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Abstract

In this paper, we show that the Lie superalgebra spo(2! + 2|n) is into the
intersection of Lie superalgebra of contact vector fields (21 + 1|n) and
the Lie superalgebra of projective vector fields pgl(2/ + 2|n). We use
mainly the embedding used by P. Mathonet and F. Radoux in

“Projectively equivariant quantizations over superspace R/ 9, Lett.

Math. Phys. 98 (2011), 311-331”. Explicitly, we use the embedding of a

Lie superalgebra constituted of matrices belonging to gl(2/ + 2|n) into

Vect(RZHI‘"). We generalize thus in superdimension 2/ +1—n, the

1/2_

matrix realization described in [7] on S We mention that the

intersection spo(2! + 2|n) = pgl(2/ + 2|n) N K(2] + 1|n) that we prove

here, in super case, has been proved on R?*2 in even case in [4].
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1. Introduction

The present paper is based on the concepts of supergeometry. It begins with a

brief introduction to the notions that we need in the all sections, i.e., superfunctions,

vector fields, differential 1-superforms, etc., on the superspace Rm‘", where m and n

are integers. We describe the supergeometry of R by its supercommutative

superalgebra of superfunctions C*=(R”").

R21+1\n

Using the standard contact structure on , where [ is also an integer, we

compute the formula of the contact vector fields on R+ This formula is a
generalization of those formulas known in classical geometry, as in [4] and in
supergeometry in low dimensions, as in [9, 11, 7]. We also compute, in the super

case, the formula of the Lagrange bracket of the superfunctions f and g.

As in [7], we consider an superskewsymmetric form @ defined on the

R2*2" and we realize thus a Lie superalgebra spo(2/ + 2|n) constituted

superspace
by the matrices A of gl(2/ + 2|n) which preserve the form «@. We use the method
used by P. Mathonet and F. Radoux in [6]. This construction allows us to embed the
Lie superalgebra spo(2/ + 2|n) < pgl(2/ + 2jn) into the Lie superalgebra

Vect(Rle‘" ) of vector fields on R+,

Thanks to the formula of contact vector fields X f obtained, for a certain

superfunction given f e C=(R2*1)

0.

1

of degree to most equal two in z, x;, y; and
variables, and to the formulas of projective vector fields of
spo(2] + 2|n) < pgl(2l + 2jn) obtained, we realize that the Lie superalgebra
spo(2/ + 2|n) is constituted by the contact projective vector fields, i.e., the Lie
superalgebra spo(2[ + 2|n) is into the intersection of the Lie superalgebra of
projective vector fields pgl(2/ + 2|n) and the Lie superalgebra of contact vector
fields K(2/ + 1n). To justify the terminology of contact projective vector fields for

the elements of spo(2/ + 2|n), we refer to [4].
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2. Superfunctions on R2*1"

We define the geometry of the superspace RZHI‘", where [ € N, ne N*, by

describing its associative supercommutative superalgebra of superfunctions on

R2*" which we denote by

and which is constituted by the elements

Fx.0)= Y fi(x)e

0<|1]gn

= fo(x)+ fi(x)8; + ... + f,,(x)B,, + f12(x)010, + ... + fi_,(x)8; 6

e TR

where |I| is the length of I, x = (x,- ),i=1,--,2l+1 is a coordinates system on

R2* and where 0 = (8;),i=1,--+, n is odd Grassmann coordinates on AR",

ie., 91-2 =0,0;0;, =-0,6,. We define the parity function ~ by setting ¥ =0 and

0=1.

3. Vector Fields on R2/*1"

A vector field on R s a superderivation of the associative

supercommutative superalgebra C (RZHI‘" ). In coordinates, it can be expressed as

20+1

n
X = leaxi DRI
i=1 =1
where X' and Y/ are the elements of Cm(RZHH"), d,. -9 and dg, S
! ax,- J aej

foralli=1,2,---,2l+1and j=1,2,.., n

It can also be expressed as
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where z; =x; for all ie{l,..,2/+1} and z; =6, (34 for all

i€ {21+2,.., 21 +1+ n}. The parity function ~ on vector field X is defined as

J,; =0 and dg, = 1.

