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Abstract 

An -n dimensional Riemannian space is said to be of embedding class 

m  if mn +  is the lowest dimension of the flat space in which the given 

space can be embedded. A spherically symmetric spacetime of class two 

can be reduced to class one by a suitable transformation of coordinates. 

Applied to wormholes, given a well-defined shape function ( ) ,rbb =  the 

resulting wormhole has an event horizon and is therefore 

nontraversable. On a macroscopic scale, ( )rb  can be replaced by ( ) ,rm  

the effective mass of a spherical star of radius r  with ( ) ,00 =m  to yield 

a valid solution. Spacetimes of embedding class one have been used 

successfully for modeling compact stellar objects. On a microscopic 

scale, one can invoke noncommutative geometry to obtain a charged 

nontraversable wormhole, i.e., an Einstein-Rosen bridge, and hence a 

model for a charged particle. 
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1. Introduction 

Wormholes are handles or tunnels in spacetime connecting widely 

separated regions of our Universe or different universes altogether. 

Morris and Thorne [1] proposed the following static and spherically 

symmetric line element for a wormhole spacetime: 

 ( )

( )
( ),sin

1
2222

2
22 φθ+θ+

−
+−= ν ddr

rrb

dr
dteds r  (1) 

using units in which .1== Gc  Here ( )rν=ν  is called the redshift 

function, which must be everywhere finite to avoid the appearance of an 

event horizon. The function ( )rbb =  is called the shape function since it 

determines the spatial shape of the wormhole when viewed, for example, 

in an embedding diagram [1]. (The embedding diagram will play a critical 

role in Section 2.) The spherical surface 0rr =  is the radius of the throat 

of the wormhole. The shape function must satisfy the following 

conditions: ( ) ,00 rrb =  ( ) rrb <  for 0rr >  and ( ) ,10 ≤′ rb  called the flare-

out condition. This condition can only be met by violating the null energy 

condition (NEC) 

 0≥βα
αβ kkT  (2) 

for all null vectors ,αk  where αβT  is the energy-momentum tensor. 

Matter that violates the NEC is called “exotic” in Ref. [1]. In particular, 

for the outgoing null vector ( ),0,0,1,1  the violation has the form 

 .0<+ρ=βα
αβ rpkkT  (3) 

Here ρ−=t
tT  is the energy density, rr

r pT =  is the radial pressure, 

and tpTT == φ
φ

θ
θ  is the lateral pressure. A final requirement is 

asymptotic flatness: ( ) 0lim =ν∞→ rr  and ( ) .0lim =∞→ rrbr  
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Much of our discussion is based on the assumption that our spacetime 

is of embedding class one. So we need to recall that an -n dimensional 

Riemannian space is said to be of embedding class m  if mn +  is the 

lowest dimension of the flat space in which the given space can be 

embedded [2, 3, 4, 5, 6, 7]. We also need to recall that the exterior 

Schwarzschild solution is a Riemannian space of embedding class two. 

We continue our discussion with the following static and spherically 

symmetric line element from Ref. [2], but using the signature from line 

element (1): 

 ( ) ( ) ( ).sin 2222222 φθ+θ++−= λν ddrdredteds rr  (4) 

It is shown in Ref. [2] that this metric of class two can be reduced to a 

metric of class one; the spacetime is thereby embedded in a five-

dimensional flat spacetime. This reduction can be accomplished by means 

of the following coordinate transformation: ,cossin1 φθ= rz  =2z  

,sinsin φθr  ,cos3 θ= rz  ,cosh24

K

t
eKz ν=  and =5z  

.sinh2

K

t
eK ν  The result is 

 ( ) ( ).sin
4

1
1 22222222 φθ+θ+



 ν′++−= νν ddrdrKedteds  (5) 

Metric (5) is equivalent to metric (4) if 

 ( ) ,
4

1
1

2ν′+= νλ Kee  (6) 

where 0>K  is a free parameter. Eq. (6) can also be obtained from the 

Karmarkar condition [8] 

,
2323

1334122434341212
1414 R

RRRR
R

+
=    ,02323 ≠R  
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which is equivalent to the above reduction. In fact, Eq. (6) is a solution to 

the differential equation (readily solved by separation of variables) 

( ) ,2
1

2ν′−ν ′′−λ′ν′=
−

λ′ν′
λe

 

so that K  is actually an integration constant [3, 9]. 

