+−=ψ










+− 122

2

2
2

ℏℏ  (18b) 

which confirms that the anti-eigenfunctions ( )snψ  satisfy the original Schroedinger 

equation in the form (1c), with 
ω

E2
 taking the corresponding discrete form 

( )12 +− nℏ  specifying quantization in the negative energy sector. 

Comparing equations (1c) and (18b), noting nEE →  gives 

 ( )12
2

+−=
ω

n
En

ℏ  (18c) 
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which provides the negative energy spectrum for the quantized linear harmonic 

oscillator in the unfamiliar form 

 ....,,3,2,1,0,
2

1
∞=






 +ω−= nnEn ℏ  (18d) 

This is the negative energy spectrum which arises from the solution of the 

Schroedinger equation factorized in the anti-normal order form (2b). 

3.3. Algebraic operations with †ˆ,ˆ aa  

Applying the operator s
ds

d
+− ℏ  on the general anti-eigenfunction 

( ) ( )
2

2

1

,
s

nn esHs ℏℏ=ψ  and evaluating gives 

 

2

2

1
s

n
n e

ds

Hd
s

ds

d
ℏℏℏ −=ψ






 +−  (19a) 

which on using the third recurrence relation (16f) and then substituting 

 ( ) ( )
2

2

1

11 ,
s

nn esHs ℏℏ−− =ψ  (19b) 

takes the final form 

 ( ) ( ).2 1 snss
ds

d
nn −ψ−=ψ






 +− ℏℏ  (19c) 

This operation with s
ds

d
+− ℏ  is essentially the reverse of the operation with its 

conjugate s
ds

d
+ℏ  on ( )snψ  obtained earlier in equation (13f). Bringing the two 

together gives the complete pair of reverse algebraic operations on the general anti-

eigenfunction according to 

 ( ) ( ) ( ) ( ).2; 11 snss
ds

d
sss

ds

d
nnnn −+ ψ−=ψ






 +−ψ=ψ






 + ℏℏℏ  (19d) 

It follows that 

 ( ) ( ) ( ) ( ) ( ).12; 11 snss
ds

d
sss

ds

d
nnnn ψ+−=ψ






 +−ψ=ψ






 + +− ℏℏℏ  (19e) 



POSITIVE-NEGATIVE ENERGY PARTNER STATES AND … 

 

73 

Successive operations in anti-normal and normal order then easily give eigenvalue 

equations 

( ) ( );2 snss
ds

d
s

ds

d
n ψ−=ψ






 +−





 + ℏℏℏ   

( ) ( ) ( ).12 snss
ds

d
s

ds

d
nn ψ+−=ψ






 +





 +− ℏℏℏ  (19f) 

Dividing these through by 2 and introducing the annihilation and creation operators 

â  and †â  as defined in equation (2c) gives 

 ( ) ( ) ( ) ( ) ( ).1ˆ†ˆ;†ˆˆ snsaasnsaa nnnn ψ+−=ψψ−=ψ ℏℏ  (20a) 

Effective operations with â  and †â  consistent with the set of equations (19d), (19f) 

and (20a) take the algebraic form ( )( )sψ=ψ  

 .†ˆ;ˆ 11 −+ ψ−=ψψ=ψ nnnn naa ℏ  (20b) 

An important physical interpretation now emerges. According to equation (20b), the 

operation of a creation operator †â  on an anti-eigenfunction ( )snψ  describing 

negative energy states now represents negative energy photon emission process at the 

n-th negative energy quantum state. This emission of negative energy photons from 

the n-th negative energy state raises it to the higher ( )1−n -th negative energy state. 

The emission of negative energy photons from a negative energy state is equivalent to 

absorption of positive energy photons into a positive energy state, both processes 

thus leading to excitation to a higher level within the corresponding energy state 

space, positive or negative. In this respect, the creation operator †â maintains its role 

as a state raising operator for both positive and negative energy states, causing the 

state raising effect through positive energy photon absorption according to equation 

(11b) in the positive energy state space and through negative energy photon emission 

according to equation (20b) in the negative energy state space. 

On the other hand, equation (20b) reveals that the operation of an annihilation 

operator â  on an anti-eigenfunction ( )snψ  describing negative energy states now 

represents negative energy photon absorption process at the n-th negative energy 

quantum state. This absorption of negative energy photons into the n-th negative 

energy state lowers it to the lower ( )1+n -th negative energy state. The absorption of 
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negative energy photons into a negative energy state is equivalent to emission of 

positive energy photons from a positive energy state, both processes thus leading to 

de-excitation to a lower level within the corresponding energy state space, positive or 

negative. In this respect, the annihilation operator â  maintains its role as a state 

lowering operator for both positive and negative energy states, causing the state 

lowering effect through positive energy photon emission according to equation (11b) 

in the positive energy state space and through negative energy photon absorption 

according to equation (20b) in the negative energy state space. 

