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Abstract

Let A be a bounded region in 4D, and let dA be its surface boundary
which we assume to be absorbing. Enclose A and its boundary with a
4-parallelotope all of whose faces are possibly square, and let the sides be
given by x = a;, aj41 for i =1, y = aj, aj4q for i = 3; z = q;, aj41 for
i =5 m=aj,a;;1 for i =7. Let & be the step length in the random
walk, and assume that the intervals [a;, a;,1] for i =1, 3, 5, 7 can be

subdivided into the set of points

xp, = a1 +8ky, xp =ag, 0 < ky <y,
Yky = a3 + Oky, Yng = A4, 0 < ky < ng,

2z, = a5 + Ok3, 2p, = ag, 0 < kg < ng,
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mp, = ag + 5k4, mp, = asg, 0< k4 <nyg.

We say (xp,, Yky» 2hky» Mk, ) is an interior point of A, if it does not lie

on 0A. If one of the neighboring points lies on dA or is exterior to A,

we call it a boundary point. The points in the 4-parallelotope that are
neither interior nor boundary points shall not be considered. In this

paper, working primarily in 4D, we study the following problems:

(a) What is the probability that a particle starting at some point in the
region reaches a certain point on the boundary and is absorbed before it

reaches and is absorbed by the remaining portion of the boundary?

(b) What is the probability that a particle starting at some point in the
region reaches a fixed interior point before it is absorbed by the

boundary?

(c) What is the mean or expected time it takes for a particle starting at

some point in the interior until it is absorbed at the boundary?

1. Introduction

Remark 1.1. Although we speak of the mean or expected time in the
third random walk problem of the abstract, this problem is actually time-
independent since the possible times until absorption for each interior

point are averaged out, so the time-dependence is not explicit.

In this paper, we assume the steps taken by the particle are
uncorrelated, meaning that each step taken is completely independent of
the previous steps taken, as such the motion is Brownian. Furthermore,
we do not concern ourselves with the number of steps required for the
particle to reach the fixed boundary or interior point, that is, the

investigation of the problems will take place independent of time.
Notation 1.2. In this paper we will use the following:

(a) p; for the probability a particle located at the point (x, y, z, m) is

moving in the negative direction of the x-axis.

(b) q; for the probability a particle located at the point (x, y, z, m) is

moving in the positive direction of the x-axis.
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(c) py for the probability a particle located at the point (x, y, z, m) is

moving in the negative direction of the y-axis.

(d) g9 for the probability a particle located at the point (x, y, z, m) is

moving in the positive direction of the y-axis.

(e) ps for the probability a particle located at the point (x, y, z, m) is

moving in the negative direction of the z-axis.

(f) g5 for the probability a particle located at the point (x, y, z, m) is

moving in the positive direction of the z-axis.

(g) py for the probability a particle located at the point (x, v, z, m) is

moving in the negative direction of the m-axis.

(h) g4 for the probability a particle located at the point (x, y, z, m) is

moving in the positive direction of the m-axis.
Observe that in 4D the conditional probability of moving in any of the

axial directions is % Now we introduce the following:

p;i(x, y, 2, m) = %[ai(x, v, z, m) + b;(x, y, 2, m)3], for i =1, 2, 3, 4, (1.1)

q;(x, y,z, m) = %[ai(x, v, z, m) = b;(x, y, z, m)3], for i =1, 2, 3, 4. (1.2)

In the above a; and b; are certain smooth functions depending on the
position of the particle and choosen such that 0 < Z?:l (p; +q;) < 1.
Notice that 24 (p; +q;) = 124 a;. It follows that if 124 a; <1

=1 WP T i) = L i 4 izt S

then there is a nonzero probability

1-

-

4
1
(pi +¢;) =1 _Zzai
=1

that the particle rest at each step in 4D, that is, takes a step of zero
length.

