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Abstract 

Let A  be a bounded region in 4D, and let A∂  be its surface boundary 

which we assume to be absorbing. Enclose A  and its boundary with a 

4-parallelotope all of whose faces are possibly square, and let the sides be 

given by 1, += ii aax  for 1,;1 +== ii aayi  for 1,;3 +== ii aazi  for 

1,;5 +== ii aami  for .7=i  Let δ  be the step length in the random 

walk, and assume that the intervals [ ]1, +ii aa  for 7,5,3,1=i  can be 

subdivided into the set of points 

,0,, 11211 11
nkaxkax nk ≤≤=δ+=  

,0,, 22423 22
nkaykay nk ≤≤=δ+=  

,0,, 33635 33
nkazkaz nk ≤≤=δ+=  
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.0,, 44847 44
nkamkam nk ≤≤=δ+=  

We say ( )
4321

,,, kkkk mzyx  is an interior point of ,A  if it does not lie 

on .A∂  If one of the neighboring points lies on A∂  or is exterior to ,A  

we call it a boundary point. The points in the 4-parallelotope that are 

neither interior nor boundary points shall not be considered. In this 

paper, working primarily in 4D, we study the following problems: 

(a) What is the probability that a particle starting at some point in the 

region reaches a certain point on the boundary and is absorbed before it 

reaches and is absorbed by the remaining portion of the boundary? 

(b) What is the probability that a particle starting at some point in the 

region reaches a fixed interior point before it is absorbed by the 

boundary? 

(c) What is the mean or expected time it takes for a particle starting at 

some point in the interior until it is absorbed at the boundary? 

1. Introduction 

Remark 1.1. Although we speak of the mean or expected time in the 

third random walk problem of the abstract, this problem is actually time-

independent since the possible times until absorption for each interior 

point are averaged out, so the time-dependence is not explicit. 

In this paper, we assume the steps taken by the particle are 

uncorrelated, meaning that each step taken is completely independent of 

the previous steps taken, as such the motion is Brownian. Furthermore, 

we do not concern ourselves with the number of steps required for the 

particle to reach the fixed boundary or interior point, that is, the 

investigation of the problems will take place independent of time. 

Notation 1.2. In this paper we will use the following: 

(a) 1p  for the probability a particle located at the point ( )mzyx ,,,  is 

moving in the negative direction of the x-axis. 

(b) 1q  for the probability a particle located at the point ( )mzyx ,,,  is 

moving in the positive direction of the x-axis. 
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(c) 2p  for the probability a particle located at the point ( )mzyx ,,,  is 

moving in the negative direction of the y-axis. 

(d) 2q  for the probability a particle located at the point ( )mzyx ,,,  is 

moving in the positive direction of the y-axis. 

(e) 3p  for the probability a particle located at the point ( )mzyx ,,,  is 

moving in the negative direction of the z-axis. 

(f) 3q  for the probability a particle located at the point ( )mzyx ,,,  is 

moving in the positive direction of the z-axis. 

(g) 4p  for the probability a particle located at the point ( )mzyx ,,,  is 

moving in the negative direction of the m-axis. 

(h) 4q  for the probability a particle located at the point ( )mzyx ,,,  is 

moving in the positive direction of the m-axis. 

Observe that in 4D the conditional probability of moving in any of the 

axial directions is .
8

1
 Now we introduce the following: 

( ) ( ) ( )[ ] ,4,3,2,1for,,,,,,,
8

1
,,, =δ+= imzyxbmzyxamzyxp iii  (1.1) 

( ) ( ) ( )[ ] .4,3,2,1for,,,,,,,
8

1
,,, =δ−= imzyxbmzyxamzyxq iii  (1.2) 

In the above ia  and ib  are certain smooth functions depending on the 

position of the particle and choosen such that ( ) .10
4

1
≤+< ∑ = iii

qp  

Notice that ( ) .
4

1 4

1

4

1 iiiii
aqp ∑∑ ==

=+  It follows that if ,1
4

1 4

1
<∑ = ii

a  

then there is a nonzero probability 

( ) i

i

ii

i

aqp ∑∑
==

−=+−

4

1

4

1
4

1
11  

that the particle rest at each step in 4D, that is, takes a step of zero 

length. 
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This paper is organized as follows. In Section 2, we obtain a 

generalization of Laplace’s equation in 4D. In Chapter II of [1], we 

obtained an inhomogeneous form of Laplace’s equation in 3D. The main 

result in Section 3, is a position-dependent partial differential equation, 

that can be tied to an inhomogeneous form of Laplace’s equation in 4D. 

This inhomogeneous form of Laplace’s equation in 4D can be viewed as 

natural extension of the result obtained in Chapter II [1]. As a corollary, 

the adjoint of the position-dependent partial differential equation is 

obtained. The main result in Section 4, is a position-dependent partial 

differential equation, which under certain conditions reduces to a four-

dimensional generalization of Theorem II.5.1 [1] which arises from a 

position-independent analogue of the third random walk problem. 