4. Quantum Conjugation 

To determine the physical connection between the positive and negative energy 

state spaces, we start by recognizing that the only fundamental quantum mechanical 

parameter defining the basic operators s
ds

d
+ℏ  and s

ds

d
+− ℏ  or †ˆ,ˆ aa  arising 

from the factorization in equations (2a)-(2b) is the Planck’s quantization constant .ℏ  

We therefore develop an appropriate conjugation rule based on the sign reversal of 

Planck’s quantization constant .ℏ  We call the conjugation rule effected by ℏ -sign 

reversal the quantum conjugation, in contrast to the usual mathematical complex 

conjugation effected by sign reversal of the imaginary number .1−=i  

We apply the quantum conjugation according to the rule 

 .ℏℏ −→  (21) 

Hence, we define quantum conjugation as the reversal of the sign of Planck’s 

quantization constant ℏ  according to ℏℏ −→  everywhere in operators, 

eigenfunctions and related quantities to obtain the corresponding quantum 

conjugates. 

In this theory of quantum conjugation, we define quantum Hermitian conjugation 

of a matrix by taking the quantum conjugation of every entry and then taking the 

transpose. We shall generally treat quantum conjugates as quantum hermitian 

conjugates, denoted by superscript .†  The usual mathematical rules of Hermitian 

conjugation then apply, except now we replace mathematical complex conjugation 

( )ii −→  with quantum conjugation ( ).ℏℏ −→  

Quantum conjugation seems natural and distinctly different from the usual 

mathematical complex conjugation, since it involves the change of sign of a 
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fundamental physical parameter ℏ  and applies to both real and complex quantities. 

Any operator, eigenfunction or quantity which is independent of ℏ  or depends on ℏ  

only through ...,3,2,1,0,2 ±±±=jj
ℏ  is not changed by quantum conjugation 

and is said to be quantum Hermitian. Since we carry out quantum conjugation 

separately, a quantum Hermitian quantity may still be a mathematically complex 

quantity with a complex conjugate. 

We establish below that quantum conjugation applies fully in the quantum theory 

of a linear harmonic oscillator, transforming the positive energy states into their 

partner negative energy states, thus providing a procedure for transforming photon 

quantum states into their partner anti-photon quantum states. 

4.1. Quantum conjugation of positive energy eigenfunctions 

For the lowest order positive energy eigenfunction 

( ) ,

2

2

2

0

s
es ℏ

−
=ψ  

we apply the rule in equation (21) to obtain the quantum conjugate as 

 ( ) .

2

2

2
†
0

s
es ℏ=ψ  (22a) 

Recognizing this result to be the highest order anti-eigenfunction ( )s0ψ  of the 

negative energy spectrum, we express equation (22a) as 

 ( ) ( ).0
†
0 ss ψ=ψ  (22b) 

The general positive energy eigenfunction ( )snψ  is generated from ( )s0ψ  and 

expressed in terms of the quantized oscillator polynomials ( )ℏ,sHn  according to 

( ) ( ) ( ) ( )ssHss
ds

d
s n

n

n 00 , ψ=ψ





 +−=ψ ℏℏ  

which on taking the quantum conjugation and using equation (22b) becomes 

 ( ) ( ) ( ) ( )ssHss
ds

d
s n

n

0
†

0
†
0 , ψ=ψ






 +=ψ ℏℏ  (22c) 

from which follows the quantum conjugation of the quantized oscillator polynomials 

in the form 



JOSEPH AKEYO OMOLO 

 

76 

 ( ) ( ) ( )., 00
†

ss
ds

d
ssH

n

n ψ





 +=ψ ℏℏ  (22d) 

Multiplying equation (22d) by the quantum conjugate ( )s
†
0ψ  of ( )s0ψ  from the left 

and using 

 ( ) ( ) 10
†
0 =ψψ ss  (22e) 

gives 

 ( ) ( ) ( )ss
ds

d
ssH

n

n 0
†
0

†
, ψ






 +ψ= ℏℏ  (22f) 

which on recalling that the r.h.s. provides the conjugate quantized oscillator 

polynomials ( )ℏ,sHn  as defined in equation (15d) in the negative energy state space 

takes the form 

 ( ) ( ).,,
†

ℏℏ sHsH nn =  (22g) 