1=1
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This paper is organized as follows. In Section 2, we obtain a
generalization of Laplace’s equation in 4D. In Chapter II of [1], we
obtained an inhomogeneous form of Laplace’s equation in 3D. The main
result in Section 3, is a position-dependent partial differential equation,
that can be tied to an inhomogeneous form of Laplace’s equation in 4D.
This inhomogeneous form of Laplace’s equation in 4D can be viewed as
natural extension of the result obtained in Chapter II [1]. As a corollary,
the adjoint of the position-dependent partial differential equation is
obtained. The main result in Section 4, is a position-dependent partial
differential equation, which under certain conditions reduces to a four-
dimensional generalization of Theorem II.5.1 [1] which arises from a

position-independent analogue of the third random walk problem.
2. Result for the First Random Walk Problem

2.1. The difference equation

Recall that the first random walk problem asks for the probability
that the particle starting at the interior point of A reaches the fixed

boundary point (x,1, Y2, Zw3s Mws) before it reaches any other
boundary point. Let v(x, y, z, m) be the probability that the particle
starts at the interior point (x, y, z, m) and reaches the boundary point
(1> Yw2s Zw3> Mypa ), then we see the difference equation model for this

problem is given by

v(x, y, z,m) =[1- ) (p; +q;)(x, y, 2, m)

M-

=1
+pv(x + 8, y, z, m) + quu(x — 3, ¥, z, m)
+pou(x, y + 8, 2, m) + qau(x, y — 8, z, m)
+psu(x, ¥, z+ 8, m) + qgu(x, y, z — 8, m)

+pgv(x, y, 2, m + 8) + qqu(x, y, 2, m = J). 2.1
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2.2. Taylor expansions in the right hand-side of (2.1)

Expanding the terms v(x + 9§, y, 2, m), v(x, y £ 38, z, m), v(x, vy, z £ §,

m), v(x, y, z, m = §) using Taylor’s formula gives

v(x £8, y, 2z, m) = v(x, y, 2z, m) £ dv,(x, y, 2, m)

+ % 820, (%, ¥, 2, m) + O(8%), (2.2)
v(x, y£39, z, m) = v(x, y, 2, m) £ dv,(x, y, 2, m)

+ % 82vyy(x, y, 2z, m) + O(8%), (2.3)
v(x, y, z£ 8, m) = v(x, y, z, m) £ dv,(x, y, z, m)

+ % 8%v,.(x, v, 2z, m) + O(8%), (2.4
v(x, y, 2, m £ 8) = v(x, v, 2z, m) £ dv,,(x, y, z, m)

+ % 820, m (x, ¥, 2, m) + O(8%). (2.5)

2.3. A useful lemma

Lemma 2.1. We have the following
4 1 4
@ Y. (pi+q;)= Zzi=1ai’
1 .
®) p; —q; = Zbia’ fori=1,2, 3,4,

(©) p; +q; =%ai, fori=1,2, 3, 4.

Proof. It follows directly from Equations (1.1) and (1.2).
2.4. The main theorem
Now our main result for the first random walk problem is as follows:

Theorem 2.2. With the jump probabilities given as in (1.1) and (1.2),



6 CLEMENT BOATENG AMPADU
the limiting partial differential equation arising from (2.1) is given by
0 = ay(x, y, 2, muy, + aslx, v, 2, m)vyy
+as(x, y, 2, mu,, + ay(x, ¥, 2, My,
+2b (x, y, 2, moy + 2by(x, y, 2, m)v,
+2b3(x, ¥, 2z, mv, + 2by(x, y, 2, mv,,
and the boundary condition is given by v(x, y,z, m) =0, (x,y, z, m)

€A, (v, y zm)# (& 5 2 m) [[ olx yzmdQ=1

Proof. Substituting (2.2)-(2.5) into (2.1) and simplifying gives

0 = (p1 — q1)8v, + (Pg — q2)0vy + (p3 = q3)dv, + (pg — q4)0Vy,

1 1
+ 5 (o1 + @) + 5 (py +02)8%,,

1 1
+5 (g +a 8%, + 5 (1 + )82V

4
+ [Z(pi +q; )]O(?S3 ). (2.6)
i1

Now using Lemma 2.1 in (2.6) and simplifying gives

1 9 1 2 1 9 1 2
0 = 2 by80; + 0870y + 753870, + L by87vyy

1 2 1 2 1 2 2
+§a15 Uy +§a28 Uyy +§a35 Uy +§a48 Umm

4
+ [%Za;i]()(a3 ). 2.7

Now dividing by 82 in (2.7) and letting 6 — 0 gives

1 1 1 1
0 Zzblvx +Zb2Uy +Zb3l}z +Zb4l}m
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1 1 1 1
+ g Wl + g %2V + g %8z + g YVmm- (2.8)

