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Abstract 

Let A  be a bounded region in 7D, and let A∂  be its surface boundary 

which we assume to be absorbing. Enclose A  and its boundary with a 

7-parallelotope all of whose faces are possibly square, and let the sides 

be given by 1, += ii aax  for ;1=i  1, += ii aay  for ;3=i  1, += ii aaz  

for ;5=i  1, += ii aam  for ;7=i  1, += ii aar  for ;9=i  1, += ii aav  

for ;11=i  1, += ii aaj  for .13=i  Let δ  be the step length in the 

random walk, and assume that the intervals [ ]1, +ii aa  for 

13,11,9,7,5,3,1=i  can be subdivided into the set of points 

,0,, 11211 11
nkaxkax nk ≤≤=δ+=  

,0,, 22423 22
nkaykay nk ≤≤=δ+=  
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,0,, 33635 33
nkazkaz nk ≤≤=δ+=  

,0,, 44847 44
nkamkam nk ≤≤=δ+=  

,0,, 551059 55
nkarkar nk ≤≤=δ+=  

,0,, 6612611 66
nkavkav nk ≤≤=δ+=  

.0,, 7714713 77
nkajkaj nk ≤≤=δ+=  

We say ( )
7654321

,,,,,, kkkkkkk jvrmzyx  is an interior point of ,A  

if it does not lie on .A∂  If one of the neighboring points lies on A∂  or is 

exterior to ,A  we call it a boundary point. In this paper, working 

primarily in 7D, we study the following problems: 

(a) What is the probability that a particle starting at an interior 

point ( )jvrmzyx ,,,,,,  reaches the specified boundary point 

( ,, 21 ww yx )76543 ,,,, wwwww jvrmz  before it reaches and is absorbed 

at any other boundary point? 

(b) What is the probability that a particle starting at an interior 

point ( )jvrmzyx ,,,,,,  in the region A  reaches a specified interior 

point ( )3212121 ,,,,,, βββηηξξ  before it reaches a boundary point 

and is absorbed? 

(c) What is the “mean first passage time” for each point ( ,,,, mzyx  

) ?,, jvr  

1. Introduction 

In this paper, the problems in the abstract are studied under the 

assumption that the time it takes the particle to reach the fixed boundary 

or interior point is not of concern, that is, the problems are investigated 

under the assumption of no time-dependence. We show in this paper, that 

such an investigation leads to some inhomogeneous forms of Laplace 

equation in 7D. We also give the boundary conditions along with its proof 

for solving Laplace equation in 7D. A significance of the discrete to 

continuous random walk derivations is the verification of some existence 
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and uniqueness properties of these partial differential equations. 

In Section 2, we consider the first random walk problem in the 

abstract in 7D, and show that the difference equation model for this 

problem when expanded in a Taylor series with remainder, and going in 

the limit leads to Laplace equation in 7D. This section takes inspiration 

from [1]. 

In Section 3, we prove the random walk process used in Section 2 for 

solving Laplace’s equation in 7D. This section takes inspiration from [1], 

but more importantly [2]. 

In Section 4, we consider the second random walk problem in the 

abstract in 7D. In particular, we show the difference equation model for 

this problem when expanded in a Taylor series with remainder and going 

in the limit leads to an inhomogeneous form of Laplace’s equation in 7D. 

If the particle starts its motion at an interior point which is not the one 

we fix, then this inhomogeneous form of Laplace’s equation reduces to the 

homogeneous form of Laplace’s equation in 7D. If the particle starts its 

motion at the fixed interior point, then this inhomogeneous form of 

Laplace’s equation blows up. A consequence of the random walk 

formulation leads us to establish a relationship between the first two 

random walk problems in the abstract in 7D. 

Finally, in Section 5, we consider the third random walk problem in 

the abstract in 7D, and show the difference equation model for this 

problem when expanded in a Taylor series with remainder and going in 

the limit leads to an equation of the Poisson type. This problem has been 

explored in the literature as the (mean) first passage time in the context 

of various phenomena of physical, biological, psychological and 

engineering importance. For examples, see Refs. [39], [12], [38], [37], [30], 

[31], [3], and [17] contained in [1]. Note that this problem is independent 

of time, since the possible times until absorption for each interior point is 

averaged out. 
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2. Derivation of Laplace Equation in 7D 

We assume the particle is equally likely to move to any of its fourteen 

neighboring points from the point ( ).,,,,,, jvrmzyx  Thus the 

probability it moves to any of its fourteen neighbors is .
14

1
 The difference 

equation for the probability that the particle reaches the boundary point 

( )7654321 ,,,,,, wwwwwww jvrmzyx  from the point ( )jvrmzyx ,,,,,,  

can be expressed in terms of the probability that it moves to any of its 

fourteen neighboring points and reaches ( ,,,,, 54321 wwwww rmzyx  

)76 , ww jv  from one of these points. Now let ( ,,,, mzyxf )jvr ,,  be the 

probability the particle starts at the interior point ( )jvrmzyx ,,,,,,  

and reaches the boundary point ( ,,, 321 www zyx ),,,, 7654 wwww jvrm  

then the difference equation is obtained as 

( ) [ ( ) ( )jvrmzyxfjvrmzyxfjvrmzyxf ,,,,,,,,,,,,
14

1
,,,,,, δ±+δ±=  

( ) ( )jvrmzyxfjvrmzyxf ,,,,,,,,,,,, δ±+δ±+  

( ) ( )jvrmzyxfjvrmzyxf ,,,,,,,,,,,, δ±+δ±+  

( )].,,,,,, δ±+ jvrmzyxf  (2.1) 