R2(+n

The superspace of all vector fields on is a Lie superalgebra, which we shall

20+

denote by Vect( ), by defining the following Lie bracket

[x,7]= x¥ — (- )7 yx

for all vector fields X, Y.

4. Differential 1-superforms on R *1"

We define the superspace Ql(RZI“‘" ) of differential 1-superforms on R+

as a superspace which is constituted by the elements

21+1 n

o = Zlfi(xi, Gi )dxi + Zlgi(xi, Gi )dei,
1= 1=

where f; and g; are elements of C=(R?*17) and do = 0,d0" = 1 and where we
set B'= (dx', do') of QI(RZHH”) the dual basis of a basis B = (axi, aei) of

Vect(RZHI‘" ) such that

(9, dx') =87, (9,,.d0") =0 and (3g . d6;) = 3.

xj J

Remark 4.1. These elements f; and g; can also be declared at right and in this

case we must use the even sign rule known in supergeometry.

When we consider a vector field X, we can also define the evaluation of
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differential 1-superform on X, or the interior product of a differential 1-superform o

by X as follows:

a(X) = (- )X, a) and i(X)o = (X, o0).

Explicitly, if X = ZZTIM XiaZi and o = Zi:Hn 0. jdz j, we have via the sign
rule,
2l+n+1 2l+n+1 2l+n+1 ~
. ; &
<X,(x>= leazi, Z(x]dzj = leu](—l)l J(azi,de)
i=1 j=1 i, j=1
2l+n+1 - - _
= Y ()X, (1)

i=1

We can generalize the definition of differential superforms and we have also a
version of de de Rham differential which is adapted in the framework of
supergeometry. Thus it allows us to define the Lie derivative of differential
superforms. These operators have the analogue properties known in classical

geometry.

5. Standard Contact Structure on R *!/"

We consider here the standard contact structure on Rzlﬂ‘”. We can find in [10]

the notions of the contact structure on any supermanifold of dimension mjn.

R21+1\n

Definition 5.1. The standard contact structure on is defined by the

kernel of the differential 1-superforms o on R which, in the system of

Darboux coordinates (z, x;, y;, 9, ), i=1..,1and j=1, .., n itcan be written

as
1 n
o=dz+ Z (xidy; — yidx; ) + Z 0,db;. 2
i=1 i=1

This differential 1-superform o is called contact form on R2*1" and we denote by
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Tan(RZHI‘" ) the space constituted of the elements of the kernel of «.

If we denote qA =(z,q"), the generalized coordinate where
zif A=0,
xu if 1AL,

q = (3)
ya if [+1< A<

0o if 20 +1< A< 2 +n,

we can write o in the following way

o =dz+ g dg’,

0 id| 0
(W)= —id, 0] 0 |.
0 0 [id,

Remark 5.2. We denote by ®** the matrix so that (o, No*) = (5’,< ). We

have thus

0 —id| 0
WH=i 0 |0

0 0 |id,
and (O)rx )= (- 1)75 (wsr ).

Definition 5.3. We call the field of Reeb on R the vector field

Ty € Vect(Rle‘") which, in the system of Darboux coordinates, one write

TO = az.
We can show that the field of Reeb is the unique vector field on R+ o that
l(TO )(X =1 and l(TO )da =0.

Proposition 5.4. In the system of Darboux coordinates, the elements T, of

Tan(Rle‘n ) can be written as follows
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A, =0, +y0,if 1<r<li,
T, =-B,; =0, , —x,0 if [+1<r<2l, 4
D,y =0y _, —0,20, if 20+1<r<2+n
Proof. If we denote by 7, the vector field 7, = aq, - (aq,, a)d,, and since
0 = 0, we have
aT,) =(T,, o) = (aq,, o) — ((aq,, a)d,, o) = <aq,, a) —<aq,, a)=0.
We can also show that any vector field X of Tan(Rle‘" ) can be written as a linear

combination of the vector fields 7). It is useful to compute the vector fields 7,

according to the matrix @. One has, via 1,
T, =9, -9, =0, - 0q*0,.
It is sufficient to vary r in the interval [1, 2/ + n] to conclude.
The following formulas are immediate.
T,(q") =8}, T,(2)=-wyq",

[7,.T;]1= 20,9,, T,(z*)=-2z00,4". 5)

6. Contact Vector Fields on R>*!"

Definition 6.1. We call a contact vector field on Rﬂ“‘" a vector field X that

preserves the contact structure, i.e., a vector field X verifying the following condition:

[x,T]e Tan(RzHl‘") forall T e Tan(Rle‘" ).