So the desired result is obtained by multiplying (2.8) by 8. For the
boundary condition, since v(x, y, z, m) is the probability that a particle
starts at the interior point (x, y, z, m) and reaches some fixed boundary
point, if (x, y, z, m) is a boundary point and is taken to be the fixed
boundary point in question, then v(x, y, z, m) = 1, since the particle is
already there to begin with, however, if (x, y, z, m) is a boundary point
different from the fixed boundary point, then v(x, y, z, m) = 0, since the

boundary is absorbing, and thus the particle cannot reach the fixed

boundary point from there. Moreover, if we assume that the area @ is
defined on the boundary of the bounded region A, and that as & — 0, the
fixed boundary point tends to (X, 7, 2, m) on the boundary of the
bounded region A, then it follows that

A

v(x, y, 2z, m) =0, (x, y, 2, m) € 0A, (x, y, z, m) # (&, 3, 2, m)

and since v(x, y, z, m,) is a probability density, then normalizing implies

IIaAv(x, y, 2, m,)d@ = 1.

Remark 2.3. If in Theorem 2.2, we put
aj(x, y,z,m)=1fori=1,2,38, 4
and
bj(x, y,z,m)=0fori=1,2, 3,4,

then we obtain Laplace’s equation in 4D. In particular, under this
condition, we obtain the limiting partial differential equation arising from
the 4-dimensional extension of the first random problem considered in
Chapter II [1].
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3. Result for the Second Random Walk Problem

3.1. The difference equation

Recall the second random walk problem asks for the probability that
a particle starting at an interior point (x, y, z, m) in the region A
reaches a fixed interior point (&;, &y, My, Ng) (say) before it reaches a

boundary point and is absorbed. The region A is subdivided as in the
first problem, and interior and boundary points are defined as before with
step length equal to 9. Since the problem is time independent, and the

particle does not stop its motion once it reaches (&;, &9, My, Mg ) for the

first time, it is possible for the particle to pass through the point
(&, &2, Ny, Mo ) more than once before it reaches and is absorbed at the

boundary. Consequently, if the particle begins its motion at (&;, &g, 1y,
Mo ) it has unit probability of reaching (&;, &9, M, Ng) since it is already

there to begin with. However, it can also move to one of its four

neighboring points, and reach (§;, &5, Ny, Ng) from there if the neighbor

is not a boundary point. Therefore, if we introduce a function

w(x, y, z, m) that characterizes the prospects of a particle reaching (&;,
€9, N1, Ng) from the starting point (x, y, z, m), we cannot consider
w(x, v, z, m) to be a probability distribution since it may assume values
exceeding unity. Let w(x, y, z, m) be the expectation of reaching
(&, &2, M, Mo ) from (x, y, z, m) before it is absorbed at the boundary. If
(x, 5, 2, m) # (§;, €9, M1, N2 ), then w(x, y, z, m) satisfies the following:

4

w(x, y, 2, m) = [1 - Z(pi +q; )] w(x, y, z, m)
=1
+pw(x + 98, y, z, m)+ quw(x — 8, v, z, m)

+pow(x, y + 9, z, m) + qow(x, y — 3, z, m)

+pw(x, y, 2+ 8, m) + qaw(x, y, z -3, m)
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+pqw(x, y, 2, m + 8) + quuw(x, y, 2, m = 3).  (3.1)

If (x,y 2 m)=(&, &, M, N2), then w(x, y, z, m) satisfies the

following:

4
w(x, y, z,m) =1+ [1 - (pi + Qi)] w(x, y, z, m)
=1

i
+pw(x + 98, y, z, m)+ quw(x — 8, y, z, m)
+powl(x, y + 8, z, m) + qow(x, y — 8, z, m)
+psw(x, y, z+ 8, m) + qsw(x, y, z -8, m)
+paw(x, v, z, m + 8) + quw(x, v, 2z, m —=8).  (3.2)
3.2. Some Taylor expansions