If ( )jvrmzyx ,,,,,,  is a boundary point, we have 

( )jvrmzyxf ,,,,,,  

( ) ( )

( ) ( )



≠

=
=

.,,,,,,,,,,,if,0

,,,,,,,,,,,,if,1

7654321

7654321

wwwwwww

wwwwwww

jvrmzyxvrmzyx

jvrmzyxvrmzyx
 

 (2.2) 

Remark 2.1. Note that when the particle is at a boundary 

( ) ( )7654321 ,,,,,,,,,,, wwwwwww jvrmzyxvrmzyx ≠  

it is absorbed and cannot reach the boundary point ( ,,,, 4321 wwww mzyx  
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).,, 765 www jvr  If one of the neighboring points of ( )vrmzyx ,,,,,  is a 

boundary point, then (2.2) is to be used in (2.1). 

Remark 2.2. In the limit as the step length ,0→δ  the number of 

points in the subdivisions [ ] [ ] [ ] [ ] [ ],,,,,,,,,, 10987654321 aaaaaaaaaa  

[ ] [ ],,,, 14131211 aaaa  tend to infinity, and the boundary points defined 

actually lie on .A∂  

Now by Taylor’s formula, one has the following expansions: 

( ) ( ) ( )jvrmzyxfjvrmzyxfjvrmzyxf x ,,,,,,,,,,,,,,,,,, δ±=δ±  

( ) ( ),,,,,,,
2

1 32 δ+δ+ Ojvrmzyxfxx  (2.3) 

( ) ( ) ( )jvrmzyxfjvrmzyxfjvrmzyxf y ,,,,,,,,,,,,,,,,,, δ±=δ±  

( ) ( ),,,,,,,
2

1 32 δ+δ+ Ojvrmzyxfyy  (2.4) 

( ) ( ) ( )jvrmzyxfjvrmzyxfjvrmzyxf z ,,,,,,,,,,,,,,,,,, δ±=δ±  

( ) ( ),,,,,,,
2

1 32 δ+δ+ Ojvrmzyxfzz  (2.5) 

( ) ( ) ( )jvrmzyxfjvrmzyxfjvrmzyxf m ,,,,,,,,,,,,,,,,,, δ±=δ±  

( ) ( ),,,,,,,
2

1 32 δ+δ+ Ojvrmzyxfmm  (2.6) 

( ) ( ) ( )jvrmzyxfjvrmzyxfjvrmzyxf r ,,,,,,,,,,,,,,,,,, δ±=δ±  

( ) ( ),,,,,,,
2

1 32 δ+δ+ Ojvrmzyxfrr  (2.7) 

( ) ( ) ( )jvrmzyxfjvrmzyxfjvrmzyxf v ,,,,,,,,,,,,,,,,,, δ±=δ±  

( ) ( ),,,,,,,
2

1 32 δ+δ+ Ojvrmzyxfvv  (2.8) 

( ) ( ) ( )jvrmzyxfjvrmzyxfjvrmzyxf j ,,,,,,,,,,,,,,,,,, δ±=δ±  



CLEMENT BOATENG AMPADU 

 

6 

( ) ( ).,,,,,,
2

1 32 δ+δ+ Ojvrmzyxf jj  (2.9) 

Now using (2.3)-(2.9) in (2.1) and simplifying gives 

[ ( ) ( )jvrmzyxfjvrmzyxf yyxx ,,,,,,,,,,,,
14

1
0 2 +δ=  

( ) ( )jvrmzyxfjvrmzyxf mmzz ,,,,,,,,,,,, ++  

( ) ( )jvrmzyxfjvrmzyxf vvrr ,,,,,,,,,,,, ++  

( )] ( ).,,,,,, 3δ++ Ojvrmzyxf jj  (2.10) 

Multiplying (2.10) by 
2

14

δ
 and letting 0→δ  gives Laplace’s equation in 

7D 

( ) ( )jvrmzyxfjvrmzyxf yyxx ,,,,,,,,,,,,0 +=  

( ) ( )jvrmzyxfjvrmzyxf mmzz ,,,,,,,,,,,, ++  

( ) ( )jvrmzyxfjvrmzyxf vvrr ,,,,,,,,,,,, ++  

( ).,,,,,, jvrmzyxf jj+  (2.11) 

The function ( )jvrmzyxf ,,,,,,  is now interpreted as a probability 

density. We further assume that the area Q  is defined on A∂  and as 

,0→δ  the point ( )7654321 ,,,,,, wwwwwww jvrmzyx  tends to the 

(boundary) point ( )jvrmzyx ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ  on .A∂  The boundary conditions 