Substituting this result into the last step of equation (22c) and introducing the general 

negative energy anti-eigenfunction 

( ) ( ) ( )ssHs nn 0, ψ=ψ ℏ  

provides the quantum conjugation result 

 ( ) ( ).†
0 ss ns

ψ=ψ  (22h) 

The quantum conjugate of the positive energy spectrum 







 +ω=

2

1
nEn ℏ  

is obtained as 

 





 +ω−=














 +ω=

2

1

2

1
†

† nnEn ℏℏ  (23a) 

which on introducing the negative energy spectrum 

 





 +ω−=

2

1
nEn ℏ  

becomes 
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 .†
nn EE =  (23b) 

The quantum conjugate of the quantized oscillator polynomial differential equation 

( )ℏℏ ,;022
2

2

sHHnH
ds

dH
s

ds

Hd
nnn

nn ==+−  

is obtained as 

 ( )ℏℏ ,;022 †††
†

2

2
2

sHHnH
ds

dH
s

ds

Hd
nnn

nn ==+−−  (23c) 

which on substituting equation (22g) takes the final form 

 ( ).,;022
2

2

ℏℏ sHHHn
ds

Hd
s

ds

Hd
nnn

nn ==−+  (23d) 

We recognize this as the differential equation for the conjugate quantized oscillator 

polynomials obtained earlier. 

4.2. Quantum conjugation of the basic operators 

For the basic operators s
ds

d
+ℏ  and ,s

ds

d
+− ℏ  we apply the quantum 

conjugation rule in equation (21) to obtain 

 .;
††







 +






 +−






 +−=






 + s

ds

d
s

ds

d
s

ds

d
s

ds

d
ℏℏℏℏ  (24a) 

These basic operators are quantum conjugates. It also follows that the annihilation 

and creation operators defined by 

 





 +−=






 += s

ds

d
as

ds

d
a ℏℏ

2

1
ˆ;

2

1
ˆ †  (2c) 

are quantum conjugates according to 

 ( ) ( ) .ˆ†ˆ;ˆ†ˆ †† aaaa ==  (24b) 

We use equation (2c) to obtain 

 ( ) ( )†† ˆˆ
2

1
;ˆˆ

2

1
aa

ds

d
aas −=+=

ℏ
 (24c) 
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which on applying equations (21) and (24b) are established as quantum Hermitian 

according to 

 .
†1

;†
ds

d

ds
ss =






=  (24d) 

Let us now introduce the position coordinate and linear momentum operators 

 
dx

d
ipxx ℏ−== ˆ;ˆ  (25a) 

to express the annihilation and creation operators in (2c) in the form 

 







+

ω
−

ω
=








+

ωω
= x

m

p
i

m
ax

m

p
i

m
a ˆ

ˆ

2

1†ˆ;ˆ
ˆ

2

1
ˆ  (25b) 

giving 

 ( ) ( ).†ˆˆ
2

ˆ;†ˆˆ
2

1
ˆ aa

m
ipaa

m
x +

ω
−=+

ω
=  (25c) 

Taking quantum conjugation of equation (25c) and applying equation (24b) gives 

 ppxa ˆ†ˆ;ˆ†ˆ −==  (25d) 

which shows that the displacement operator x̂  is quantum Hermitian, while the linear 

momentum operator p̂  is quantum anti-Hermitian. Not that the quantum conjugation 

of p̂  as defined in equation (25c) involves only the operation ,ℏℏ −→  leaving the 

imaginary number intact. We observe that a combined quantum and mathematical 

complex conjugation ( )ii −→−→ ,ℏℏ  would give Hermitian form ,ˆˆ pp →  but 

we are not pursing the combined conjugation operation here, since its physical 

meaning in the context of the transformation of positive energy states into negative 

energy partner states may not be clear. 

For the Hamiltonian 

 22
2

ˆ
2

1

2

ˆ
xm

m

p
H ω+=  (25e) 

quantum conjugation gives 

 
( ) 22

2
22

2

ˆ
2

1

2

ˆ
ˆ

2

1

2

ˆ† xm
m

p
xm

m

p
H ω+=ω+

−
=  (25f) 
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which on substituting equation (25e) shows that the Hamiltonian is quantum 

Hermitian according to 

 H.H =†  (25g) 

4.3. Quantum conjugation of the basic operator algebraic operations 

Taking the quantum conjugation of the positive energy algebraic operations 

( ) ( ) ( ) ( )ssasnsa nnnn 11
†ˆ;ˆ +− ψ=ψψ=ψ ℏ  

gives 

( )( ) ( ( )) ( ) ( ),†ˆ††ˆ 11 snsasnsa nnnn −− ψ−=ψ⇒ψ=ψ ℏℏ  (26a) 

( )( ) ( )( ) ( ) ( ).ˆ††ˆ 11 ssassa nnnn ++ ψ=ψ⇒ψψ  (26b) 

The Hamiltonian of the quantized linear Harmonic oscillator is expressed in terms of 

the annihilation and creation operators in the form 

 ( ) HHaaaaH =+ω= †;†ˆˆˆ†ˆ
2

1
 (26c) 

which is easily confirmed to be quantum Hermitian ( ).† HH =  The quantum 

Hermitian property means that the Hamiltonian is the same in both positive and 

negative energy state spaces. 