Expanding the terms p;(x + 8, v, 2, m), q;(x = 8, ¥, 2, m), po(x, y +
65 Z, m)’ q2(x9 y - 85 2, m); p3(x’ y; z+ 53 m)) q3(x’ y; Z - 53 m); p4(x’y’

z, m+38), q4(x, y, z, m — 3) using Taylor’s formula gives
pl(‘x + 8’ Y, %, m) = pl(‘x’ Y, 2, m)+ a(pl)x(x’ Y, 2, m)
18200 (%, y, 2, m)+ O(8%) (3.3)
2 l XX b y7 b b .
q1(x =38, y, 2, m) = q1(x, y, 2, m) = 8(q1),. (%, y, 2, m)
+ 182(q) (v, 2, m) + O(8°) (3.4)
2 QI xx ) y’ ) ) .

p2(x, y+38, 2, m) = pa(x, y, 2z, m)+ 8(pg), (x, y, 2, m)

+28%(pa),, (v, 3, 2, M)+ O@),  (35)

az(x, y =8, 2, m) = qa(x, y, 2, m) - 8(qz), (x, ¥, 2, m)

+58%(a), (v 3, 2, M)+ OG),  (3.6)
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p3lx, y, 2+ 8, m) = p3(x, y, 2, m) + 3(p3), (x, y, 2, m)
+58%(py) . (5, 3, 2 m) + O(3),
qs3(x, y, 2 =8, m) = g3(x, y, 2, m) - 8(q3), (x, y, 2, m)
+58%(a3).. (v, 3, 2, m) + O(8%),
Pa(x, 3, 2, m +3) = py(x, y, 2, m) + 3(py),, (x, ¥, 2, m)
+ 58P (¥, 3, 2, m) + O(8%),

q4(x, y, 2, m = 8) = qu(x, y, 2, m) - 8(qy),,(x, y, 2, m)

1
+ 5 8%(q4) i (. 3, 2, m) + O(8%).

3.7

(3.8)

3.9

(3.10)

On the other hand expanding the terms w(x =39, y, z, m), w(x, y £ 39,

z,m), w(x, y, z+t 3, m), w(x, y, z, m +8) using Taylor’s formula gives

w(x £38, y, 2, m) = w(x, y, z, m) £ dwy(x, y, z, m)

+ % 82wxx(x, y, 2z, m)+ 0(83 ),

wlx, y 8, z, m) = wlx, y, z, m) £ dwy(x, y, z, m)
1

tg 62wyy(x, y, z, m) + O(8%),

wx, y, 228, m) =wlx, y, z, m) £ dw,(x, y, 2z, m)

+ % SZwZZ(x, y, 2, m)+ 0(83 ),

w(x, y, z, m*8) =w(x, y, z, m) £ dwy,(x, y, 2, m)

+é§2wmm(x, Y, 2, m) + 0(83 ).

(3.11)

(3.12)

(3.13)

(3.14)



RANDOM WALK PROBLEMS WITH POSITION DEPENDENT ... 11
From Lemma 2.1(b) and Lemma 2.1(c), define (p; + q;)(x, ¥, 2, m) = i

a;(x, y, z, m) and (p; —q;)(x, y, 2, m) = %Sbi(x, ¥, 2, m), then we have

the following for each partial derivative in J = {x, xx, y, yy, 2, 22,

m, mm} andeach i =1, 2, 3, 4

1

(pl + qL)JEJ(x’ Ys 2, m) = Z(al)JEJ(x’ Y, 2, m)’ (315)
1

(pl _qi)jEJ(x’ y, 2, m) = Za(bl)]EJ(x’ y> Z, m) (316)

Finally observe we have the following:

(qw),, = (@), w +2(a1), Wy + Gy, (3.17)
(azw)yy = (az)yyw + 2(a2)ywx + Aoy, (3.18)
(agw),, = (ag),,w + 2ag),w, + asw,,, (3.19)
(@qw),,, = (@g), W + 2(ay),, Wy + Qg (3.20)
2(yw), = 2(b),w + 2bjw,, (3.21)
2(b2w)y = 2(b2)yw + 2bgw,, (3.22)
2(bgw), = 2(bg),w + 2bgw,, (3.23)
2(byw),, = 2(by),,w + 2byw,,. (3.24)