2. Result for the First Random Walk Problem 

2.1. The difference equation 

Recall that the first random walk problem asks for the probability 

that the particle starting at the interior point of A  reaches the fixed 

boundary point ( )4321 ,,, wwww mzyx  before it reaches any other 

boundary point. Let ( )mzyxv ,,,  be the probability that the particle 

starts at the interior point ( )mzyx ,,,  and reaches the boundary point 

( ),,,, 4321 wwww mzyx  then we see the difference equation model for this 

problem is given by 

( ) [ ( )] ( )mzyxvqpmzyxv ii

i

,,,1,,,

4

1

+−= ∑
=

 

( ) ( )mzyxvqmzyxvp ,,,,,, 11 δ−+δ++  

( ) ( )mzyxvqmzyxvp ,,,,,, 22 δ−+δ++  

( ) ( )mzyxvqmzyxvp ,,,,,, 33 δ−+δ++  

( ) ( ).,,,,,, 44 δ−+δ++ mzyxvqmzyxvp  (2.1) 
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2.2. Taylor expansions in the right hand-side of (2.1) 

Expanding the terms ( ) ( ) ( ,,,,,,,,,,, δ±δ±δ± zyxvmzyxvmzyxv  

) ( )δ±mzyxvm ,,,,  using Taylor’s formula gives 

( ) ( ) ( )mzyxvmzyxvmzyxv x ,,,,,,,,, δ±=δ±  

( ) ( ),,,,
2

1 32 δ+δ+ Omzyxvxx  (2.2) 

( ) ( ) ( )mzyxvmzyxvmzyxv y ,,,,,,,,, δ±=δ±  

( ) ( ),,,,
2

1 32 δ+δ+ Omzyxvyy  (2.3) 

( ) ( ) ( )mzyxvmzyxvmzyxv z ,,,,,,,,, δ±=δ±  

( ) ( ),,,,
2

1 32 δ+δ+ Omzyxvzz  (2.4) 

( ) ( ) ( )mzyxvmzyxvmzyxv m ,,,,,,,,, δ±=δ±  

( ) ( ).,,,
2

1 32 δ+δ+ Omzyxvmm  (2.5) 

2.3. A useful lemma 

Lemma 2.1. We have the following 

(a) ( ) ,
4

1 4

1

4

1 iiiii
aqp ∑∑ ==

=+  

(b) ,4,3,2,1,
4

1
=δ=− iforbqp iii  

(c) .4,3,2,1,
4

1
==+ iforaqp iii  

Proof. It follows directly from Equations (1.1) and (1.2). 

2.4. The main theorem 

Now our main result for the first random walk problem is as follows: 

Theorem 2.2. With the jump probabilities given as in (1.1) and (1.2), 
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the limiting partial differential equation arising from (2.1) is given by 

( ) ( ) yyxx vmzyxavmzyxa ,,,,,,0 21 +=  

( ) ( ) mmzz vmzyxavmzyxa ,,,,,, 43 ++  

( ) ( ) yx vmzyxbvmzyxb ,,,2,,,2 21 ++  

( ) ( ) mz vmzyxbvmzyxb ,,,2,,,2 43 ++  

and the boundary condition is given by ( ) ,0,,, =mzyxv  ( )mzyx ,,,  

,A∂∈  ( ) ( ),ˆ,ˆ,ˆ,ˆ,,, mzyxmzyx ≠  ( )∫∫∂ =
A

dQmzyxv .1,,,  

Proof. Substituting (2.2)-(2.5) into (2.1) and simplifying gives 

( ) ( ) ( ) ( ) mzyx vqpvqpvqpvqp δ−+δ−+δ−+δ−= 443322110  

( ) ( ) yyxx vqpvqp 2
22

2
11 2

1

2

1
δ++δ++  

( ) ( ) mmzz vqpvqp 2
44

2
33 2

1

2

1
δ++δ++  

( ) ( ).3
4

1

δ













++ ∑

=

Oqp ii

i

 (2.6) 

Now using Lemma 2.1 in (2.6) and simplifying gives 

mzyx vbvbvbvb 2
4

2
3

2
2

2
1 4

1

4

1

4

1

4

1
0 δ+δ+δ+δ=  

mmzzyyxx vavavava 2
4

2
3

2
2

2
1 8

1

8

1

8

1

8

1
δ+δ+δ+δ+  

( ).
4

1 3
4

1

δ













+ ∑

=

Oai

i

 (2.7) 

Now dividing by 2δ  in (2.7) and letting 0→δ  gives 

mzyx vbvbvbvb 4321 4

1

4

1

4

1

4

1
0 +++=  
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.
8

1

8

1

8

1

8

1
4321 mmzzyyxx vavavava ++++  (2.8) 