(2.2) now take the form 

( )jvrmzyxf ,,,,,,  

{ ( ) ,,,,,,,if,0 Ajvrmzyx ∂∈=  

( ) ( )}.ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,,,,,, jvrmzyxjvrmzyx ∉  (2.12) 

Since ( )jvrmzyxf ,,,,,,  is now interpreted as a probability density, 
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normalizing gives 

( ) .1,,,,,, =∫∫
∂

dQjvrmzyxf

A

 (2.13) 

Now we summarize the main result of this section as follows: 

Theorem 2.3. Assuming ,0→δ  then the limiting partial differential 

equation of (2.1) is 

( ) ( )jvrmzyxfjvrmzyxf yyxx ,,,,,,,,,,,,0 +=  

( ) ( )jvrmzyxfjvrmzyxf mmzz ,,,,,,,,,,,, ++  

( ) ( )jvrmzyxfjvrmzyxf vvrr ,,,,,,,,,,,, ++  

( )jvrmzyxf jj ,,,,,,+  

and the boundary condition for f is 

( )jvrmzyxf ,,,,,,  

{ ( ) ,,,,,,,,0 Ajvrmzyxif ∂∈=  

( ) ( )}.ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,,,,,, jvrmzyxjvrmzyx ∉  

3. Proof of the Random Walk Method for  

Solving Laplace Equation in 7D 

Our interest is to find the solution of Laplace’s equation in a region in 

7D bounded by parallel and perpendicular lines in each of the axial 

directions, given the value of the potential function at all points on the 

boundary. Suppose the value of the potential is required at some point A  

in the volume bounded by parallel and perpendicular lines in each of the 

axial directions. Put a marker at the point .A  The random walk method 

operates as follows starting from A  one can move into one of the fourteen 

directions in 7D. The direction chosen is random and such that each 

direction is equally likely. The probability of moving in any one direction 
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is .
14

1
 The choice of direction must be dependent on some suitable 

random process. Following [2], one could simulate the whole process by 

computer which could generate a random integer in the range 0 to 13 

inclusive. A table such as the one below would then be used to interpret 

this number in terms of a move in the possible fourteen directions in 7D. 

Table 1. Random integer generator 

Number pair Direction Pair 

(0, 1) (positive x-direction, negative x-direction) 

(2, 3) (positive y-direction, negative y-direction) 

(4, 5) (positive z-direction, negative z-direction) 

(6, 7) (positive m-direction, negative m-direction) 

(8, 9) (positive r-direction, negative r-direction) 

(10, 11) (positive v-direction, negative v-direction) 

(12, 13) (positive j-direction, negative j-direction) 

Having made such one move the process is repeated until the marker 

at A  reaches a point on .A∂  At this point the value of the potential say 

1ξ  is noted. By this means a sequence { }iξ  is generated. 

Theorem 3.1. Let  Av/  denote the value of the potential at ,A  then 

n
v

i

n

i

n
A

ξ
=/

∑ =

∞→

1lim  

which states that the average value of the endpoint potentials { }iξ  tends to 

,Av/  as the number of random walks tends to infinity. 

Proof. Let B  be an interior point. Denote the point ( ,,,, 2121 qqpp  

)321 ,, rrr  as the intersection of the gridlines in 7D emanating from the 

axial directions. Now let ( )3212121 ,,,,,, rrrqqpp  be any point, ( ,, 21 ii  

)32121 ,,,, kkkjj  be any interior point, and let ( )3212121 ,,,,,, fffssaa  
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be any boundary point. Let B  be the point ( ),,,,,,, 3212121 kkkjjii  and 

let its potential be ,
3212121 ,,,,,, kkkjjiiv/  and consider the potentials 

,
3212121 ,,,,,,1 kkkjjiiv ±/  that is, the potentials to the immediate right and 

left of B  in the x-direction, then by Taylor series expansion of v/  in the 

positive and negative x-direction, we obtain 

B
kkkjjiikkkjjii x

v
hvv 




∂

/∂
±/=/ ± 32121213212121 ,,,,,,,,,,,,1  

( ),
2

3

2

22

hO
x

vh

B

+








∂

/∂
+  (3.1) 

where h is the grid interval (step size). Now in the positive and negative 

part of each of the remaining axial directions, we obtain Taylor series 

expansion of v/  as follows 

B
kkkjjiikkkjjii y

v
hvv 




∂

/∂
±/=/ ± 32121213212121 ,,,,,,,,,,,1,  

( ),
2

3

2

22

hO
y

vh

B

+








∂

/∂
+  (3.2) 

B
kkkjjiikkkjjii z

v
hvv 




∂

/∂
±/=/ ± 32121213212121 ,,,,,,,,,,1,,  

( ),
2

3

2

22

hO
z

vh

B

+








∂

/∂
+  (3.3) 

B
kkkjjiikkkjjii m

v
hvv 




∂

/∂
±/=/ ± 32121213212121 ,,,,,,,,,1,,,  

( ),
2

3

2

22

hO
m

vh

B

+








∂

/∂
+  (3.4) 

B
kkkjjiikkkjjii r

v
hvv 





∂
/∂

±/=/ ± 32121213212121 ,,,,,,,,1,,,,  
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( ),
2