The following proposition is known in the classical geometry [4] and in
supergeometry in small dimensions, i.e., (I|1) and (1]2) in [7, 11, 9]. We give here its
analogue in supergeometry and generalize it in dimension (m|n). It is our main first

result.
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Proposition 6.2. A vector field X on RV s called contact vector field if and
only if there exists a superfunction f such that X = X p, where X r is given by the

following formula
1 T rs
Xj=fo, -5 0" T (1)1, (6)

We denote by K(21 + 1|n), the space of the all contact vector fields on R+,

Proof. Seeing the definition of 7,, we can say that any vector field on R

2l+n

- g,;T;. The vector field X is thus called contact

can be written as X = f0_ + z

vector field if and only if
2l+n
o+ ) 8T Ty |€< T, Ty > Ve {l oo, 2 +n).
i=1
This formula can be also written as
2l+n . _ . 2l4n
. S +T )T
.+ D el Ty | ===/, o 1= )TN T, o1
i=1 i=1

— . 2l+n . 20+n
=000, + (C0T2Y giwja, - )ETLN T (g
i=1 i=1
This vector field X is in the kernel of o if and only if

2l+n

~ 0Ty -2 gy =0
i=1

for all je {l,---, 2] + n}. This equation shows that all proposed vector fields X f
are contact vector fields. On the other hand, this equation implies also that

2l+n

~ 0T (e - 22 g0 =0, Vjie{l -, 20 +n}
i=1

or, when we sum on j, we have
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2l+n 2l+n

00T (1) =2 oo’ =2 ¢:8f.
i=1 i=1
We obtain directly that
1 . .
gx = =5 ()1 0" T(f)

and this allows us to conclude.

The following proposition gives, in the super case, the formula of the Lagrange
bracket of the superfunctions f and g. It is the generalization of the formula given in
[11,7,9].

Proposition 6.3. The set K(2l+1n) is a Lie sub superalgebra of

Vect(Rle‘n ). More explicitly, if Xy and X, are the elements of K(2I +1n),

one writes

where the superfunction {f, g} is given by
U, g} = fe=f'g =5 0 O T, ()T(0) ®)

and where h'= 0 (h).

Proof. The Lie bracket [X s, X, ] of the two contact vector fields X ; and X,

is also a contact vector field. Indeed, the Lie bracket

X7 X 1= | P =5 0T 0Ty 60 = 3 (- D 0 o) |
is written as

[0 8:1- 5 (- 0 o, Ty(2)13 1= 5 (- 7 o [7, (8T, 99.]

+ % mrs(okl[Tr ()T, T, ()T ].
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The sum of the first three Lie brackets equals to
\ Al 1 3(T, f 1 fT, p
(fg=f'8)0- + 5 (= DFH DM ()1(£)3. - 5 (- D 0P L)1 ()9
1 §fk kl \ 1 fN'f,+)7§ rs ,
—5(—1) o™ fT; (') +§(—1) 0" eT (f)T

and the fourth Lie bracket equals to
| — -~
7 GV o (T (T ()T = DR T ()T, (1))
1 ~ Ty~
—5 IR et (o (1.

Since the Lie bracket of two contact vector fields is also a contact vector field and

since X {f, e} is written, via the formula (6), by

(A, 899 -5 O DT T (1, gh,

then we can see that the sum of the coefficients of d, gives the formula of Lagrange

bracket. One has thus

{ﬂg}=ﬁ¥fg—FDﬁ}%dWNﬁﬂ@)

Via the Lagrange formula (7), the Lie bracket of contact vector fields, which defines
a Lie superalgebra structure on (2! + 1|n), induces a Lie superalgebra structure on

R2l+l‘n )

the superspace C™( by the bilinear law given by (8).

The following remark is very important:

Remark 6.4. The Lagrange bracket of superfunctions f and g of degree to most

equal two is always a superfunction of degree to most equal two.