So the desired result is obtained by multiplying (2.8) by 8. For the 

boundary condition, since ( )mzyxv ,,,  is the probability that a particle 

starts at the interior point ( )mzyx ,,,  and reaches some fixed boundary 

point, if ( )mzyx ,,,  is a boundary point and is taken to be the fixed 

boundary point in question, then ( ) ,1,,, =mzyxv  since the particle is 

already there to begin with, however, if ( )mzyx ,,,  is a boundary point 

different from the fixed boundary point, then ( ) ,0,,, =mzyxv  since the 

boundary is absorbing, and thus the particle cannot reach the fixed 

boundary point from there. Moreover, if we assume that the area Q  is 

defined on the boundary of the bounded region ,A  and that as ,0→δ  the 

fixed boundary point tends to ( )mzyx ˆ,ˆ,ˆ,ˆ  on the boundary of the 

bounded region ,A  then it follows that 

( ) ( ) ( ) ( )mzyxmzyxAmzyxmzyxv ˆ,ˆ,ˆ,ˆ,,,,,,,,0,,, ≠∂∈=  

and since ( ),,,, mzyxv  is a probability density, then normalizing implies 

( ) .1,,,, =∫∫∂
dQmzyxv

A
 

Remark 2.3. If in Theorem 2.2, we put 

( ) 4,3,2,1for1,,, == imzyxai  

and 

( ) ,4,3,2,1for0,,, == imzyxbi  

then we obtain Laplace’s equation in 4D. In particular, under this 

condition, we obtain the limiting partial differential equation arising from 

the 4-dimensional extension of the first random problem considered in 

Chapter II [1]. 
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3. Result for the Second Random Walk Problem 

3.1. The difference equation 

Recall the second random walk problem asks for the probability that 

a particle starting at an interior point ( )mzyx ,,,  in the region A  

reaches a fixed interior point ( )2121 ,,, ηηξξ  (say) before it reaches a 

boundary point and is absorbed. The region A  is subdivided as in the 

first problem, and interior and boundary points are defined as before with 

step length equal to .δ  Since the problem is time independent, and the 

particle does not stop its motion once it reaches ( )2121 ,,, ηηξξ  for the 

first time, it is possible for the particle to pass through the point 

( )2121 ,,, ηηξξ  more than once before it reaches and is absorbed at the 

boundary. Consequently, if the particle begins its motion at ( ,,, 121 ηξξ  

)2η  it has unit probability of reaching ( )2121 ,,, ηηξξ  since it is already 

there to begin with. However, it can also move to one of its four 

neighboring points, and reach ( )2121 ,,, ηηξξ  from there if the neighbor 

is not a boundary point. Therefore, if we introduce a function 

( )mzyxw ,,,  that characterizes the prospects of a particle reaching ( ,1ξ  

)212 ,, ηηξ  from the starting point ( ),,,, mzyx  we cannot consider 

( )mzyxw ,,,  to be a probability distribution since it may assume values 

exceeding unity. Let ( )mzyxw ,,,  be the expectation of reaching 

( )2121 ,,, ηηξξ  from ( )mzyx ,,,  before it is absorbed at the boundary. If 

( ) ( ),,,,,,, 2121 ηηξξ≠mzyx  then ( )mzyxw ,,,  satisfies the following: 

( ) ( ) ( )mzyxwqpmzyxw ii

i

,,,1,,,

4

1













+−= ∑

=

 

( ) ( )mzyxwqmzyxwp ,,,,,, 11 δ−+δ++  

( ) ( )mzyxwqmzyxwp ,,,,,, 22 δ−+δ++  

( ) ( )mzyxwqmzyxwp ,,,,,, 33 δ−+δ++  
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( ) ( ).,,,,,, 44 δ−+δ++ mzyxwqmzyxwp  (3.1) 

If ( ) ( ),,,,,,, 2121 ηηξξ=mzyx  then ( )mzyxw ,,,  satisfies the 

following: 

( ) ( ) ( )mzyxwqpmzyxw ii

i

,,,11,,,

4

1













+−+= ∑

=

 

( ) ( )mzyxwqmzyxwp ,,,,,, 11 δ−+δ++  

( ) ( )mzyxwqmzyxwp ,,,,,, 22 δ−+δ++  

( ) ( )mzyxwqmzyxwp ,,,,,, 33 δ−+δ++  

( ) ( ).,,,,,, 44 δ−+δ++ mzyxwqmzyxwp  (3.2) 