3.3. The main theorem

Now our main result for the second random walk problem is as

follows:

Theorem 3.1. With jump probabilities defined as in (1.1) and (1.2),
the limiting partial differential equation arising from (3.1) and (3.2) are

as follows:

(a) If (x’ Y, 2, m) * (&1’ &2’ 111, 112), then
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(@), + (agw),, + (agw),, +(asw),,,
+2[(yw), + (baw),, + (b3w), + (bgw),, ]

= 0.
b) If (x, y, 2, m) = (&1, &2, My, M2), then
(@), + (agw),, + (agw),, +(asw),,,
+2[(yw), + (bow),, + (b3w), + (bgw),, ]
= -8.

Remark 3.2. Due to the fact that the algebra involved in the final
result of the above theorem is very lengthy, we only sketch the proof

below:

Proof. Case I. If (x,y,z m)# (&, &, Ny, N2), then do the

following:

(a) Substitute (3.3)-(3.14) into (3.1) and simplify the result to get an
expression similar to (2.6). We omit the terms involving “O” from the
simplified expression since they automatically vanish in the continuum
limit.

(b) In the simplified expression obtained from (a) substitute (3.15)-

(3.16), this will result in an expression similar to (2.7).

(c) Divide the expression in step (b) by 82, and let 8 > 0 in the

result gives an expression similar to (2.8).
(d) Multiply the expression obtained in step (c) by 8.

After the multiplication in step (d) above, we obtain the following

expression:

0 = 2bjw, + A Wy, + 2(b; )xw + 2(aq )xwx +(q )xxw

+2bow , + agwy, + 2(b2)yw + 2(a2)ywy + (ag)yyw
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+2bgw, + agw,, + 2(bs),w + 2(asg ),w, + (ag )Zzw
+2b410,, + Ayl + 2Dy ), w0 + 2(ay),, Wy, + (ay),,,,w. (3.25)

Now using (3.17)-(3.24) in (3.25) gives part (a) of the Theorem.

Case IL. If (x, y, z, m) = (§;, &9, M1, Ma), then do the following:

(a) Substitute (3.3)-(3.14) into (3.2) and simplify the result to get an
expression similar to (2.6). We omit the terms involving “O” from the
simplified expression since they automatically vanish in the continuum

limit.
(b) In the simplified expression obtained from (a) substitute (3.15)-

(3.16), this will result in an expression similar to (2.7).

(c) Divide the expression in step (b) by 82, and let 8 > 0 in the

result gives an expression similar to (2.8).
(d) Multiply the expression obtained in step (c) by 8.

After the multiplication in step (d) above, we obtain the following

expression:

0 = 8+ 2bjw, + aywy, + 2(by), w + 2(a)), w, + (a1),,,w
+2bowy + agwyy + 2(bz) w + 2(ag) wy + (az),,w
+2bgw, + agw,, + 2(bg),w + 2(ag),w, + (ag),,w
20410, + Ayl + 2Dy ), w0 + 2(ay),, Wy, + (ay),,,,w. (3.26)

Now using (3.17)-(3.24) in (3.26) gives part (b) of the Theorem, and the
proof is completed. ,
3.4. A corollary

By Remark II1.2.7 [1], the following is immediate:

Corollary 3.3. The adjoint of the partial differential equations in

Theorem 3.1 are as follows:
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@ If (x, y, 2, m) = (&1, &2, My, N2), then
(ayt0)y, + (agto) , + (agw),, + (@4w),,p,
=2[Ow), + (baw),, + (bw), + (bgw),, ]
= 0.
(b) If (x, y, 2, m) = (&, &2, Ny, M), then
(ayt0), + (agto) ,, + (agw),, + (@4w),p,
=2[Ow), + (baw),, + (bw), + (bgw),, ]
= -8.

Remark 3.4. The above Corollary implies that if K(x, y, z, m; &;,
€9, M1, Mo) 1s the Green’s function associated with the second random

walk problem, then by definition it satisfies

=8(x — £1)8(y — £2)3(z — m1)3(m —n3)

= (@ K),, +(agK),, + (a3K),, +(a4K),,,
A0 K), + (1K), + (03K), + (b4K),, |.