In the positive energy state space, the Hamiltonian acts on the eigenfunctions 

( )snψ  according to equation (11b) to produce the positive energy spectrum in the 

form 

 ( ) ( ) ( ) ( ) 





 +ω=ψ=ψ+ω=ψ

2

1
;†ˆˆˆ†ˆ

2

1
nEsEsaaaasH nnnnn ℏ  (26d) 

while in the negative energy state space, the Hamiltonian acts on the anti-

eigenfunctions ( )snψ  according to equation (20b) to produce the negative energy 

spectrum in the form 

 ( ) ( ) ( ) ( ) .
2

1
;†ˆˆˆ†ˆ

2

1






 +ω−=ψ=ψ+ω=ψ nEsEsaaaasH nnnnn ℏ  (26e) 

The commutator [ ]†ˆ,ˆ aa  acts within the positive and negative energy state spaces 
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according to 

[ ] ( ) ( ) ( ) [ ] ( ) { ( )} ( )snnsaasnnsaa nnnn ψ+−−=ψψ−+=ψ 1†ˆ,ˆ;1†ˆ,ˆ ℏℏ  (26f) 

from which it follows that the commutation bracket remains the same in the quantum 

conjugation transformation relating the positive and negative energy state spaces, i.e., 

the commutation bracket is quantum Hermitian according to 

 [ ]( ) [ ] .†ˆ,ˆ
††ˆ,ˆ ℏ== aaaa  (26g) 

5. General Interpretation 

All the results of the quantum conjugation show that the positive energy 

eigenfunctions, quantized oscillator polynomials, energy spectrum, basic operators 

and operator algebraic operations transform into their negative energy partners. This 

leads to a fundamental feature of quantum dynamics that the general quantum state 

space of an oscillator is composed of two conjugate state spaces, namely, the positive 

energy state space and the negative energy state space. The two quantum state spaces 

are related by quantum conjugation transformation effected through sign reversal of 

Planck’s quantization constant ℏ  (i.e., ).ℏℏ −→  Positive and negative energy states 

are therefore interpreted as quantum conjugation partners. 

Each quantum state space is specified by its physical elements, essentially 

consisting of state eigenfunctions and quantum operators which provide information 

on the dynamics through algebraic operations within the state space. In general, if the 

physical elements of the positive energy state space are denoted by q, then the 

corresponding physical elements of the negative energy state space denoted by q  are 

obtained through quantum conjugation according to 

 .†: qq =−→ ℏℏ  (27a) 

A quantum state physical element which does not change under the quantum 

conjugation operation according to 

 qqqq =⇒=†  (27b) 

is quantum Hermitian. Such quantum Hermitian elements take the same form in both 

positive and negative energy state spaces and they may be called universal physical 

elements. In addition, physical elements such as annihilation and creation operators 
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which under quantum conjugation simply interchange roles are also universal 

elements, since they maintain their forms within the two conjugate state spaces. 

The negative energy state anti-eigenfunctions ( ),snψ  annihilation operator a  

and creation operator †a  are obtained from the corresponding positive energy 

eigenfunctions ( ),snψ  annihilation operator â  and creation operator †â  through 

quantum conjugation according to 

 ( ) ( ) .ˆ†ˆ;†ˆ;† aaaass nn ==ψ=ψ  (28a) 

The corresponding energy eigenvalues and quantized oscillator polynomials are 

obtained as 

( ) ( ).,,;
2

1
;

2

1 ††
ℏℏℏℏ sHsHnEEnE nnnnn =






 +ω−==






 +ω=  (28b) 

The annihilation and creation operators act on respective eigenfunctions within the 

positive and negative energy state spaces according to 

( ) ( ) ( ) ( ),†ˆ;ˆ 11 ssasnsa nnnn +− ψ=ψψ=ψ ℏ  (28c) 

( ) ( ) ( ) ( )ssasnsa nnnn 11
†; +− ψ=ψψ−=ψ ℏ  (28d) 

which are related by quantum conjugation. 