3.2. Some Taylor expansions 

Expanding the terms ( ) ( ) ( +δ−δ+ yxpmzyxqmzyxp ,,,,,,,,, 211  

) ( ) ( ) ( ) ( ,,,,,,,,,,,,,,,,, 4332 yxpmzyxqmzyxpmzyxqmz δ−δ+δ−δ  

) ( )δ−δ+ mzyxqmz ,,,,, 4  using Taylor’s formula gives 

( ) ( ) ( ) ( )mzyxpmzyxpmzyxp x ,,,,,,,,, 111 δ+=δ+  

( ) ( ) ( ),,,,
2

1 3
1

2 δ+δ+ Omzyxp xx  (3.3) 

( ) ( ) ( ) ( )mzyxqmzyxqmzyxq x ,,,,,,,,, 111 δ−=δ−  

( ) ( ) ( ),,,,
2

1 3
1

2 δ+δ+ Omzyxq xx  (3.4) 

( ) ( ) ( ) ( )mzyxpmzyxpmzyxp y ,,,,,,,,, 222 δ+=δ+  

( ) ( ) ( ),,,,
2

1 3
2

2 δ+δ+ Omzyxp yy  (3.5) 

( ) ( ) ( ) ( )mzyxqmzyxqmzyxq y ,,,,,,,,, 222 δ−=δ−  

( ) ( ) ( ),,,,
2

1 3
2

2 δ+δ+ Omzyxq yy  (3.6) 
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( ) ( ) ( ) ( )mzyxpmzyxpmzyxp z ,,,,,,,,, 333 δ+=δ+  

( ) ( ) ( ),,,,
2

1 3
3

2 δ+δ+ Omzyxp zz  (3.7) 

( ) ( ) ( ) ( )mzyxqmzyxqmzyxq z ,,,,,,,,, 333 δ−=δ−  

( ) ( ) ( ),,,,
2

1 3
3

2 δ+δ+ Omzyxq zz  (3.8) 

( ) ( ) ( ) ( )mzyxpmzyxpmzyxp m ,,,,,,,,, 444 δ+=δ+  

( ) ( ) ( ),,,,
2

1 3
4

2 δ+δ+ Omzyxp mm  (3.9) 

( ) ( ) ( ) ( )mzyxqmzyxqmzyxq m ,,,,,,,,, 444 δ−=δ−  

( ) ( ) ( ).,,,
2

1 3
4

2 δ+δ+ Omzyxq mm  (3.10) 

On the other hand expanding the terms ( ) ( ,,,,,, δ±δ± yxwmzyxw  

) ( ) ( )δ±δ± mzyxwmzyxwmz ,,,,,,,,,  using Taylor’s formula gives 

( ) ( ) ( )mzyxwmzyxwmzyxw x ,,,,,,,,, δ±=δ±  

( ) ( ),,,,
2

1 32 δ+δ+ Omzyxwxx  (3.11) 

( ) ( ) ( )mzyxwmzyxwmzyxw y ,,,,,,,,, δ±=δ±  

( ) ( ),,,,
2

1 32 δ+δ+ Omzyxwyy  (3.12) 

( ) ( ) ( )mzyxwmzyxwmzyxw z ,,,,,,,,, δ±=δ±  

( ) ( ),,,,
2

1 32 δ+δ+ Omzyxwzz  (3.13) 

( ) ( ) ( )mzyxwmzyxwmzyxw m ,,,,,,,,, δ±=δ±  

( ) ( ).,,,
2

1 32 δ+δ+ Omzyxwmm  (3.14) 
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From Lemma 2.1(b) and Lemma 2.1(c), define ( ) ( )
4

1
:,,, =+ mzyxqp ii  

( )mzyxai ,,,  and ( ) ( ) ( ),,,,
4

1
:,,, mzyxbmzyxqp iii δ=−  then we have 

the following for each partial derivative in { ,,,,,, zzzyyyxxxJ =  

}mmm,  and each 4,3,2,1=i  

( ) ( ) ( ) ( ),,,,
4

1
,,, mzyxamzyxqp JjiJjii ∈∈ =+  (3.15) 

( ) ( ) ( ) ( ).,,,
4

1
:,,, mzyxbmzyxqp JjiJjii ∈∈ δ=−  (3.16) 

Finally observe we have the following: 

( ) ( ) ( ) ,2 1111 xxxxxxxx wawawawa ++=   (3.17) 

( ) ( ) ( ) ,2 2222 yyxyyyyy wawawawa ++=   (3.18) 

( ) ( ) ( ) ,2 3333 zzzzzzzz wawawawa ++=   (3.19) 

( ) ( ) ( ) ,2 4444 mmmmmmmm wawawawa ++=   (3.20) 

( ) ( ) ,222 111 xxx wbwbwb +=   (3.21) 

( ) ( ) ,222 222 yyy wbwbwb +=   (3.22) 

( ) ( ) ,222 333 zzz wbwbwb +=   (3.23) 

( ) ( ) .222 444 mmm wbwbwb +=   (3.24) 

3.3. The main theorem 

Now our main result for the second random walk problem is as 

follows: 

