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Abstract 

This paper deals with the analysis of the optimal test strategy vaccination 

of a modified age-structured model for the transmission dynamics of 

hepatitis B without vertical transmission. The proposed model takes into 

account the additional mortality rate associated with the disease. It appears 

that the optimal strategies are one or two-age strategies. 

1. Introduction 

This paper focuses on the analysis of the optimal test strategy vaccination of a 

modified age-structured model for the transmission dynamics of hepatitis B without 

vertical transmission. In our previous work [6], we suppose that a vaccinated person 

may become susceptible if a vaccine is not effective and recovered if a vaccine is 
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effective. In this model, we define costs of the vaccination strategy and effect by 

considering the additional mortality rate associated with the disease. We follow 

methods of C. Castillo-Chavez and Z. Feng [3], Kouakep and Houpa [4], Hadeler 

and Muller [10], Stoer and Witzgall [13]. 

The manuscript is organised as follows: second section is devoted to problem 

formulation, third section to preliminary result, fourth section to optimization 

problem and result, we end this work by conclusion and perspectives. 

2. Problem Formulation 

We consider a general age structured model describing the dynamics of 

transmission of hepatitis B without vertical transmission. A population of size 

( )taN ,  is stratified into six compartments, namely: susceptible ( ),, taS  latently 

infected ( ),, taE  acutely infected ( ) ,, taI  carrier ( ),, taC  recovered ( )taR ,  and 

vaccinated ( )taV ,  with age distribution at time t. We suppose that all newborns are 

susceptible. The parameters used are described as follows: 

( )ab•  birth rate. 

( )aµ•  natural mortality rate. 

( )a1µ•  HBV-related mortality rate. 

ε•  reduced transmission rate from chronic carriers compared to acute 

infections. 

( )aσ•  rate moving from latent to acute. 

( )a1γ•  rate moving from acute to carrier. 

( )a2γ•  rate moving from carrier to recovered. 

( )aΨ•  vaccination rate against hepatitis B. 

( )aq•  probability that an individual fails to clear an acute infection and 

develops to carrier state. 

( )aϕ•  rate moving from vaccinated to susceptible. 

( )ap•  probability that an individual fails to clear a latent infection and 
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develops to acute infection state. 

( )au•  probability that an individual fails to clear vaccinated and develops to 

susceptible state. 

The variables and model structured are described in the following figure: 

 

Figure 1. Model of HBV without vertical transmission. 

Under the above assumptions and parameters, the dynamic of the disease can be 

described by the following system of partial differential equations: 
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with initial and boundary conditions: 
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where 1a  and 2a  are, respectively, the minimum and maximum age of procreation. 

The total population is: ( ) ( ) ( ) ( ) ( ) ++++= taCtaItaEtaStaN ,,,,,  

( ) ( ).,, taVtaR +  

By summing all equations of system (1), we obtain the following equations for 

the total population ( ):, taN  
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Those relations show that the population dynamics is affected by the disease. 

Following [2] one can express the force of infection by: 
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where +a  is the maximum age of individual, the function ( )ak  and ( )a′β
~

 are, 

respectively, the age-specific (average) probability of becoming infected through 

contact with infectious individuals and the age-specific per-capita contact/activity 

rate. 
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following normalised system of partial differential equations: 
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with initial and boundary conditions: 

( ) ( ) ( ) ( ) ( ) ( ) .0,0,0,0,0,0;1,0 ====== tvtrtctitets  

3. Previous Result 

In the previous work [6], we proove that if ( ) ,10 <<Ψ RR  the DFE is locally 

and globally asymptotically stable, and if 10 >R  unstable, we also prove that there 

exist an endemic equilibrium. We did not prove the existence and stability in the case 

when ( ) .1 0RR <<Ψ  For the wellposedness of our problem (see [6]). 

4. Vaccination Strategies and Optimality Conditions 

Let define ( ) ( )Ψ−=Ψ RRF 0  and ( ) ( ) ( ) ( ) adasaaC
a
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+ 0

0
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( )a′κ  representing the cost associated with one vaccination at age ( )asa ′′ 0,  a 

density of susceptible at DFE (Disease free equilibrium). We define also the function 
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 This gives us, linear expression of ( )ΨF  and ( ).ΨC  
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Two problems emerged as mentioned by C. C. Chavez in [3]. Let ∗R  and ∗C  be 

two constants. 