2. Seeking a Complete Wormhole Solution 

The strategy adopted by Morris and Thorne in Ref. [1] was to satisfy 

the geometric requirements for a traversable wormhole by specifying ( )rb  

and ( )rν  and then either manufacture or search the Universe for matter 

or fields that can produce the desired energy-momentum tensor. In this 

section, we will consider the case where ( )rbb =  is a legitimate shape 

function, which may actually be known for physical reasons, such as a 

noncommutative-geometry background. (This possibility will be explored 

further in Section 4.) Another possibility is to start with a constant 

energy density, as in Ref. [10]. Returning to Eq. (6), let us rewrite the 

equation as 

.1
1 2

1

ν′=−
νλ ee

K
 

Integrating, we obtain from ( ) ( )[ ] ,1
1−λ −= rrbe r  

 
( ) ( )

( )∫∫
−

λν







 −=−= dr
rb

r
dreeK rr 2

1

2

1

11  (7) 

and 

 
( )

( )
.1

1

2

2

1























 −= ∫

−
ν dr

rb

r

K
e r  (8) 
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This integral exists as long as ( )rb  is a continuous function since 

( ) ( ) ( )
( )1

2

1
1

2

3

2

1

2

1

−












−+






=






 −

−−−

rb

r

rb

r

rb

r
 

( )
( ) ....1

!2

2

3

2

1

22

5

+−













−





−

+
−

rb

r
 

This series converges for ,0rr >  resulting in a removable discontinuity at 

.0rr =  Unfortunately, the integral in Eq. (7) is nothing more than the 

profile curve ( )rz  in the standard embedding diagram in Ref. [1]: ( )rz  is 

rotated about the -z axis and in the resulting tunnel-like figure, the circle 

0rr =  lies in the plane .0=z  We conclude that there is an event horizon 

for any shape function; so we do not get a traversable wormhole. 

An interesting special case is provided by ( ) ,2Mrb =  a zero-density 

wormhole: 

 
( )

.1
2

4

1
2

11

2

2

1

−=′

−
′

= ∫
ν

M

r

K

M
rd

M

rK
e

r

M

r
 (9) 

The wormhole spacetime is not asymptotically flat and will have to be cut 

off at some ar =  and joined to an external Schwarzschild spacetime. In 

other words, 

( ) .
2

11
2

16 2

a

M

M

a

K

M
e a −=






 −=ν  

Since K  is a free parameter, we can let 

.
2

1

1
2

16 2

a

M

M

a
M

K

−







 −

=  
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The result is 

 
( ) ,1

2
1

2

2
1







 −

−

−
=ν

M

r

M

a
a

M

e r  (10) 

confirming the existence of an event horizon at ;2Mr =  also, observe 

that ( ) .
2

1
a

M
e a −=ν  (A similar junction condition would be needed for 

any shape function.) 

Returning to Eq. (6), we have seen that whenever we assume a 

wormhole structure with a well-defined shape function, we cannot avoid 

an event horizon. On the other hand, if we reverse our point of view by 

assuming that ( )rν  is finite (i.e., no event horizon), then Eq. (6) yields 

 ( )
( ) ( )[ ]

;

4

1
1

1
1

2 















ν′+

−=
ν rKe

rrb
r

 (11) 

but in order to satisfy the condition ( ) ,00 rrb =  the fraction inside the 

parentheses must vanish. Since 
( )0re

ν
 is finite, we must have 

( ) .0 ±∞=+ν′ r  This is entirely possible, as can be seen from the choice 

( ) .2 0rrr −±=ν  However, the resulting wormhole behaves much like a 

Schwarzschild black hole: if we denote 
r

M2
1 −  in the Schwarzschild line 

element by 
( )

,1 re
ν

 then ( ) 





 −=ν

r

M
r

2
1ln1  and 

( ) .
2

1

2

limlim
2

212 +∞=

−

=ν′ +→+→

r

M
r

M

r MrMr  

We conclude that a four-dimensional Riemannian space of embedding 
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class one does not allow a traversable wormhole. For traversability, some 

additional assumptions would be needed. For example, Ref. [11] assumes 

conformal symmetry, while Ref. [12] uses a modified shape function. 

3. A Stellar Model 

Since the embedding theory has failed to produce a macroscopic 

traversable wormhole, let us consider instead the stellar model [13] 

 ( )
( )

( );sin
1

2222
2

22 φθ+θ+
−

+−= ν ddr
rrm

dr
dteds r  (12) 

here ( )rm  is the effective mass inside a spherical star of radius r  with 

( ) .00 =m  For this model, we can return to Eq. (8) to deduce that 

 
( )

( )

.

1

11

2

0


















′

−
′

′
= ∫ν rd

rm

rK
e

r
r  (13) 

If the star has radius ,Rr =  then the free parameter K  once again 

allows a junction to an external Schwarzschild spacetime: 

 
( )

( )

,
2

1

1

11

2

0 R

M
dr

rm

rK
e

R
R −=



















−

= ∫ν  (14) 

where ( ).
2

1
RmM =  So 

 
( )

( )
.

1

1

1

2

0

R

Rm

dr

rm

r

K

R

−



















−

=

∫
 (15) 
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For the potential ,ν  we have 

 
( ) ( )

.1ln
R

Rm

R

Rm
−≈






 −=ν  (16) 

So for large ,r  ,
r

m
−=ν  the Newtonian limit. Spacetimes of embedding 

class one have proved to be very effective for modeling compact stellar 

objects such as neutron stars and pulsars [2]. 

