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Abstract 

Ship Stability depends on the position of gravity of the ship relative to the 

metacentre essentially. However, when there is a partially filled tank on 

board, stability criterion becomes severe, that is the ship may be unstable, 

which could cause the capsizing. In this paper, implicit finite volume 

method and an algebraic volume of fluid method will be used to study the 

effect of a partial filled tank onboard on ship stability. Numerical results 

of sloshing in a partially filled rectangular tank with one bulkhead will be 

presented here. 
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1. Introduction 

The ship safety issues are crucial from the operational point of view and they can 

be considered as one of the most prospective technical affairs. One of the most 

critical features of seagoing ship related to her safety is the transverse stability. Ship 

stability is defined as the tendency of a ship to return back to her equilibrium when 

she is inclined from an upright position. This means that the metacentre M is above 

the centre of gravity G, that is the metacentric height GM  is positive. In the case, 

this value is negative, in other words the metacentre M is under G, the ship is said to 

be unstable [1, 2, 3]. 

Free surface can be modelling using two approaches: interface tracking approach 

and interface capturing approach. In the first one approach, the free surface is located 

at one boundary of the mesh, and the mesh deforms as the free surface moves [18, 19, 

20]. It is an explicit representative approach of the surface. They define the free 

surface as a sharp interface whose motion is followed. The tracking is usually 

performed by making use of the kinematic and dynamic free surface boundary 

conditions. The second approach is characterized by an implicit representation of the 

interface which is tracked as part of the solution algorithm. The computations are 

performed on a fixed grid, which extends beyond the free surface. These methods are 

also called volume tracking methods [21, 22, 23, 24]. They have a wide range of 

applications including problems in fluid mechanics, combustion, manufacturing of 

computer chips, computer animation, image processing Structure of snowflakes, the 

shape of soap bubbles, satellite controllability. 

In this paper, an algebraic volume-of-fluid method referred to Compressive 

Interface Capturing Scheme for Arbitrary Mesh (CICSAM) is used. However, 

pioneering work of VOF methods goes back to the early 1970s: DeBar [23] in 1974, 

Noh and Woodward [24] in 1976, Ramshaw and Trapp [25] in 1976 and Peskin [26] 

in 1977, but with Hirt and Nichols [27] in 1981 and their SOLA-VOF code, the 

method became widely used. 

For a given velocity field (provided by a flow solver), interfaces (free surface) 

are then tracked by evolving fluid volumes in time with the solution of an advection 

equation. Volume fraction results from normalization of fluid volume relative to the 

cell volume. At any time in the solution, an exact interface location is not known, i.e., 
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a given distribution of volume fraction data does not guarantee a unique interface 

topology. Interface geometry is instead inferred (based on assumptions of the 

particular algorithm) and its location is then reconstructed from local volume fraction 

data. Typically, one can reconstruct the interface by the straightforward SLIC 

(Simple Line Interface Calculation) methods as in [24, 38] and [39] or by various 

PLIC (Piecewise Linear Interface Calculation) methods [28, 29, 30, 31] and [32]. 

The latter methods give much better results than the former, as noted in the review 

achieved by Kothe and Rider [33]. However, a major drawback of geometric 

approach described above, is that, the cell shapes are implicitly used in the interface 

reconstruction and so it is difficult to extend these techniques to arbitrary complex 

three dimensions curvilinear coordinates system. In [34], a Cartesian geometric 

approach is achieved by introducing aperture approach (cut cell approach) which 

indicates the fraction of the cell and cell face that is open for the flow. Another 

drawback of geometric approach is the estimation of the interface normal, which 

influences the interface shape. 

Alternatively, an algebraic approach can be adopted in which the convective 

scalar transport equation for volume fraction is discretised in such as way to 

guarantee physical (bounded) volume fraction whilst preventing smearing of the 

interface over several mesh cells as in [35, 36 and 37]. 

2. Numerical Formulation 

2.1. Free surface effect 

The free surface motion of the liquid in a tank reduces a ship’s stability because, 

as the ship is inclined, the centre of gravity of the liquid in the tank shifts toward the 

low side. This causes the ship’s centre of gravity to move toward the low side, 

reducing the righting arm GZ  which depends on the metacentric height as 

 .sin θ= GMGZ  (1) 

The metacentric height is given by 

 ,KGBMKBGM −+=  (2) 

where the metacentric radius is given by Bouger formulae 

 ,
∇

=
I

BM  (3) 
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Figure 1. Free surface effect on ship stability. 

where I is the moment of inertia of area of waterplane of the ship about the axis of 

heeling and ∇  is the displacement of the ship, that is, the volume of the immersed 

part of the ship. 