Theorem 3.1. With jump probabilities defined as in (1.1) and (1.2), 

the limiting partial differential equation arising from (3.1) and (3.2) are 

as follows: 

(a) If ( ) ( ),,,,,,, 2121 ηηξξ≠mzyx  then 
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( ) ( ) ( ) ( )mmzzyyxx wawawawa 4321 +++  

[( ) ( ) ( ) ( ) ]mzyx wbwbwbwb 43212 ++++  

.0=  

(b) If ( ) ( ),,,,,,, 2121 ηηξξ=mzyx  then 

( ) ( ) ( ) ( )mmzzyyxx wawawawa 4321 +++  

[( ) ( ) ( ) ( ) ]mzyx wbwbwbwb 43212 ++++  

.8−=  

Remark 3.2. Due to the fact that the algebra involved in the final 

result of the above theorem is very lengthy, we only sketch the proof 

below: 

Proof. Case I. If ( ) ( ),,,,,,, 2121 ηηξξ≠mzyx  then do the 

following: 

(a) Substitute (3.3)-(3.14) into (3.1) and simplify the result to get an 

expression similar to (2.6). We omit the terms involving “O” from the 

simplified expression since they automatically vanish in the continuum 

limit. 

(b) In the simplified expression obtained from (a) substitute (3.15)-

(3.16), this will result in an expression similar to (2.7). 

(c) Divide the expression in step (b) by ,2δ  and let 0→δ  in the 

result gives an expression similar to (2.8). 

(d) Multiply the expression obtained in step (c) by 8. 

After the multiplication in step (d) above, we obtain the following 

expression: 

( ) ( ) ( ) wawawbwawb xxxxxxxx 11111 2220 ++++=  

( ) ( ) ( ) wawawbwawb yyyyyyyy 22222 222 +++++  
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( ) ( ) ( ) wawawbwawb zzzzzzzz 33333 222 +++++  

( ) ( ) ( ) .222 44444 wawawbwawb mmmmmmmm +++++   (3.25) 

Now using (3.17)-(3.24) in (3.25) gives part (a) of the Theorem. 

Case II. If ( ) ( ),,,,,,, 2121 ηηξξ=mzyx  then do the following: 

(a) Substitute (3.3)-(3.14) into (3.2) and simplify the result to get an 

expression similar to (2.6). We omit the terms involving “O” from the 

simplified expression since they automatically vanish in the continuum 

limit. 

(b) In the simplified expression obtained from (a) substitute (3.15)-

(3.16), this will result in an expression similar to (2.7). 

(c) Divide the expression in step (b) by ,2δ  and let 0→δ  in the 

result gives an expression similar to (2.8). 

(d) Multiply the expression obtained in step (c) by 8. 

After the multiplication in step (d) above, we obtain the following 

expression: 

( ) ( ) ( ) wawawbwawb xxxxxxxx 11111 22280 +++++=  

( ) ( ) ( ) wawawbwawb yyyyyyyy 22222 222 +++++  

( ) ( ) ( ) wawawbwawb zzzzzzzz 33333 222 +++++  

( ) ( ) ( ) .222 44444 wawawbwawb mmmmmmmm +++++   (3.26) 

Now using (3.17)-(3.24) in (3.26) gives part (b) of the Theorem, and the 

proof is completed. , 

3.4. A corollary 

By Remark III.2.7 [1], the following is immediate: 

Corollary 3.3. The adjoint of the partial differential equations in 

Theorem 3.1 are as follows: 
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(a) If ( ) ( ),,,,,,, 2121 ηηξξ≠mzyx  then 

( ) ( ) ( ) ( )mmzzyyxx wawawawa 4321 +++  

[( ) ( ) ( ) ( ) ]mzyx wbwbwbwb 43212 +++−  

.0=  

(b) If ( ) ( ),,,,,,, 2121 ηηξξ=mzyx  then 

( ) ( ) ( ) ( )mmzzyyxx wawawawa 4321 +++  

[( ) ( ) ( ) ( ) ]mzyx wbwbwbwb 43212 +++−  

.8−=  

Remark 3.4. The above Corollary implies that if ( ,;,,, 1ξmzyxK  

)212 ,, ηηξ  is the Green’s function associated with the second random 

walk problem, then by definition it satisfies 

( ) ( ) ( ) ( )2121 η−δη−δξ−δξ−δ− mzyx  

( ) ( ) ( ) ( )mmzzyyxx KaKaKaKa 4321 +++=  

[( ) ( ) ( ) ( ) ].2 4321 mzyx KbKbKbKb +++−  

3.5. A discussion 

One consequence of the second random walk problem is that if the 

particle starts its motion at an interior point which is not the one we fix, 

then taking ( ) 1,,, =mzyxai  for 4,3,2,1=i  and ( ) 0,,, =mzyxbi  for 

4,3,2,1=i  in Theorem 3.1, implies we can write +++ zzyyxx www  

( )δ= Owmm  provided that .0→δ  

Another consequence of the second random walk problem is that if 

the particle starts its motion at the fixed interior point, then taking 

( ) 1,,, =mzyxai  for 4,3,2,1=i  and ( ) 0,,, =mzyxbi  for ,3,2,1=i  

4  in Theorem 3.1, implies we can write mmzzyyxx wwww +++  

( )δ+δ−= O28  provided that ( ) .01 =O  



RANDOM WALK PROBLEMS WITH POSITION DEPENDENT … 

 