3

2

22

hO
r

vh

B

+








∂

/∂
+  (3.5) 

B
kkkjjiikkkjjii v

v
hvv 




∂

/∂
±/=/ ± 32121213212121 ,,,,,,,1,,,,,  

( ),
2

3

2

22

hO
v

vh

B

+








∂

/∂
+  (3.6) 

B
kkkjjiikkkjjii j

v
hvv 





∂
/∂

±/=/ ± 32121213212121 ,,,,,,1,,,,,,  

( ).
2

3

2

22

hO
j

vh

B

+








∂

/∂
+  (3.7) 

Now adding the right hand side of (3.1)-(3.7) gives 

3212121 ,,,,,,14 kkkjjiiv/  

( ).3

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2 hO

j

v

v

v

r

v

m

v

z

v

y

v

x

v
h

B

+








∂

/∂
+

∂

/∂
+

∂

/∂
+

∂

/∂
+

∂

/∂
+

∂

/∂
+

∂

/∂
+  (3.8) 

On the other hand adding the left hand side of (3.1)-(3.3) gives 

321212132121213212121 ,,,,1,,,,,,,1,,,,,,,1 kkkjjiikkkjjiikkkjjii vvv ±±± /+/+/  (3.9) 

and adding the left hand side of (3.4-3.7) gives 

321212132121213212121 ,1,,,,,,,1,,,,,,,1,,, kkkjjiikkkjjiikkkjjii vvv ±±± /+/+/  

.1,,,,,, 3212121 ±/+ kkkjjiiv  (3.10) 

Since Laplace equation in 7D implies 

,0
2

2

2

2

2

2

2

2

2

2

2

2

2

2

=
∂

/∂
+

∂

/∂
+

∂

/∂
+

∂

/∂
+

∂

/∂
+

∂

/∂
+

∂

/∂

j

v

v

v

r

v

m

v

z

v

y

v

x

v
 (3.11) 

it follows that upon neglecting higher-order terms in (3.8) and equating 

the remaining term to the sum of (3.9) and (3.10), we get the following: 
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321212132121213212121 ,,,,,1,,,,,,,1,,,,,,14 kkkjjiikkkjjiikkkjjii vvv ±± /+/=/  

32121213212121 ,,,1,,,,,,,1,, kkkjjiikkkjjii vv ±± /+/+  

32121213212121 ,1,,,,,,,1,,,, kkkjjiikkkjjii vv ±± /+/+  

1,,,,,, 3212121 ±/+ kkkjjiiv  (3.12) 

which is true for all interior points and therefore defines a set of 

equations with surface boundary conditions 

0,0,0,0,0,0,00,0,0,0,0,0,0 Vv =/  

0,0,0,0,0,0,10,0,0,0,0,0,1 Vv =/  

M  

.,etc  (3.13) 

where 3,2,1,2,1,2,1 fffssaaV  represents the (known) values of v/  at the 

boundary point ( ).3,2,1,2,1,2,1 fffssaa  The equations defining 

3212121 ,,,,,, rrrqqppv/  are thus 

[
321212132121213212121 ,,,,,1,,,,,,,1,,,,,, 14

1
kkkjjiikkkjjiikkkjjii vvv ±± /+/=/  

32121213212121 ,,,1,,,,,,,1,, kkkjjiikkkjjii vv ±± /+/+  

32121213212121 ,1,,,,,,,1,,,, kkkjjiikkkjjii vv ±± /+/+  

],1,,,,,, 3212121 ±/+ kkkjjiiv  

.3,2,1,2,1,2,13,2,1,2,1,2,1 fffssaafffssaa Vv =/  (3.14) 

This completes the first part of the proof. Now let 
3,2,1,2,1,2,1

,,,,,, 3212121

fffssaa
kkkjjii

P  be 

the probability of absorption at the boundary ( ,2,1,2,1,2,1 ffssaa )3f  

starting from the interior point ( ),,,,,,, 3212121 kkkjjii  and executing a 
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random walk of the type already described in this paper. Suppose that a 

reward 3,2,1,2,1,2,1 fffssaaV  is associated with the absorption at 

( )3,2,1,2,1,2,1 fffssaa  and let 
3212121 ,,,,,, rrrqqppE  be the expected 

reward starting from the point ( ),,,,,,, 3212121 rrrqqpp  that is, the 

average reward over a large number of trials. Consider the absorption at 

( )3,2,1,2,1,2,1 fffssaa  starting from ( ,,,,, 12121 kjjii )., 32 kk  This 

can occur in one of 14 ways, 

(a) a first move to ( )3212121 ,,,,,,1 kkkjjii ±  and then absorption at 

( )3,2,1,2,1,2,1 fffssaa  from there, 

(b) a first move to ( )3212121 ,,,,,1, kkkjjii ±  and then absorption at 

( )3,2,1,2,1,2,1 fffssaa  from there, 

(c) a first move to ( )3212121 ,,,,1,, kkkjjii ±  and then absorption at 

( )3,2,1,2,1,2,1 fffssaa  from there, 

(d) a first move to ( )3212121 ,,,1,,, kkkjjii ±  and then absorption at 

( )3,2,1,2,1,2,1 fffssaa  from there, 

(e) a first move to ( )3212121 ,,1,,,, kkkjjii ±  and then absorption at 

( )3,2,1,2,1,2,1 fffssaa  from there, 

(f) a first move to ( )3212121 ,1,,,,, kkkjjii ±  and then absorption at 

( )3,2,1,2,1,2,1 fffssaa  from there, 

(g) a first move to ( )1,,,,,, 3212121 ±kkkjjii  and then absorption at 

( )3,2,1,2,1,2,1 fffssaa  from there. 