Now let the ship be floating right initially at a waterline 00 LW  and let it be 

heeled through a small angle θ  to a new waterline .WL  The free surface in the 

partially filled tank will be inclined by the same angle θ  as shown in Figure 2.1. As a 

result to the heel, some of the liquid in tank will flow from the high side to the low 

side of the tank and a heeling moment will exist equal to product of the weight of the 

shifted liquid by the distance ,1gg  since the center of gravity of the wedge shifts 

from g to .1g  It is well known that when partly filled tank is on board, the 

metacentric height of a ship becomes [4, 5, 6] 

 ,
∇ρ

ρ
−−+= FsL I

KGBMKBGM  (4) 

where FsI  is the moment of inertia of the free surface area inside the tank about a 

longitudinal axis through the centroid of that area, Lρ  is the density of liquid inside 

the tank, ρ  is the density of water in which the ship is floating. The last term in (4) is 

the effect of the free surface on ship stability and it is called the virtual loss of .GM  

Any loss in GM  is a loss in stability. For example, if free surface be created in a 

ship with a small initial metacentric height, the virtual loss of GM  due to free 
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surface may result in a negative metacentric height. This could cause the ship to take 

up an angle of loll which may be dangerous in any case is undesirable. 

Free surface effect on ship stability may be reduced by subdivision of the tank 

using some bulkhead, since the moment of inertia depends on the aera of the free 

surface. It is well known that by subdividing the tank into 1+n  compartments, the 

moment of inertia is then divided by ( ) ,1
2+n  as in [3, 4, 5, 6]. 

 
( )

,
1

2 ∇ρ+

ρ
−−+=

n

I
KGBMKBGM FsL  (5) 

where n is the number of bulkheads. 

From relation (5), it is obvious that when the number of bulkheads becomes 

large, the last term tends toward zero. So the effect of free surface on ship stability 

may be reduced by tank subdivision using bulkheads. In this paper, we have studied 

the free surfaces of two partly filled tank problems. The first one concerns a 

rectangular tank without any bulkhead. The second study is devoted to the same tank 

subdivided by one bulkhead. Here, the tank is subjected to harmonic horizontal 

oscillations as in [10, 11]. 

2.2. Governing equations 

The motion of the incompressible two-phase flow inside the tank is described by 

the Navier Stokes equations: 

- Continuity equation 

 .0=
∂

∂

i

i

x

u
 (6) 

- Momentum equations 

In this first test, a rectangular tank with fluid inside is initially at rest state [14]. 

An experimental test was performed in [12, 7 and 8]. The tank is suddenly 

accelerated along the horizontal x-direction in a sinusoidal large-amplitude. The 

position of the tank is given by 

 cte.yt
T

Ax =
π

= and
2

sin  (7) 
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The inertial body force due to oscillations is given by 

 ,xVFi ɺɺρ−=  (8) 

where V is the volume of the liquid inside the control volume, and xɺɺ  is the 

acceleration of the governing coordinate system which is given by 

 .
2

sin2 t
T

Ax
π

ω−=ɺɺ  (9) 

The momentum equations become 
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with 

 ( ) ( ) .11 glgl FandF ν−+ν=νρ−+ρ=ρ  (11) 

In the above equations, iu  and ig  are the Cartesian velocity and the gravity 

components in i-direction, respectively; p is the pressure; kµ  and kρ  are the 

viscosity and density respectively of the fluid k, where gk =  for gas and lk =  for 

liquid. The last term if  is the surface tension force obtained via the continuum 

surface force CSF approach [13, 14], which is active only on liquid-gas interface. 

- Volume fraction equation 

The properties (density and viscosity coefficients) appearing in the momentum 

equation are determined by the presence of the component phase (volume fraction) F 

in each control volume, which is bounded by zero and one. It could be defined as the 

filling degree of each cell. When the cell is full of liquid (water) the volume fraction 

,1=F  then if the cell is full of air (gas) ,0=F  and when the cell contains the free 

surface, that is gas and liquid, then .10 << F  

 .0=
∂

∂
+

∂

∂

i

i

x

Fu

t

F
 (12) 

2.3. Discretization of governing equations 

- Momentum equations 

The purpose of any discretization practice is to transform one or more partial 
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differential equations into a corresponding system of algebraic equation as is detailed 

in [15, 16, 17]. The finite volume discretization of ui-momentum equation is based 

on the integration over the control volume and time step. Quadratic Upwind 

Interpolation of Convective Kinetics (QUICK) scheme of Hayase et al. [40] is used 

for convective terms and central difference for diffusive terms and fully implicit time 

scheme. In order to avoid the numerical instability, often known as the “checkerboard 

problem, an improved Rhie-Chow interpolation [41] is used to calculate the 

convective. The spatial and temporal discretization leads to the form of linear matrix 

equations as 

 ,bAx =  (13) 

where 

- A is the matrix obtained from discretisation of momentum, 

- b is the vector which includes volume forces, extra terms of convective terms 

of high order such as in TVD scheme [42] and scheme of Hayase [40], 

- x is the unknown nodal velocity vector. 