15 

Both consequences above, imply that if the jump probabilities are 

position independent, then for small ,δ  the second random walk problem 

leads to an inhomogeneous form of Laplace’s equation in 4D that can be 

viewed as natural extension of the result obtained in Chapter II [1]. 

Moreover, as ( ,,,0 yxw→δ )mz,  will satisfy typical Laplace equation in 

4D, provided that the particle starts its motion at an interior point which 

is not the one we fix, and blows up if the particle starts its motion at the 

fixed interior point. 

4. A Relationship between the First and 

Second Random Walk Problems 

4.1. A useful lemma 

Lemma 4.1. Let L  be the differential operator acting on v in the first 

random walk problem, and let ∗L  be the differential operator acting on K  

in Remark 3.4. Define these operators as 

[ ] ( ) ( ) ( ) zzyyxx vmzyxavmzyxavmzyxavL ,,,,,,,,, 321 ++=  

( ) ( ) ( ) yxmm vmzyxbvmzyxbvmzyxa ,,,2,,,2,,, 214 +++  

( ) ( ) mz vmzyxbvmzyxb ,,,2,,,2 43 ++  

and 

[ ] ( ) ( ) ( ) ( )mmzzyyxx KaKaKaKaKL 4321 +++=∗  

( ) ( ) ( ) ( ) .2222 4321 mzyx KbKbKbKb −−−−  

Then 

[ ] [ ] [ ( ) ]xxx KvbKvaKavvKLKvL 111 2−−=−∗  

[ ( ) ]yyy KvbKvaKav 222 2−−+  

[ ( ) ]zzz KvbKvaKav 333 2−−+  

[ ( ) ] .2 444 mmm KvbKvaKav −−+  
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Proof. First observe we have the following 

[ ] [ ] ( ) ( ) ( ) ( )mmzzyyxx KavKavKavKavvKLKvL 4321 +++=−∗  

( ) ( ) ( ) ( )mzyx KbvKbvKbvKbv 4321 2222 −−−−  

mmzzyyxx KvaKvaKvaKva 4321 −−−−  

.2222 4321 mzyx KvbKvbKvbKvb −−−−  (4.1) 

Now observe that we have the following: 

[ ( ) ]xxx KvbKvaKav 111 2−−  

( ) ( ) xxxxxxxx KvaKvaKavKav 1111 2 −++=  

( ) ,222 111 xxx KvbvKbKvb −−−  (4.2) 

( ) ( ) ( ) ,2 1111 xxxxxxxx KvaKavKavKav ++=   (4.3) 

( ) ( ) .111 KbvKvbKbv xxx +=   (4.4) 

Now using (4.3) and (4.4) in (4.2), we deduce the following: 

[ ( ) ]xxx KvbKvaKav 111 2−−  

( ) ( ) .22 1111 xxxxxx KvbvkaKbvKav +−−=  (4.5) 

Now observe that we have the following: 

[ ( ) ]yyy KvbKvaKav 222 2−−  

( ) ( ) yyyyyyyy KvaKvaKavKav 2222 2 −++=  

( ) ,222 222 yyy KvbvKbKvb −−−  (4.6) 

( ) ( ) ( ) ,2 2222 yyyyyyyy KvaKavKavKav ++=  (4.7) 

( ) ( ) .222 KbvKvbKbv yyy +=  (4.8) 

Now using (4.7) and (4.8) in (4.6), we deduce the following: 
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[ ( ) ]yyy KvbKvaKav 222 2−−  

( ) ( ) .22 2222 yyyyyy KvbvkaKbvKav +−−=  (4.9) 

Now observe that we have the following: 

[ ( ) ]zzz KvbKvaKav 333 2−−  

( ) ( ) zzzzzzzz KvaKvaKavKav 3333 2 −++=  

( ) ,222 333 zzz KvbvKbKvb −−−   (4.10) 

( ) ( ) ( ) ,2 3333 zzzzzzzz KvaKavKavKav ++=   (4.11) 

( ) ( ) .333 KbvKvbKbv zzz +=   (4.12) 

Now using (4.11) and (4.12) in (4.10), we deduce the following: 