By elementary laws of probability, we have, 

[ 3,2,1,2,1,2,1
,,,,,1,

3,2,1,2,1,2,1
,,,,,,1

3,2,1,2,1,2,1
,,,,,, 321212132121213212121 14

1 fffssaa
kkkjjii

fffssaa
kkkjjii

fffssaa
kkkjjii

PPP
±±

+=  

3,2,1,2,1,2,1
,,,1,,,

3,2,1,2,1,2,1
,,,,1,, 32121213212121

fffssaa
kkkjjii

fffssaa
kkkjjii

PP
±±

++  
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3,2,1,2,1,2,1
,1,,,,,

3,2,1,2,1,2,1
,,1,,,, 32121213212121

fffssaa
kkkjjii

fffssaa
kkkjjii

PP
±±

++  

].3,2,1,2,1,2,1
1,,,,,, 3212121

fffssaa
kkkjjii

P
±

+  (3.15) 

By definition of mathematical expectation 

.
32121213212121

,,,,,,
3,2,1,2,1,2,1

,,,,,,3,2,1,2,1,2,1

3,2,1,2,1,2,1

kkkjjii
fffssaa

kkkjjiifffssaa

fffssaa

EPV =∑  

Now if we multiply (3.15) by 3,2,1,2,1,2,1 fffssaaV  and sum over all 

possible points ( ),3,2,1,2,1,2,1 fffssaa  then (3.15) which is valid for 

all interior points can be written as 

[
321212132121213212121 ,,,,,1,,,,,,,1,,,,,, 14

1
kkkjjiikkkjjiikkkjjii EEE ±± +=  

32121213212121 ,,,1,,,,,,,1,, kkkjjiikkkjjii EE ±± ++  

32121213212121 ,1,,,,,,,1,,,, kkkjjiikkkjjii EE ±± ++  

].1,,,,,, 3212121 ±+ kkkjjiiE  (3.16) 

At the boundary points we have 1
3,2,1,2,1,2,1
3,2,1,2,1,2,1

=fffssaa
fffssaa

P  since there is a 

unit probability of absorption at the boundary point ( ,1,2,1,2,1 fssaa  

)3,2 ff  considering we are already there to begin with. Thus at boundary 

points we have 

3,2,1,2,1,2,1
3,2,1,2,1,2,13,2,1,2,1,2,13,2,1,2,1,2,1
fffssaa
fffssaafffssaafffssaa PVE =  

.3,2,1,2,1,2,1 fffssaaV=  (3.17) 

Thus, 
3212121 ,,,,,, rrrqqppE  satisfies the equations 

[
321212132121213212121 ,,,,,1,,,,,,,1,,,,,, 14

1
kkkjjiikkkjjiikkkjjii EEE ±± +=  
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32121213212121 ,,,1,,,,,,,1,, kkkjjiikkkjjii EE ±± ++  

32121213212121 ,1,,,,,,,1,,,, kkkjjiikkkjjii EE ±± ++  

],1,,,,,, 3212121 ±+ kkkjjiiE  

.3,2,1,2,1,2,13,2,1,2,1,2,1 fffssaafffssaa VE =  (3.18) 

A comparison of (3.14) and (3.18) shows that they are in fact identical 

with 
3212121 ,,,,,, rrrqqppE  in place of .

3212121 ,,,,,, rrrqqppv/  A solution of 

3212121 ,,,,,, rrrqqppE  is therefore a solution of ,
3212121 ,,,,,, rrrqqppv/  and it is 

3212121 ,,,,,, rrrqqppE  that is found experimentally by the procedure 

described at the beginning of this section. 

4. An Inhomogeneous forms of Laplace Equation in 7D 

Let ( )vrmzyx ,,,,,  be an interior point in the second random walk 

problem of the abstract, and let ( )3212121 ,,,,,, γγγηηξξ  be a fixed 

interior point. Since the problem is time independent, and the particle 

does not stop its motion once it reaches ( ,,,,,, 212121 γγηηξξ )3γ  for the 

first time, it is possible for the particle to pass through the point 

( )3212121 ,,,,,, γγγηηξξ  more than once before it reaches and is 

absorbed at the boundary. Consequently, if the particle begins its motion 

at ( ),,,,,,, 3212121 γγγηηξξ  it has unit probability of reaching 

( ),,,,,,, 3212121 γγγηηξξ  since it is already there to begin with. 