- Free surface equation 

The crucial issue for modeling of the multiphase flow is a proper solution of 

equation (12), i.e., the discretization of time derivative and nonlinear convective 

term. A desirable property of an advection scheme is that it should be “monotonicity 

preserving” or “shape-preserving”; that is, it should not create spurious extrema or 

cause spurious amplification of existing extrema in an advected quantity. Standard 

advection techniques can not guarantee this desirable property since, these schemes 

are usually too diffusive and cannot guarantee the sharpness of the multi-fluid 

interfaces essential in free surface problems on stationary meshes. This desirable 

property can be achieved by carefully constraining or “limiting” the advective fluxes 

calculated by the scheme. This can be achieved by use of High Resolution Schemes 

like Total Variation Diminishing (TVD) scheme [42, 43, 44, 45] and Normalized 

Variables Diagrams (NVD) [46, 47, 48, 49] and [50]. In this paper, the CICSAM 

scheme is used to calculate the advective flux. 

Integration of equation (12) over the control volume gives to 

 ,0
1

=−+−+
∆

−+

sssnnnwwweee

n
P

n
P SuFSuFSuFSuF

t

FF
 (14) 
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where n
PF  indicates the value of the volume fraction at central node P of the control 

volume at time step fun;  is the velocity at cell face ;f  i.e., east, west, north and 

south; fS  is the area of the cell face ;f  and fF  is the value of the volume fraction 

at cell face f which can produce numerical diffusion of the free surface if it is not 

properly calculated, see Figure 2. 

Normalized Variable Diagram provides the foundation for CICSAM scheme. It 

is based on the convective boundedness criterion that states that the variable 

distribution between the centers of neighborhood control volumes, e.g., D and A 

should remain smooth ,AfD FFF ≤≤  see Figure 3. 

 

Figure 2. Control volume with node P. 

Using this constraint about value of the variable in the upwind control volume 

,UF  normalized variables are defined as 

,
~

UA

Uf
f FF

FF
F

−

−
=  (15) 

.
~

UA

UD
D FF

FF
F

−

−
=  (16) 
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The boundedness criterion can be rewritten using equations (15) and (16) as 

,1
~~

≤≤ fD FF  what can be shown through a diagram where the boundedness 

criterion is satisfied by any differential scheme. 

 

Figure 3. Boundedness criterion, U upwind, D donor and A acceptor cells. 

In the case of the CICSAM scheme, additional assumption about the dependence 

of the region where the CBC is satisfied on the CFL condition, is used as in [51] by 

 ,

~

,1min
~~









≤≤

f

D
fD C

F
FF  (17) 

where the local value of the Courant number defined at the face f of the control 

volume is 

 ,
P

fff V

t
SuC

∆
=  (18) 

where PV  is the volume of the cell P. 

One needs to notice, that for explicit schemes, if the local value of the Courant 

number fC  tends towards unity, only the UD scheme satisfies the CBC criterion 

,
~~

Df FF →  see Figure 4. 
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Figure 4. Dependance of the CBC region on local CFL condition. 

The CICSAM scheme combines two high order schemes. The first one that is 

shown to be compressive, is known as the HYPER-C scheme 
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However, compressive character of the HYPER-C is not always desirable. It means 

that it changes any gradient to a step profile due to the downwind differencing 

scheme employed. When interface is tangential to the flow direction it is shown that 

aforementioned scheme tends to artificially deform its shape. For this reason it is 

found to be necessary to switch between HYPER-C scheme and other less 

compressive formulation such as the ULTIMATE-QUICKEST scheme which is the 

order accurate QUICK: 

( )( ) .
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~
0:

8

3
~

61
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8
,
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min

1
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,
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0:
~~

~
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F  (20) 