3.5. A discussion

One consequence of the second random walk problem is that if the
particle starts its motion at an interior point which is not the one we fix,
then taking a;(x, y, 2, m) =1 for i =1, 2, 3, 4 and b;(x, y, 2z, m) = 0 for

i =12 3,4 in Theorem 3.1, implies we can write w,, +w,, +w,, +

¥y
Wym = O(3) provided that § — 0.

Another consequence of the second random walk problem is that if
the particle starts its motion at the fixed interior point, then taking
aj(x, y,z,m)=1 for i =1, 2, 8,4 and b;(x, y,z, m) =0 for i =1, 2, 3,

4 in Theorem 3.1, implies we can write Wy + Wy, + W, + Wy

= - 8/8% + O(5) provided that O(1) = 0.
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Both consequences above, imply that if the jump probabilities are

position independent, then for small §, the second random walk problem

leads to an inhomogeneous form of Laplace’s equation in 4D that can be
viewed as natural extension of the result obtained in Chapter II [1].

Moreover, as & — 0, w(x, y, z, m) will satisfy typical Laplace equation in

4D, provided that the particle starts its motion at an interior point which
is not the one we fix, and blows up if the particle starts its motion at the

fixed interior point.

4. A Relationship between the First and
Second Random Walk Problems

4.1. A useful lemma

Lemma 4.1. Let L be the differential operator acting on v in the first

random walk problem, and let L be the differential operator acting on K

in Remark 3.4. Define these operators as
Llv] = ay(x, 3, 2, mvg, + aglx, y, 2, my, + ag(x, y, 2, m,,
+ay(x, ¥, 2, My, + 2bi(x, ¥, 2, mv, + 2by(x, y, 2, m)vy
+2b3(x, y, 2z, mv, + 2by(x, y, 2, mv,,
and
L'[K] = (@ K),, +(agK),, +(a3K)_, +(a4K),,,
@b K), - @h,K), - (2;K), - (264K),,.
Then
vL'[K] - KL[v] = [v(a; K),, - a;Kv, — 2b1Kv],
+[v(a2K)y - agKv, - 2b2Kv]y
+v(agK), — agKv, — 2b3Kv],

+v(ayK),, — ayKv,, - 2b,Kv],,.
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Proof. First observe we have the following

vL'[K] - KL[v] = v K),, + v(azK)yy +v(agK),, +v(a4K),,,
-2v(pK), - 2v(b2K)y - 20(bsK), - 20(b4K),,
—a1Kvy, — agKv,, — agKv,, — ayKop,,
—2b1Kvy, — 2b9Kv,, — 2b3Kv, — 2b,Kvy,. 4.1)

Now observe that we have the following:

[v(,K), — a;Kv, —2b;Kv],

=v(ay),, K + 2v(ay), K, +va; K, —a;Kv,,

—9(b,), Kv - 2b, K 0 — 2, Kv,., (4.2)
v K),, =v(a),, K +2v(a), K, +vaK,,, (4.3)
U(blK)x = Uble + U(bl)xK (44)

Now using (4.3) and (4.4) in (4.2), we deduce the following:

[v(;K), — a1 Kv, - 2b;Kv],
= v( K),, — 2001 K), — kajv,, + 26, Kv,. (4.5)

Now observe that we have the following:

[v(azK)y - agKv, - 2b2Kv]y

= v(ag)ny + 2v(a2)yKy +vagK ,, — agKv,,

~2(by), Kv — 2b,K v - 2b5Kv,, (4.6)
v(azK)yy = v(az)ny + 2v(a2)yKy +vagK 4.7
U(bgK)y = szKy + U(bg)yK. (48)

Now using (4.7) and (4.8) in (4.6), we deduce the following:
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[v(azK)y - agKv, - 2b2Kv]y
= v(agK),, - 20(b2K), — kagu,, + 2byKv,.
Now observe that we have the following:
[v(a3K)Z - agKv, - 2b3Kv],
= v(ag),, K + 2v(as), K, +vasK,, — asKv,,
—2(b3), Kv - 2b3K ,v — 2b3Kv,,
v(asK),, =vl(as),, K + 2v(as), K, +vasK,,,

U(b3K)Z = Ub3KZ + U(b3)zK.