However, it can also move to one of its 14 neighboring points and each 

( )3212121 ,,,,,, γγγηηξξ  from there if the neighbor is not a boundary 

point. Therefore, if we introduce a function ( )vrmzyxw ,,,,,  that 

characterizes the prospects of a particle reaching ( ,,,, 2121 ηηξξ  

),,, 321 γγγ  from the starting point ( ),,,,,, vrmzyx  we cannot consider 

( )vrmzyxw ,,,,,  to be a probability distribution since it may assume 
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values exceeding unity. In particular, ( ,,,,,, 212121 γγηηξξw ) .13 ≥γ  

4.1. The difference equation for ( )vr,m,z,y,x,w  

Case (I). If ( )vrmzyx ,,,,,  is a boundary point, then 

 ( ) .0,,,,, =vrmzyxw  (4.1) 

Case (II). If ( ) ( ),,,,,,,,,,,, 3212121 γγγηηξξ≠vrmzyx  then 

( ) [ ( )vrmzyxwvrmzyxw ,,,,,
14

1
,,,,, δ±=  

( ) ( )vrmzyxwvrmzyxw ,,,,,,,,,, δ±+δ±+  

( ) ( )vrmzyxwvrmzyxw ,,,,,,,,,, δ±+δ±+  

( )].,,,,, δ±+ vrmzyxw  (4.2) 

Case (III). If ( ) ( ),,,,,,,,,,,, 3212121 γγγηηξξ=vrmzyx  then 

( )3212121 ,,,,,, γγγηηξξw  

[ ( )3212121 ,,,,,,
14

1
1 γγγηηξδ±ξ+= w  

( ) ( )32121213212121 ,,,,,,,,,,,, γγγηδ±ηξξ+γγγηηδ±ξξ+ ww  

( ) ( )32121213212121 ,,,,,,,,,,,, γγδ±γηηξξ+γγγδ±ηηξξ+ ww  

( )3212121 ,,,,,, γδ±γγηηξξ+w  

( )].,,,,,, 3212121 δ±γγγηηξξ+w  (4.3) 

4.2. Taylor expansions in the right hand side of (4.2) 

( )jvrmzyxw ,,,,,,δ±  

( ) ( )jvrmzyxwjvrmzyxw x ,,,,,,,,,,,, δ±=  

( ) ( ),,,,,,,
2

1 32 δ+δ+ Ojvrmzyxwxx  (4.4) 
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( )jvrmzyxw ,,,,,, δ±  

( ) ( )jvrmzyxwjvrmzyxw y ,,,,,,,,,,,, δ±=  

( ) ( ),,,,,,,
2

1 32 δ+δ+ Ojvrmzyxwyy  (4.5) 

( )jvrmzyxw ,,,,,, δ±  

( ) ( )jvrmzyxwjvrmzyxw z ,,,,,,,,,,,, δ±=  

( ) ( ),,,,,,,
2

1 32 δ+δ+ Ojvrmzyxwzz  (4.6) 

( )jvrmzyxw ,,,,,, δ±  

( ) ( )jvrmzyxwjvrmzyxw m ,,,,,,,,,,,, δ±=  

( ) ( ),,,,,,,
2

1 32 δ+δ+ Ojvrmzyxwmm  (4.7) 

( )jvrmzyxw ,,,,,, δ±  

( ) ( )jvrmzyxwjvrmzyxw r ,,,,,,,,,,,, δ±=  

( ) ( ),,,,,,,
2

1 32 δ+δ+ Ojvrmzyxwrr  (4.8) 

( )jvrmzyxw ,,,,,, δ±  

( ) ( )jvrmzyxwjvrmzyxw v ,,,,,,,,,,,, δ±=  

( ) ( ),,,,,,,
2

1 32 δ+δ+ Ojvrmzyxwvv  (4.9) 

( )δ±jvrmzyxw ,,,,,,  

( ) ( )jvrmzyxwjvrmzyxw j ,,,,,,,,,,,, δ±=  

( ) ( ).,,,,,,
2

1 32 δ+δ+ Ojvrmzyxw jj  (4.10) 
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4.3. The main theorem 

Theorem 4.1. For small ,δ  the inhomogeneous form of Laplace 

equation arising from (4.2) and (4.3) is given by 

jjvvrrmmzzyyxx wwwwwww ++++++  

( ) ( ) ( )

( ) ( ) ( )







γγγηηξξ=δ+
δ

−
γγγηηξξ≠δ

=
.,,,,,,,,,,,,

14

,,,,,,,,,,,,,

32121212

3212121

vrmzyxifO

vrmzyxifO

 

Proof. We consider two cases. 

Case (I). We assume ( ) ( ).,,,,,,,,,,, 3212121 γγγηηξξ≠vrmzyx  

Now substituting (4.4)-(4.10) into (4.2) and simplifying gives 

( ) zzyyxx wwwO
141414

222
3 δ

+
δ

+
δ

=δ  

.
141414

222

vvrrmm www
δ

+
δ

+
δ

+  (4.11) 

Now multiplying (4.11) by 
2

14

δ
 gives the first part of the theorem. 

Case (II). We assume ( ) ( ).,,,,,,,,,,, 3212121 γγγηηξξ=vrmzyx  

Again substituting (4.4)-(4.10) into (4.3) and simplifying gives 

( ) zzyyxx wwwO
141414

1
222

3 δ
+

δ
+

δ
+=δ  

.
141414

222

vvrrmm www
δ

+
δ

+
δ

+  (4.12) 

Now multiplying (4.12) by 
2

14

δ
 and subtracting one from both sides of the 

equality gives the second part of the theorem, and the proof is complete.  