[ ( ) ]zzz KvbKvaKav 333 2−−  

( ) ( ) .22 3333 zzzzzz KvbvkaKbvKav +−−=  (4.13) 

Finally we have 

[ ( ) ]mmm KvbKvaKav 444 2−−  

( ) ( ) mmmmmmmm KvaKvaKavKav 4444 2 −++=  

( ) ,222 444 mmm KvbvKbKvb −−−  (4.14) 

( ) ( ) ( ) ,2 4444 mmmmmmmm KvaKavKavKav ++=   (4.15) 

( ) ( ) .444 KbvKvbKbv mmm +=   (4.16) 

Now using (4.15) and (4.16) in (4.14), we deduce the following: 

[ ( ) ] ( ) ( )mmmmmm KbvKavKvbKvaKav 44444 22 −=−−  

 .2 44 mmm Kvbvka +−   (4.17) 

Thus the lemma follows by using (4.5), (4.9), (4.13), and (4.17) in (4.1). 
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4.2. The main theorem 

The relationship between the first and second random walk problems 

is given by the following: 

Theorem 4.2. Suppose that the generalized rectangle [ ] [ ] ×× 1,01,0  

[ ] [ ]1,01,0 ×  contains the point ( )2121 ,,, ηηξξ  with 

( ) ( ) ( ) ( ) ,00,,,,0,,,,0,,,,0 ==== zyxvmyxvmzxvmzyv  

( ) ( ) ( ) ( ) ,11,,,,1,,,,1,,,,1 ==== zyxvmyxvmzxvmzyv  

( ) ( )21212121 ,,,;,,0,,,,;,,,0 ηηξξ=ηηξξ mzxKmzyK  

( ) ( ) ,0,,,;0,,,,,,;,0,, 21212121 =ηηξξ=ηηξξ= zyxKmyxK  

( ) ( )21212121 ,,,;,,1,,,,;,,,1 ηηξξ=ηηξξ mzxKmzyK  

( ) ( ) .0,,,;1,,,,,,;,1,, 21212121 =ηηξξ=ηηξξ= zyxKmyxK  

Under this condition, the first and second random walk problems are 

related by 

( ) .0,,, 2121 =ηηξξv  

Proof. We first integrate the expression in the conclusion of Lemma 

4.1 over [ ] [ ] [ ] [ ].1,01,01,01,0 ×××  Starting with the right hand-side of 

the expression in the conclusion of Lemma 4.1, we notice the following: 

[ ( ) ] dxdydzdmKvbKvaKav xxx 111

1

0

1

0

1

0

1

0
2−−∫∫∫∫  

[ ( ) ] dydzdmKvbKvaKav xx
1
0111

1

0

1

0

1

0
2−−= ∫∫∫  

[( ) ] dydzdmKa x
1
01

1

0

1

0

1

0 ∫∫∫=  

,0=  

where the first equality follows from the Fundamental Theorem of 
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Calculus, the second equality follows from the assumption that ( ,,0 yv  

) ( ) ( ) ( ,;,,,1,,,;,,,0,1,,,1,0, 12121 ξ=ηηξξ== mzyKmzyKmzyvmz  

) ,0,, 212 =ηηξ  and the third equality follows by noting that Ka1  is now 

a function of mzy ,,  thus ( ) .01 =xKa  Now we also have the following: 

[ ( ) ] dxdydzdmKvbKvaKav yyy 222

1

0

1

0

1

0

1

0
2−−∫∫∫∫  

[ ( ) ] dxdzdmKvbKvaKav yy
1
0222

1

0

1

0

1

0
2−−= ∫∫∫  

[( ) ] dxdzdmKa y
1
02

1

0

1

0

1

0 ∫∫∫=  

.0=  

Since the integrand is continuous, the first equality is an application of 

Fubini’s Theorem, and for this, see Ref. [13] contained in [1] and the 

Fundamental Theorem of Calculus, the second equality follows from the 

assumption that ( ) ,0,,0, =mzxv  ( ) ,1,,1, =mzxv  ( ,,;,,0, 21 ξξmzxK  

)21 , ηη  ( ,;,,1, 1ξ= mzxK  ) ,0,, 212 =ηηξ  and the third equality follows 

by noting that Ka2  is now a function of mzx ,,  thus ( ) .02 =yKa  

Similarly, we deduce that 

[ ( ) ] ,02 333

1

0

1

0

1

0

1

0
=−−∫∫∫∫ dxdydzdmKvbKvaKav zzz  

[ ( ) ] .02 444

1

0

1

0

1

0

1

0
=−−∫∫∫∫ dxdydzdmKvbKvaKav mmm  

At this point it is clear that when we integrate the right hand side of the 

expression in Lemma 4.1 over [ ] [ ] [ ] [ ],1,01,01,01,0 ×××  we get zero, 

thus it remains to show that 

( [ ] [ ]) ( )2121

1

0

1

0

1

0

1

0
,,, ηηξξ−=−∗∫∫∫∫ vdxdydzdmvKLKvL  
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and the theorem follows. Now observe we have the following: 