Now using (4.11) and (4.12) in (4.10), we deduce the following:

[v(a3K), — agKv, — 2b3Kv],
= v(agK),, — 20(b3K), — kagv,, + 2b3Kv,.

Finally we have

[v(ayK),, - ayKv,, — 2b4Kv],,

= v(ay),,, K + 2v(ay),, K, +vasK,, —asKoy,
-2(by),, Kv — 2b,K,,v — 2b4Kv,,,
v(ayK),,,, =vlay),, K +2v(ay), Ky +vasK,,,,
v(byK),, = vbyK,, +v(by),, K.

Now using (4.15) and (4.16) in (4.14), we deduce the following:

[v(ayK),, — ayKv,, —2byKv], = v(ayK),  —200b,4K),

—ka Uy, + 204 Koy, .

17

4.9

(4.10)
(4.11)

(4.12)

(4.13)

(4.14)
(4.15)

(4.16)

(4.17)

Thus the lemma follows by using (4.5), (4.9), (4.13), and (4.17) in (4.1).
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4.2, The main theorem
The relationship between the first and second random walk problems

is given by the following:
Theorem 4.2. Suppose that the generalized rectangle [0, 1]x [0, 1] x

[0, 1]x [0, 1] contains the point (&;, &3, N1, Nag) with

v(0, y, z, m) = v(x, 0, z, m) = v(x, y, 0, m) = v(x, y, z, 0) = 0,
v, y, 2z, m) =v(x, 1, z, m) = v(x, y, 1, m) = v(x, y, 2, 1) =1,
K(0, y, 2, m; &, &, g, g) = K(x, 0, 2, m; &, &z, M1, M2)
= K(x, , 0, m; &, &, M1, n2) = K(x, y, 2, 0; &, &, My, m2) = 0,
K@, y, 2, m; &, &, My, n2) = K(x, 1, 2, m; &, &g, My, M2)
= K(x, v, 1, m; &, &, M1, n2) = K(x, y, 2, 15 &1, &2, 1y, M) = 0.

Under this condition, the first and second random walk problems are

related by
U(E;l’ E;Za N1 TIZ) = 0.

Proof. We first integrate the expression in the conclusion of Lemma
4.1 over [0, 1]x [0, 1]x [0, 1]x [0, 1]. Starting with the right hand-side of

the expression in the conclusion of Lemma 4.1, we notice the following:

lelplel

_[ J J I [v(yK), — a1 Kv, — 2b) Kv], dxdydzdm
oJoJdoJdo
l1elpl 1

= Jo Io Jo [v(a1K), — a1 Kv, — 2biKvlydydzdm

= J; I()l J; [(1K), Iy dydzdm

= 0,
where the first equality follows from the Fundamental Theorem of
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Calculus, the second equality follows from the assumption that v(0, y,
z,m)=0,v(l, y, 2, m) =1, K(0, y, 2, m; &, &g, My, Mg) = K(1, 3, 2, m; &,
€9, M1, N2 ) = 0, and the third equality follows by noting that a; K is now

a function of y, z, m thus (1K), = 0. Now we also have the following:

leplpelel
-[O IO Io .[0 [U(azK)y - aszy - 2b2KU]y dxdydzdm

1plel
= JO J.() JO [U(GQK)y - a2Kvy — 2b2Kv]](-) dxdzdm

- I : I :I:[(azK)y It dxdzdm

= 0.

Since the integrand is continuous, the first equality is an application of
Fubini’s Theorem, and for this, see Ref. [13] contained in [1] and the
Fundamental Theorem of Calculus, the second equality follows from the
assumption that v(x, 0, z, m) = 0, v(x, 1, 2, m) =1, K(x, 0, z, m; &, &,
N, M2) = K(x, 1, z, m; &, &, Ny, Ng) = 0, and the third equality follows

by noting that apK is now a function of x,z, m thus (a2K), = 0.