This remark allows us to define the Lie superalgebra constituted by the contact

vector fields X ; which the associated superfunctions f are of degrees to most equal

two in z, x;, y; and ©; variables. We denote this Lie superalgebra temporarily by

g c K@ +1n).
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7. Matrix Realization of spo(2/ + 2|n)

In this section, we embed a Lie sub-superalgebra spo(2/ + 2|n) of gl(2 + 2|n)

in the Lie superalgebra Vect(RZHI‘" ). We use the method used in [6] and we show

that the Lie superalgebra obtained is exactly isomorphic to g.

J 0
We consider a matrix G defined by G = such that J =
0 id,,
0 —id) 1y
. We define on RZ*2" the following superskewsymmetric form
idpyy 0

® associated to the matrix G as
o: R¥HA g2+ SR (U, V) - VIGU, )

where A’ is the usual transpose of the matrix A.

Definition 7.1. We define a Lie superalgebra spo(2/ + 2|n) constituted by the

matrices A of gl(2/ + 2|n) which preserve the form @, i.e., such that

(AU, V) + (- DAV (U, AV) =0, VU,V e R¥*", (10)
Our second main result is the following:

Theorem 7.2. The Lie superalegbra spo(2l + 2|n) is the space of the matrices

A Ay

A= that the blocks A, Ay, A3 and A, satisfy the following
A Ay

conditions

(1) AlJ +JA =0, ie., A € sp(2 +2),
() A} + Ay =0, ie., Ay € o(n),

(3) Ay = —A}J.
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Proof. We consider the following matrices

A A
A= € gl(2l + 2|n); where A € gl(2] +2), Ay € R5;,,, A3 €
A, A
U; Vi
R21%2 A, € R™. For all vector fields U = ,V = of R we
Us Va

compute the matrices A of gl(2/ + 2|n) which satisfy (10). First, we can see that the

first term @(AU, V) of (10) equals to
VIJAU,| + Vi AU + VI JAU 5 + V3 AU,
and the second term (— I)Aﬁ o(U, AV) equals to
VIA{JU, + VAL IU, - V] AlU, + V3 ALU .
It is also easy to see that the formula (10) equals to
VI JA U, +Vy AU, + V] JA U, + VAU, + VAL TU,
+VIALIU, = Vi AU, + VAALU, =0, VU, V e RP* (11)
In particular, if U, = 0, V, = 0, then the equation (11) equals to
VI (JA + A{J)U, =0, ie., JA + AlJ = 0.
This last condition means that the blocks A; are symplectic matrices.
If we set Uy = 0 and V| = 0, then the equation (11) becomes
Vi (AL + AU, =0, ie., Aj + Ay = 0.
This condition means that the block A, is an orthogonal matrix.
Finally, if U5 = 0 and V; =0, then the equation (11) equals to

Vi (Ay + AST)U, =0 ie., Ay + ASJ =0.
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In the following, we describe a basis of spo(2/ + 2|n) If we denote by a; ; the

number a € R situated on the ith line and on the jth column, we can see that this

basis is constituted by the following three types of matrices:

The first type of matrices of the basis of spo(2/ + 2|n). is associated to the

symplectic algebra sp(2/ + 2) and is given by following family of matrices:

0 1ia4149)
0 0
1, 0 0
/ 1].(l+1+1)
0 0
0 0 0
0 —Lig14),041+4) 0
0
7 g 0 0 0 On.n
(12)
0 0] 0
0 1(!+1+?)A_1
Lo o o | tERIS!
0
0 0 0

The second type of matrices is given by the following family of matrices:

0 ‘ L.+

if [+1<i<20+42, 1<j<n

—Li@ir244).i-41)) ‘ 0

13)

0 ‘ L 21245))

and

if 1<i<i+1, 1<j<n.

Liatt245), (14 140) ‘ 0

And the third type is associated to the orthogonal algebra o(n) and is given by:
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Li@tt2+i).(21+2+5)

—L(ar21)).@+2+4)

0 (14)
Our third main result is given by the following theorem:

Theorem 7.3. The Lie superalgebra g made in evidence at the end of the

Section 6 and whose superfunctions f are degrees to most equal two is isomorphic to

the Lie superalgebra spo(2l + 2|n).