( ) ( )1

1

0

1

0

1

0

1

0
2121 ,,, ξ−δ−=ηηξξ− ∫∫∫∫ xv  

( ) ( ) ( )dxdydzdmmzy 212 η−δη−δξ−δ×  

( [ ] [ ]) .
1

0

1

0

1

0

1

0
dxdydzdmvKLKvL −= ∗∫∫∫∫  

Note that the bottom equality in the above expression is a direct 

consequence of Lemma 4.1, Theorem 2.2, and Remark 3.4, and since 

( )mzyxv ,,,  is a probability density function, which is continuous on 

[ ] [ ] [ ] [ ]1,01,01,01,0 ×××  containing the point ( ),,,, 2121 ηηξξ  the 

conclusion of the Mean Value Property for Integrals, and for this, see Ref. 

[13] contained in [1] is easily verified for the first equality in the 

expression immediately above. Thus, ( ) ,0,,, 2121 =ηηξξ− v  gives the 

desired result. 

4.3. A discussion 

With position-dependent jump probabilities one can deduce from the 

theorem in the previous section that there is no movement (zero flux) 

between particles in a neighborhood of the point ( )2121 ,,, ηηξξ  and 

those near the boundary point ( ).ˆ,ˆ,ˆ,ˆ mzyx  To see why notice that 

( )2121 ,,, ηηξξv  characterizes the probability that the particle starting in 

a neighborhood of the point ( )2121 ,,, ηηξξ  reaches the boundary point 

( ).ˆ,ˆ,ˆ,ˆ mzyx  Now consider the normal derivative 

( ) nmzyxK ∂ηηξξ∂ 2121 ,,,;ˆ,ˆ,ˆ,ˆ  where K  is the Green’s function 

associated with the second random walk problem. This derivative can be 

physically interpreted as the flux of particle density associated with 

particles originating near the boundary point ( )mzyx ˆ,ˆ,ˆ,ˆ  and reaching 

the interior point ( ).,,, 2121 ηηξξ  Therefore, nK ∂∂−  is a measure of the 

flux in the reverse direction which should essentially equal 



RANDOM WALK PROBLEMS WITH POSITION DEPENDENT … 

 

21 

( ).,,, 2121 ηηξξv  However, ( ) 0,,, 2121 =ηηξξv  from the theorem of the 

previous section, so the flux of the particle is essentially zero. 

5. Result for the Third Random Walk Problem 

5.1. The difference equation 

Notice that the third random walk problem we consider determines 

the mean or expected time it takes for a particle starting at an interior 

point ( )mzyx ,,,  in the prescribed region until it is absorbed at the 

boundary. Now assuming that the particle takes steps of length δ  at 

intervals of time ,τ  and is equally likely to move to each of its eight 

neighbors, we deduce the following, upon letting ( )mzyx ,,,µ  denote the 

mean 

( ) [ ( )] ( )mzyxqpmzyx ii

i

,,,1,,,

4

1

µ+−+τ=µ ∑
=

 

( ) ( )mzyxqmzyxp ,,,,,, 11 δ−µ+δ+µ+  

( ) ( )mzyxqmzyxp ,,,,,, 22 δ−µ+δ+µ+  

( ) ( )mzyxqmzyxp ,,,,,, 33 δ−µ+δ+µ+  

( ) ( ).,,,,,, 44 δ−µ+δ+µ+ mzyxqmzyxp  (5.1) 

In the above the time τ  must be added since it signifies how long it takes 

the particle to reach one of its neighboring points in a single step. 

5.2. The main theorem 

Theorem 5.1. Assume ( ) τδ= →τδ 4lim,,, 2
0, ii bmzyxc  and ( ,, yxDi  

) τδ= →τδ 4lim, 2
0, iamz  for .4,3,2,1=i  With the jump probabilities 

defined as in Equations (1.1) and (1.2), the limiting partial differential 

equation arising from (5.1), is given by the following, that is, the mean 

first passage time for each point, ( ),,,, mzyxµ  satisfies the following: 
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[ ] .1
2

1
43214321 −=µ+µ+µ+µ+µ+µ+µ+µ zzyyyyxxmzyx DDDDcccc  

The boundary condition for µ  is ( ) ( ) .,,,,0,,, Amzyxmzyx ∂∈=µ  

Proof. It may be completed along the lines of “Proof of Theorem 

III.2.13” [1], therefore we omit it. 

Note that if ( ) 0,,, =mzyxci  and ( ) DmzyxDi =,,,  for 4,3,2,1=i  

in the above theorem, then we get the four-dimensional extension of 

Theorem II.5.1 [1]. 
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