Similarly, we deduce that

lelelpl
J I I J [v(agK), — agKv, — 2b3Kv], dxdydzdm = 0,
0J0J0J0

Tplelpl
I I I I [v(ayK),, — ayKv,, —2b4Kv],, dxdydzdm = 0.
0J0J0J0

At this point it is clear that when we integrate the right hand side of the

expression in Lemma 4.1 over [0, 1]x][0, 1]x[0, 1]x [0, 1], we get zero,

thus it remains to show that

letelel
Jo Io Io Jo (vL'[K] - KL[v])dxdydzdm = -v(E;, &, M1, M2)
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and the theorem follows. Now observe we have the following:

~oters &oom ) =[] [ s -0)

x 8(y — &2)8(z — My )8(m — Mg )dxdydzdm

LT Jhorm- kablsavazin

Note that the bottom equality in the above expression is a direct
consequence of Lemma 4.1, Theorem 2.2, and Remark 3.4, and since

v(x, ¥, z, m) is a probability density function, which is continuous on
[0, 1]x [0, 1]x [0, 1]x [0, 1] containing the point (&;, &y, N1, Ng), the
conclusion of the Mean Value Property for Integrals, and for this, see Ref.

[13] contained in [1] is easily verified for the first equality in the

expression immediately above. Thus, — v(&;, &g, Ny, N2) = 0, gives the

desired result.
4.3. A discussion

With position-dependent jump probabilities one can deduce from the
theorem in the previous section that there is no movement (zero flux)

between particles in a neighborhood of the point (&;, &9, M7, N9) and
those near the boundary point (%, 3, 2, m). To see why notice that
v(&;, €9, M1, Ma) characterizes the probability that the particle starting in
a neighborhood of the point (§;, &y, 1y, Ng) reaches the boundary point
(x, y, 2, m). Now consider the normal derivative
oK (x, 3, 2, m; &, Eg, N1, Mo)/on where K is the Green’s function

associated with the second random walk problem. This derivative can be
physically interpreted as the flux of particle density associated with

particles originating near the boundary point (£, y, 2, m) and reaching
the interior point (&;, &9, My, Ny ). Therefore, —dK/on is a measure of the

flux in the reverse direction which should essentially equal
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v(&;, €9, N1, M2). However, v(&;, €5, Mg, Ng) = 0 from the theorem of the

previous section, so the flux of the particle is essentially zero.
5. Result for the Third Random Walk Problem

5.1. The difference equation

Notice that the third random walk problem we consider determines
the mean or expected time it takes for a particle starting at an interior

point (x, y, z, m) in the prescribed region until it is absorbed at the
boundary. Now assuming that the particle takes steps of length & at
intervals of time T, and is equally likely to move to each of its eight
neighbors, we deduce the following, upon letting w(x, v, z, m) denote the

mean

4

ux, 3,2, m) =+ 1= (b +a)hix, v, 2, m)
i=1

+pi(x + 8, y, 2, m) + gipulx =8, y, 2, m)
+pallx, y + 9, 2, m) + gau(x, y =9, 2, m)
+psilx, y, 2 + 8, m) + qaplx, y, 2 -3, m)
+pai(x, y, 2, m +8) + qapulx, y, 2, m = 9). (5.1)

In the above the time T must be added since it signifies how long it takes

the particle to reach one of its neighboring points in a single step.

5.2. The main theorem
Theorem 5.1. Assume c;(x, y, 2z, m) = limg bi82/4r and D;(x, y,

z,m)=limg ;o ai62/4r for i =1,2, 3, 4. With the jump probabilities

defined as in Equations (1.1) and (1.2), the limiting partial differential
equation arising from (5.1), is given by the following, that is, the mean

first passage time for each point, u(x, y, z, m), satisfies the following:
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1
Cily + Colly T3l T gy + E [Dluxx + D2uyy + D3“yy + D4“2z] =-1.
The boundary condition for u is wx, y, z, m) = 0, (x, y, z, m) € JA.

Proof. It may be completed along the lines of “Proof of Theorem
I11.2.13” [1], therefore we omit it.

Note that if ¢;(x, v, z, m) = 0 and D;(x, y, z, m) = D for i=1, 2, 3, 4

in the above theorem, then we get the four-dimensional extension of
Theorem I1.5.1 [1].
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