Proof. Because of Id ¢ spo(2l+2n), we can define the injective
homomorphism

1: spo(2l + 2n) — pgl(2l + 2Jn) : A > [A]. (15)

Now, the Lie superalgebra pgl(2! + 2|n) can be embedded into the Lie superalgebra

R21+l\n

of vector fields on thanks to the projective embedding defined in [6] in the

following way:

0 & 2+1+n 2+1+n A(47)
_ iy, _ _nili+ilpi iy .
N Zvat, Z( 1) Bit/d,
v B i=1 ij=1
2l+1+n -
SR EVENPY ML
+ 'Zl( 1)7€t tat,, (16)
1, J=

where ve RZIH‘”, Ee (Rzlﬂ‘" )*,Be gl(2/ +1jn) and the coordinates o I

121 corresponds, respectively, Xp, -+, X7, 2o Y1s -+ Vps Ops o1 0,

Composing 1 with the projective embedding, we can embed spo(2] + 2|n) into

Vect(RZHI‘" ). If we compute this embedding on the generators of spo(2/ + 2|n)

written above, we obtain via (6), the contact projective vector fields X , for a certain

given fe C °<’(}RZHI‘" ). In the following, we study explicitly the three types of
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matrices described above. For the first matrix of (12), i.e., when i, je [l, 1], we

obtain the following contact projective vector fields.

(HIfi=j=1, wehave
xiaxi + yiayi + eiaei + ZZaZ, i.e., ZXZ

2)If i =1 and j # 1, then we have

xj_l(xiaxi + yiayi + ZaZ + eiaei )+ Zayj—l’ i.e., 2Xxj—lZ'
(3)If i #1 and j =1, then we obtain
—axi_l + yi_laz, i.e., 2Xyi—1'
@Ifi#1 and j #1, then
YirtOy; | = Xjo10x_ys e 2X gy

For the second matrix of (12), we obtain the following contact projective vector

fields

(HIfi=j=1, onehas
Z(Zaz +Xl'axl, + yiayl, + ejael ), i.e., XZZ‘
2)If i = j and j # 1, we have

—yi_laxi_l , 1L.E., ijz_l .

(3)Ifi# j and i =1, one has

yj_l(xiaxi + yiayi + ZaZ + Gjaej )_ Za i.e., 2ij—1Z'

xj—l’
@A) Ifi#jand i #1, onehas

~(jo19xy +yic19y, ) Bes 2X

For the third matrix of (12), we obtain the following contact projective vector fields
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(HIf i = j =1, weobtain
-d,, ie., —X.
(2)If i = j and j #1, we have

—)Ci_la i.e., -X 2 .

Yi-1’ Xi_1
B)Ifi=# j and i =1, we write
—(a 1 + .Xj_laz ), i.e., —ZXX

vj jr

@ Ifi=#j and i # 1, then we have

—(.Xj_la Yicl + Xl'_layj_l ), 1.€., _2Xxj—1xi—l .

Now, we study explicitly any matrix of (13), i.e., when [ +1<i<2/+2 and
1 < j < n. For the first matrix of (13), we obtain the following contact projective

vector fields
() If i =1+ 2, then we have

Gjaz +89j, ie., 2X9j

(2) and if i # [ + 2, we obtain

Gja Yiei—2 + xi_l_289j , L.e., 2Xxi—l—29j .

For the second matrix of (13), we have the following contact projective vector fields
(1) If i =1, one has
—0;(x;0, +y0, +20, + Gjaej )— zaej, ie., —ZXZej
(2) and if i # 1, then we obtain
ejaxi_l - y,-_laej, ie., _2X>’i—19j‘

Finally, for the matrix (14), i.e., when 2/ +2 <i, j <2l 4+ 2+ n, we obtain the
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contact projective vector field

ei_lae‘i_l - ej_lael,_l, 1< J, 1€, 2X9i_19j_1.

The Lie superalgebra g is isomorphic to spo(2/ + 2|n) thanks to the identification of

the generators of these two Lie superalgebras.

Remark 7.4. The Lie superalgebra spo(2/ + 2|n) is into the intersection of the
Lie superalgebra of contact vector fields (2! +1|n) and the Lie superalgebra of

projective vector fields pgl(2/ + 2|n). Thus, as in [4], the elements X roof

spo(2] + 2|n) are called contact projective vector fields.
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