Fundamental Journal of Mathematics and Mathematical Sciences p-ISSN: 2395-7573; e-ISSN: 2395-7581 Volume 19, Issue 1, 2025, Pages 131-136 This paper is available online at http://www.frdint.com/ Published online April 27, 2025

ONE PIECE

VOLKER WILHELM THÜREY

Hegelstr. 101, 28201 Bremen Germany e-mail: volker@thuerey.de

Abstract

At first, we tile the plane by 8-gons. Then we present a way to tile the plane by k-gons for a every fixed k for all natural numbers k larger than two. We use an infinite number of equal tiles to cover the plane.

1. Introduction

It is a widespread opinion that one can tile the plane \mathbb{R}^2 only with triangles, squares and regular 6-gons. This is wrong. Here we show another possibility.

Proposition 1. There is a tiling of the plane by 8-gons.

Proof. Instead of a written proof we prefer to show a picture. See Figure 1.

Keywords and phrases: tiling, plane.

²⁰²⁰ Mathematics Subject Classification: 51.

Received August 28, 2024; Revised March 27, 2025; Accepted April 21, 2025

 $[\]ensuremath{\mathbb{C}}$ 2025 Fundamental Research and Development International

Figure 1. We see four equal 8-gons. With infinite many of these tiles we can cover the plane.

We think that it is useful to repeat the definition of a *simple polygon*.

A simple polygon with k vertices consists of k different points of the plane $(x_1, y_1), (x_2, y_2), ..., (x_{k-1}, y_{k-1}), (x_k, y_k)$, called *vertices*, and the straight lines between (x_i, y_i) and (x_{i+1}, y_{i+1}) for $1 \le i \le k-1$, called *edges*. Also the straight line between (x_k, y_k) and (x_1, y_1) belongs to the polygon. We demand that it is homeomorphic to a circle, and that there are no three consecutive collinear points $(x_i, y_i), (x_{i+1}, y_{i+1}), (x_{i+2}, y_{i+2})$ for $1 \le i \le k-2$. Also the three points $(x_k, y_k), (x_1, y_1), (x_2, y_2)$ and $(x_{k-1}, y_{k-1}), (x_k, y_k), (x_1, y_1)$ are not collinear.

We call this just described simple polygon a *k*-gon.

Definition 1. We call a polygon a *piece* if and only if it is one half of a regular 6-gon. Please see the picture Figure 2.

We use the word *doublepiece* as a synonym for a regular 6-gon. See Figure 2, too.

Definition 2. Let t be any natural number. We call a polygon a t row piece, if and only if t pieces are put in a row. Two pieces are joined together at a common edge.

We call a polygon a t row doublepiece, if and only if t doublepieces are put in a row.

ONE PIECE

We call a polygon a t shift square, if and only if t squares are put upon the other, where the squares have side length 1 and each square is shifted by $\frac{1}{2}$. (Every number between 0 and 1 also works.)

Note that they are simple polygons.

See the example in Figure 3. There we show a 2 row piece and a 3 row doublepiece. See also the 3 shift square in Figure 4.

Note that a 1 row piece is just a piece, and a 1 row doublepiece is a doublepiece and also a regular 6-gon, and a 1 shift square is a square.

Proposition 2. One can tile the plane with infinite copies of a t row piece for all natural numbers t; also we can tile the plane with infinite copies of a t row doublepiece for all t. Also we can tile the plane with infinite copies of a t shift square for all t.

Proof. Nearly trivial.

Proposition 3. A t row piece has 5 + 2(t-1) vertices. A t row doublepiece has 2 + 4t vertices. A t shift square has 4t vertices.

Proof. Easy. The proofs are by induction.

2. Tiling

Theorem 1. There exists for all natural numbers k larger than 2 a tiling of \mathbb{R}^2 with k-gons, where infinite copies of a single tile are used.

Proof. For k = 3 and k = 4 and k = 6 the theorem is well-known. For k = 5 please see Figure 2. We use one piece and Proposition 2.

Now let k be a natural number larger than 6.

Lemma 1. It holds $k \equiv p \mod 4$, where $p \in \{0, 1, 2, 3\}$.

Proof. Well-known.

We discuss the four possibilities.

• Possibility 1: p = 0. In this case we get a suitable t from the equation k = 4t and we take a t shift square as a k-gon. Please see Figure 4.

The sequence of the numbers of k is 8, 12, 16,

• Possibility 2: p = 1. These numbers are odd. Note that the set $\{5 + 2(t-1) | t \in \mathbb{N}\}$ contains all odd numbers larger than 3. See Proposition 3. We take a suitable t row piece as a k-gon. We get t from the equation k = 4t + 1.

The sequence of the numbers of k is 9, 13, 17,

• Possibility 3: p = 2. We get t from k = 4t + 2. We take a suitable t row doublepiece as a k-gon.

The sequence of the numbers of k is 10, 14, 18,

• Possibility 4: p = 3. These numbers also are odd.

The sequence of the numbers of k is 7, 11, 15, 19,

The theorem is proven.

It follows some figures.

Figure 2. We see a piece and a doublepiece.

Figure 3. We see a 2 row piece and a 3 row doublepiece.

Figure 4. We see a 3 shift square.

VOLKER WILHELM THÜREY

Acknowledgements

We thank Pakize Akin, Arne Weitz, and Yvonne Lüdtke for support.

For additional information, see the following references.

References

- [1] Ehrhard Behrends, Parkettierungen der Ebene, Springer, 2019.
- [2] http://www.willimann.org/A07020-Parkettierungen-Theorie.pdf
- [3] http://www.mathematische-Basteleien.de/parkett2.htm