(I) Find a vaccination strategy ( )a′Ψ  that minimizes ( )ΨC  constrained by 

( ) .∗≤Ψ RR  

(II) Find a vaccination strategy ( )a′Ψ  that minimizes ( )ΨR  constrained by 

( ) .∗≤Ψ CC  

It is not easy to overcome the difficulty we have faced without transforming the 

expression of ( )ΨF  and ( ).ΨC  Hadeler and Muller, and C.C. Chavez [10, 3] show 

how to transform a non linear maps ( )ΨF  and ( )ΨC  into linear functionals ( )φF  

and ( )φC  by using the expression of ( ).a′φ  By changing the order of integration 

twice, in expression of ( )ΨF  and some approximation in the neighborhood of zero, 

we found: 
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So, we have replace two non linear functionals by two linear functionals given by 

( )φF  and ( ).φC  

Letting ∗−=ρ RR0  and ( ) ( ) .
0

adaQ
a

′′φ=φ ∫
′

 It is easy to see that ( ) .1≤φQ  
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Now, we replace (I) by these new linear optimization problem: 

( ),φCMinimise  

( ) ,0≤φftosubject  (6) 

,0≥φ  
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and ( ) 0≤φf  is equivalent to ( ) ( ).2,10 =≤φ ifi  Like Castillo and Feng [3], we 

use the Saddle Point Theorem of Khun and Tucker for the convex optimization 

problem [13]. We can show that (I) is mathematically equivalent to (P1) in [10]. 

Hence using the same arguments we arrive at the following conclusion. 

Theorem 1. There are two possible optimal vaccination strategies in (I): 

(i) One age strategy: vaccinate the susceptible population at exactly age A. 

(ii) Two age strategy: vaccinate part of the susceptible population at age 1A  

and the remaining susceptibles at a later age .2A  

Proposition 2. We suppose that birth rate ( )ab  add probability an individual 

fails to clear vaccinated and develops to susceptible state times rate moving from 

vaccinated to susceptible ( ) ( )aau ϕ  is a constant, we can say that =θ  

( ) ( ) ( )( ) .
0

ττττ dub ϕ+∫
λ

 

For two vaccination strategies, the optimal ages can be calculated in the 

following way: Note that ( )aK ′  is a strictly decreasing function with 

( ) ρ>= θ−
00 ReK  and ( ),ln 0

ρ
<θ

R
 also ( ) 0→′aK  when .+∞→′a  Hence we 

can find 0>∗A  such that ( ) .ρ=∗AK  Let A be the minimum of the quotient 
( )
( )aK

a

′

′κ

 

(see [10] for discussions about the existence of A). If [ ],,0 ∗∈ AA  then it gives an 

optimal age for the one age-strategy. If ( ) ,, ∞+∈ ∗AA  then the optimal two age-
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strategy is found by minimizing the expression ( )21, AAC  on [ ]∗∈ AA ,01  and 

∈2A  ( ) ,, ∞+∗A  where: 

( )
( )

( ) ( )
( )

( )
( ) ( )

( )., 2
21

1
1
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2
21 A

AKAK

AK
A

AKAK

AK
AAC κκ

−

ρ−
+

−

−ρ
=  (7) 

For (II), we obtain similar results (one or two age-strategies of vaccination). 

5. Conclusion and Perspectives 

We found one or two age-strategies by considering our model, like in [3, 4, 10], 

it surely holds because we neglect the vertical transmission. WHO recommend since 

1992 a three age-strategies in high endemic areas [1]. In Niger Republic it is at 6th, 

10th, 14th weeks after birth. We also found the link between the efficacy of vaccine 

and newborn population, if ( ),ln 0

ρ
<θ

R
 we get optimal conditions. This means that 

if the vaccine is effective and newborn population controlled by vaccination, we will 

get a good result in the way for controlling this disease. This work is different from 

Kouakep T. Y. and Houpa D. D. E. [4], they did not take account a latent class who 

is very important in the transmission dynamics of hepatitis B. They did not prove also 

the importance of effective vaccine. 

In the next step, we will see the impact of vertical transmission to get the best 

strategy to apply, for eradicating this major public health problem, and maybe to see 

also possible co-infection with other disease like hepatitis C and VIH [14]. 
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