According to equations (28c)-(28d), the action of the annihilation operator â  

within the positive energy state space causes emission of positive energy photons 

from the state ( ),snψ  lowering it to the state ( ),1 sn−ψ  while the action of the 

annihilation operator a  within the negative energy state space causes emission of 

negative energy photons from the state ( ),snψ  raising it to the state ( ).1 sn−ψ  On the 

other hand, the action of the creation operator †â  within the positive energy state 

space causes absorption of positive energy photons into the state ( ),snψ  raising it to 

the state ( ),1 sn+ψ  while the action of the creation operator †a  within the negative 

energy state space causes absorption of negative energy photons into the state 

( ),snψ  lowering it to the state ( ).1 sn+ψ  

Emission of positive energy photons from a positive energy state, leading to 

positive energy state lowering is thus seen to be the reverse process relative to the 
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emission of negative energy photons from a negative energy state, leading to negative 

energy state raising. Likewise, absorption of positive energy photons into a positive 

energy state, leading to positive energy state raising is seen to be the reverse process 

relative to the absorption of negative energy photons from a negative energy state, 

leading to negative energy state lowering. These reversed roles of state 

lowering → raising or raising → lowering is due to the interchange of creation and 

annihilation operators under quantum conjugation transformation from positive to 

negative energy state space, which is evident in equation (28a). 

It follows from the above that the annihilation and creation operators †ˆ,ˆ aa  are 

universal operators, acting in both positive and negative energy state spaces. Indeed, 

they satisfy universal commutation property 

 [ ] [ ]( ) [ ] .†ˆ,ˆ
††ˆ,ˆ†, ℏ=== aaaaaa  (28e) 

Substituting aaaa ˆ†,†ˆ ==  from equation (28a) into equation (28d) gives their 

action within the negative energy state space according to 

 ( ) ( ) ( ) ( ).ˆ;†ˆ 11 ssasnsa nnnn +− ψ=ψψ−=ψ ℏ  (28f) 

It is clear from equations (28c) and (28f) that positive energy photon emission from a 

positive energy state and negative energy photon absorption into a negative energy 

state due to the action of the annihilation operator â  leads to state lowering in both 

positive and negative energy state spaces, while positive energy photon absorption 

into a positive energy state and negative energy photon emission from a negative 

energy state due to the action of the creation operator †â  leads to state raising in 

both positive and negative energy state spaces. We arrive at the fundamental quantum 

mechanical feature of the dynamics of a linear harmonic oscillator that emission of 

positive energy photons from a positive energy quantum state is equivalent to 

absorption of negative energy photons into a negative energy quantum state, leading 

to state lowering, while absorption of positive energy photons into a positive energy 

quantum state is equivalent to emission of negative energy photons from a negative 

energy quantum state, leading to state raising. 

The quantum Hermitian property of the displacement x̂  and Hamiltonian H 

according to 

 HHHxxx ==== †;ˆ†ˆ  (28g) 
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and the quantum anti-Hermitian property of the momentum p̂  according to 

 ppp ˆ†ˆ −==  (28h) 

lead to the important interpretation that photons occupying negative energy states 

( )( )snψ  have the same displacement x̂  and Hamiltonian H, but opposite momentum 

p̂−  compared to photons occupying the corresponding positive energy partner states 

( )( ).snψ  The Hamiltonian H has positive energy eigenvalue spectrum 







 +ω=

2

1
nEn ℏ  in the positive energy state space and negative energy eigenvalue 

spectrum 





 +ω−=

2

1
nEn ℏ  in the negative energy state space. 

6. Conclusion 

We have established that the full energy spectrum of a non-relativistic quantized 

linear harmonic oscillator is composed of positive and negative energy states related 

by quantum conjugation effected through sign-reversal of Planck’s quantization 

constant .ℏ  Photons occupying negative energy states have the same displacement x̂  

and Hamiltonian H, but opposite momentum p̂−  compared to photons occupying the 

corresponding positive energy partner states. Emission of positive energy photons 

from a positive energy quantum state is equivalent to absorption of negative energy 

photons into a negative energy quantum state, leading to state lowering, while 

absorption of positive energy photons into a positive energy quantum state is 

equivalent to emission of negative energy photons from a negative energy quantum 

state, leading to state raising. These fundamental quantum features are similar to the 

well established Dirac’s particle-hole or particle-antiparticle theory in relativistic 

quantum mechanics. We have introduced a new pair of quantum conjugate ℏ -

dependent polynomials which specify the eigenfunctions and anti-eigenfunctions in 

the positive and negative energy state spaces. 
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