Remark 4.2. From Theorem 4.1, it is clear that if 0→δ  and 
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( ) ( ),,,,,,,,,,,, 3212121 γγγηηξξ=vrmzyx  we have blow up. On the 

other hand if 0→δ  and ( ) ( ),,,,,,,,,,,, 3212121 γγγηηξξ≠vrmzyx  

then we recover the homogeneous form of Laplace’s equation in 7D. 

5. Connecting the First and Second 

Random Walk Problems 

5.1. A seven dimensional Dirac delta function with singular point 

If 0→δ  in Theorem 4.1, then ( )jvrmzyxw ,,,,,,  is a density 

function, and thus the property of the integral of ( )jvrmzyxw ,,,,,,  

over a small neighborhood of ( )jvrmzyx ,,,,,,  is of most interest. Now 

consider the 7-parallelotope with center at ( ,,,,,, 212121 γγηηξξ )3γ  and 

with sides proportional to the square of the step length ,δ  that is, the 

sides of the 7-parallelotope have area proportional to .2δ  The total 

surface area of the 7-parallelotope is then proportional to ,14 2δ  this 

quantity multiplied by ,
14

2δ
 tends to a finite nonzero limit as .0→δ  

Since the right hand side of the expression in Theorem 4.1 vanishes for 

( ) ( ),,,,,,,,,,,,, 3212121 γγγηηξξ≠jvrmzyx  and its integral over the 

7-parallelotope has a finite nonzero limit as ,0→δ  then in the limit 

( )jvrmzyxw ,,,,,,  must behave like a 7-dimensional extension of the 

Dirac Delta function with singular point ( )3212121 ,,,,,, γγγηηξξ  which 

we introduce as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,03212121 =γ−δγ−δγ−δη−δη−δξ−δξ−δ jvrmzyx  

( ) ( ),,,,,,,,,,,,, 3212121 γγγηηξξ≠jvrmzyx  

( ) ( ) ( ) ( ) ( ) ( ) ( )3212121 γ−δγ−δγ−δη−δη−δξ−δξ−δ∫∫∫∫ jvrmzyx
R

L  

,1=× dvdjdxdydzdmdr  
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where R  is any open region in the 7-parallelotope containing the point 

( ).,,,,,, 3212121 γγγηηξξ  

5.2. A mean value type property 

Theorem 5.1. Let ( )jvrmzyxf ,,,,,,  be continuous on the 7-

parallelotope with center at ( ),,,,,,, 3212121 γγγηηξξ  then we have 

( )3212121 ,,,,,, γγγηηξξf  

( ) ( ) ( ) ( )121,,,,,, η−δξ−δξ−δ= ∫∫∫∫ zyxjvrmzyxf
R

L  

( ) ( ) ( ) ( ) .3212 dvdjdxdydzdmdrjvrm γ−δγ−δγ−δη−δ×  

Proof. Let 0>�  be given. Recall from [1] the Dirac delta function, 

( )xδ  can be defined as the limit of a sequence of discontinuous functions, 

( ),x�δ  where 

( )






>

<
=δ

.if,0

,if,
2

1

�

�
��

x

x
x  

From this definition, we see that by shifting ( )x�δ  to the right by 1ξ  

units, we can define 

( )






>ξ−

<ξ−
=ξ−δ

.if,0

,if,
2

1

1

1
1

�

�
��

x

x
x  

A similar definition holds for 

( ) ( ) ( ) ( ) ( ) ( ).and,,,,, 321212 γ−δγ−δγ−δη−δη−δξ−δ jvrmzy ������  

Now let 

[ ] [ ] [ ]112211 ,,, η+η+−×ξ+ξ+−×ξ+ξ+−= ������R  

[ ] [ ] [ ]221122 ,,, γ+γ+−×γ+γ+−×η+η+−× ������  

[ ]33 , γ+γ+−× ��  
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which contains the point ( ),,,,,,, 3212121 γγγηηξξ  then from Ref. [13] 

contained in [1], we see that R  is a compact, path-wise connected Jordan 

domain in 7
R  with positive volume .128 7�  Since f is continuous on ,R  

then invoking the Mean Value Property for Integrals in Ref. [13] 

contained in [1], we deduce the following: 