A linear blending is used to switch smoothly between both schemes with a blending 

factor .fα  Now for CICSAM scheme, the value of the volume fraction fF
~

 is given 
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by 

 ( ) ,
~

1
~~

fUQffCBCff FFF α−+α=  (21) 

where 

 ,
2

2cos1
,1min 







 θ+
=α

f
f  (22) 

where 

 ,.arccos ndf

��

=θ  (23) 

where the unit vector parallel to the line between the donor cell D and acceptor cell A 

is 

 
DA

DA
d =
�

 (24) 

and the unit vector normal to the interface in donor cell D is 

 .
D

D

F

F
n

∇

∇
=
�

 (25) 

To extend the CICSAM scheme to n-dimension flow, cell Courant number DC  is 

introduced as 

 ( ).0,max

1

f

n

f

D CC ∑
=

=  (26) 

3. Numerical Results and Discussions 

3.1. Model setup 

We consider a partially filled rectangular tank in horizontal oscillations as it was 

mentioned in Subsection 2.2. The dimensions of the tanks are as follow length and 

height m0.1 and m,5.0  respectively. The fluid properties, namely the viscosity and 

the density are 113 s.m.kg10 −−−=µ and .m.kg10 33 −=ρ  The filling ratio of the tank 

is %,53  that is, the initial height of water inside the tank m.265.0  The 
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computational mesh consists of 101201 ×  cells or control volumes. The period and 

the magnitude of the tank oscillation are s2=T  and m,2.0=A  respectively. Two 

tests are studied in this paper as follows. 

3.2. Tank without bulkhead 

Following figures show the snapshots of our simulations. It is noticed that the 

amplitude of sloshing of water inside the tank increases until we can observe the 

impact of the wave on the floor. This phenomena is known as the resonance as it is 

shown in [36] and [37]. 

  

s.0=T                                                      s.3.0=T  

  

s.9.0=T                                                     s.5.0=T  
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.s5.0=T  

Figure 5. Sloshing in tank without bulkheads. 

The following curves show the heights of liquid at probes 1 and 2 located on left 

and right wall of the tank on initial free surface. In other words probe 1 is at 

( )265.0,1 == yx  and probe 2 is at ( ).265.0max, == yix  We can notice that 

some peaks are constant that is due when the liquid is in contact with the floor of the 

tank as it is illustrated above. The period of sloshing from simulation results is almost 

equal to the period of excitation of the tank which confirms the resonance. 

 

(a) 
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(b) 

Figure 6. Heights of water at probes 1 and 2. 

The pressure (in Pascal) at points ( )05.0,5.0 == yxA  and ( ,1=xB  

)265.0=y  are shown in Figure 7 .The period of pressure oscillations is near 

.s2=T  Point A is bottom, the pressure is more large because of additional 

hydrostatic pressure. Point B is on initial free surface where atmospheric pressure is 

assumed to null. Hence when the point B is in air region the pressure becomes zero 

and when it is in water the pressure increases until .Pa1000  

 

(a) 
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(b) 

Figure 7. Pressures of water at points A and B. 

3.2. Tank with one bulkhead 

Figures 8 show the snapshots of our simulations. It is noticed that the amplitude 

of sloshing of water inside the tank is reduced considerably. The period of the 

oscillations is greater than that of the excitation of the tank, so there is not any 

resonance phenomena. From Figure 9, we can notice that the period of sloshing is 

almost s5=T  greater than .s2=T  

  

s.0=T                                                       s.26.0=T  



N. COULIBALY, LASSANA SAMASSI and M. DOSSO 

 

16 

 

s.35.3=T                                                 .s8.4=T  

Figure 8. Sloshing in tank with one bulkhead. 

 

Figure 9. Height of water in tank with one bulkhead. 

The pressures (in Pascal) at points ( )05.0,5.0 == yxA  and ( )265.0,1 == yxB  

are shown in Figure 10. The period of pressure oscillations is near .s5=T  Point A 

is bottom, the pressure is larger because of additional hydrostatic pressure. Point B is 

on initial free surface, where atmospheric pressure is assumed to null. Hence when 

the point B is in air region the pressure becomes zero and when it is in water the 

pressure increases until .Pa500  
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Figure 10. Pressures of water at points A and B. 

4. Conclusion 

In this paper, we have studied the effect of a bulkhead on liquid sloshing in a two 

dimensional rectangular tank using an algebraic technique of Volume of Fluid 

method. The numerical results show that the baffle may be considered as a damper of 

liquid sloshing in a tank. Indeed, it prevents the increase of the amplitude of the 

sloshing which can preserve the ship stability. We hope in the future that the next 

study will be devoted to more baffles than one in three-dimension flow. 
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