4. Microscopic Wormholes 

A convenient way to study microscopic wormholes is by means of 

noncommutative geometry [14]. An important outcome of string theory is 

the realization that coordinates may become noncommutative operators 

on a -D brane [15, 16]. Noncommutativity replaces point-like objects by 

smeared objects [17, 18, 19] with the aim of eliminating the divergences 

that normally appear in general relativity. As a consequence, spacetime 

can be encoded in the commutator [ ] ,µννµ θ= iXX  where µνθ  is an 

antisymmetric matrix that determines the fundamental cell discretization 

of spacetime in the same way that Planck’s constant discretizes phase 

space [18]. An effective way to model the smearing is to assume that the 

energy density of the static and spherically symmetric and particle-like 

gravitational source is 

 ( )
( )

,
222 β+π

βµ
=ρ

r
r  (17) 

which can be interpreted to mean that the gravitational source causes the 

mass µ  of a particle to be diffused throughout the region of linear 

dimension β  due to the uncertainty; so β  has units of length. 

Next, let us list the Einstein field equations (replacing ν  by ):2φ  
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( ) ,
8 2r

b
r

π

′
=ρ  (18) 

( ) ,12
8

1
3 




 Φ′






 −+−

π
=

rr

b

r

b
rpr  (19) 

( )
( )

( )
( )

.
22

1
8

1
2

2









−

−′
−

Φ′
+Φ′+Φ′

−

−′
−Φ ′′






 −

π
=

brr

brb

rbrr

brb

r

b
rpt  (20) 

Then from Eqs. (17) and (18), we obtain the shape function 

( ) ( ) ( )∫ ′′ρ′π=
r

r
rdrrrb

0

2
8  

;tan
1

tan
14

02
0

001

2

1 r
r

rr

r

rrm
+














β+
+

ββ
−

β+
−

ββπ

β
= −−  (21) 

observe that ( ) ,00 rrb =  as required. 

In this section, we would like to consider microscopic wormholes with 

electric charge .Q  Following Kim and Lee [22], we take the line element 

to be 

 
( )

( )
( ),sin

1

2222

2

2

2
22 φθ+θ+

+−

+−= ν ddr

r

Q

r

rb

dr
dteds r  (22) 

where ( )rb  is given by Eq. (21). In line element (22), the effective shape 

function ( )rbeff  is 

 ( ) ( ) ,
2

eff r

Q
rbrb −=  (23) 

where ( ) 11eff rrb =  and 1r  is the solution of the equation ( ) .2 rQrrb +=  

From Eq. (8), we now get 
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( )

( )
.1

1
221

eff1













′








−

′

′
=

−
ν ∫ rd

rb

r

K
e

r

r

r  (24) 

Here we return to the discussion in Section 2. Because of the event 

horizon at ,1rr =  the wormhole is not traversable, thereby constituting 

an Einstein-Rosen bridge. 

Ref. [23] discusses microscopic charged wormholes in the context of 

quadratic Palatini gravity. According to this theory, the solution can be 

interpreted as an electric flux going through one mouth of the wormhole 

and coming out of the other mouth. The result is a negative charge on one 

side and a positive charge on the other. Referring to Ref. [24], for all 

practical purposes, there is no difference between the kind of charge 

described as a wormhole (i.e., by means of a nontrivial topology) and a 

standard point-like charge, suggesting that spacetime could have a foam-

like structure. 

For a detailed discussion of the microstructure in conjunction with 

entanglement and the EPRER =  conjecture, see Ref. [23]. 

5. Summary 

An -n dimensional Riemannian space is said to be of embedding class 

m  if mn +  is the lowest dimension of the flat space in which the given 

space can be embedded. A spherically symmetric spacetime of embedding 

class two can be reduced to class one by a suitable transformation of 

coordinates. From the resulting metric (5), we have 

( ) ,
4

1
1

2ν′+= νλ Kee    ,0>K  

where K  is a free parameter. If we start with a well-defined shape 

function ( ),rbb =  then the resulting wormhole has an event horizon and 
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is therefore not traversable. Replacing ( )rb  by ( ),rm  the effective mass 

inside a spherical star of radius r  and with ( ) ,00 =m  we obtain a valid 

expression for ( )reλ  [Eq. (13)], thereby avoiding an event horizon. If R  is 

the radius of the star, then the free parameter K  allows a junction to an 

external Schwarzschild spacetime at .Rr =  The potential ( )rν  reduces to 

the Newtonian limit rm−=ν  for large .r  It is therefore not surprising 

that spacetimes of embedding class one have been used successfully for 

modeling compact stellar objects. As we have seen, however, such 

spacetimes cannot be used to model traversable wormholes without 

introducing some additional conditions. 

Making use of a noncommutative-geometry background, we can 

consider microscopic wormholes with electric charge. The presence of an 

event horizon results in an Einstein-Rosen bridge and is therefore a 

viable model for a charged particle. The reason is that, according to Ref. 

[24], for all practical purposes, there is no difference between a point-like 

charge and a wormhole structure arising from a nontrivial toplogy. Ref. 

[23] discusses the microstructure in conjunction with entanglement and 

the EPRER =  conjecture. 
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