( )3212121 ,,,,,, γγγηηξξf  

( ) dvdjdxdydzdmdrjvrmzyxf
R 70 128

1
,,,,,,lim

�� ∫∫∫∫→
= L  

( ) ( ) ( ) ( )121
0

,,,,,,lim η−δξ−δξ−δ= ∫∫∫∫→
zyxjvrmzyxf

R
���

�
L  

( ) ( ) ( ) ( ) dvdjdxdydzdmdrjvrm 3212 γ−δγ−δγ−δη−δ× ����  

( ) ( ) ( ) ( )121,,,,,, η−δξ−δξ−δ= ∫∫∫∫ zyxjvrmzyxf
R

L  

( ) ( ) ( ) ( ) .3212 dvdjdxdydzdmdrjvrm γ−δγ−δγ−δη−δ×  

5.3. A green type function with homogeneous boundary 

conditions 

Observe that as ,0→δ  the boundary points of the discrete problem 

tend to points on ,A∂  and if ( )jvrmzyx ,,,,,,  is a boundary point then 

( )jvrmzyxw ,,,,,,  vanishes on .A∂  To analyze the properties of the 

solution of this boundary problem, we replace ( ,, yxw  )jvrmz ,,,,  with 

the following, which is an extension of the Green’s function, 

( ).,,,,,,;,,,,,, 3212121 γγγηηξξjvrmzyxK  In particular, this so-

called Green’s function for Laplace’s equation in 7D with homogeneous 

boundary conditions, we define to be a solution of 

( ) ( ) ( ) ( ) ( )12121
2 γ−δη−δη−δξ−δξ−δ−=∇ rmzyxK  

( ) ( ) ( ) Ajvrmzyxjv ∂∈γ−δγ−δ× ,,,,,,,32  
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which satisfies the boundary condition 

( ) ( ) .,,,,,,,0,,,,,,;,,,,,, 3212121 AjvrmzyxjvrmzyxK ∂∈=γγγηηξξ  

Note that 

2

2

2

2

2

2
2

zyx ∂

∂
+

∂

∂
+

∂

∂
=∇  

.
2

2

2

2

2

2

2

2

jvrm ∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
+  

5.4. The main theorem 

Consider the Green’s function ( ,,,,;,,,,,, 2121 ηηξξjvrmzyxK  

)321 ,, γγγ  associated with the second random walk problem and the 

function ( )jvrmzyxf ,,,,,,  associated with the first random walk 

problem. Now consider the seven dimensional extension of Green’s second 

identity and apply it to both functions, integrating over the region A  and 

its boundary ,A∂  gives 

{ } dvdjdxdydzdmdrfKKf
A

22 ∇−∇∫∫∫∫ L  

,dQ
n

f
K

n

K
f

A 







∂

∂
−

∂

∂
= ∫∫  (5.1) 

where 
n∂

∂
 is a derivative normal to ,A∂  and Q  is an area on ,A∂  and 

2

2

2

2

2

2
2

zyx ∂

∂
+

∂

∂
+

∂

∂
=∇  

.
2

2

2

2

2

2

2

2

jvrm ∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
+  

Now the connection between the first two random walk problems is given 

as follows: 
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Theorem 5.2. The density function ( )jvrmzyxf ,,,,,,  for the first 

random walk problem, and the Green’s function ( ;,,,,,, jvrmzyxK  

)3212121 ,,,,,, γγγηηξξ  for the second random walk problem are 

related by 

( )3212121 ,,,,,, γγγηηξξf  

( )
.

,,,,,,;ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ 3212121

n

jvrmzyxK

∂

γγγηηξξ∂
−=  

Proof. Observe from (2.11) that ,02 =∇ f  and from the Green’s 

function for Laplace equation in 7D, 

( ) ( ) ( ) ( ) ( ) ( ) ( ).3212121
2 γ−δγ−δγ−δη−δη−δξ−δξ−δ−=∇ jvrmzyxK  

So upon using Theorem 5.1, the left hand side of (5.1) becomes 

{ } dvdjdxdydzdmdrfKKf
A

22 ∇−∇∫∫∫∫ L  

( )jvrmzyxf
A

,,,,,,∫∫∫∫−= L  

( ) ( ) ( ) ( )2121 η−δη−δξ−δξ−δ× mzyx  

( ) ( ) ( ) dvdjdxdydzdmdrjvr 321 γ−δγ−δγ−δ×  

( ).,,,,,, 3212121 γγγηηξξ−= f  (5.2) 

Now from (2.12) and (2.13), it follows on the boundary we have 

( )jvrmzyxf ,,,,,,   

( )
.

,,,,,,;,,,,,, 3212121

n

jvrmzyxK

∂

γγγηηξξ∂
×   

( )jvrmzyxf ,,,,,,=   

( )
n

jvrmzyxK

∂

γγγηηξξ∂
× 3212121 ,,,,,,;ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ

 (5.3) 
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and since K  vanishes on the boundary, the right hand side of (5.1) now 

becomes 

( )jvrmzyxf
A

,,,,,,∫∫  

( )
dQ

n

jvrmzyxK

∂

γγγηηξξ∂
× 3212121 ,,,,,,;ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ

 

( )
.

,,,,,,;ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ 3212121

n

jvrmzyxK

∂

γγγηηξξ∂
=  

Thus by equating the right hand side of (5.2) to the right hand side of the 

equation immediately above, the result follows. 

6. An Equation of the Poisson Type 

6.1. The difference equation for the mean first passage time 

We assume the particle takes steps of length δ  at intervals of time ,τ  

and is equally likely to move to each of its 14 neighboring points from the 

point ( ),,,,,,, jvrmzyx  thus the mean first passage time for each point, 

which we denote by ( ),,,,,,, jvrmzyxN  obeys the following difference 

equation 

( )jvrmzyxN ,,,,,,  

( )[ jvrmzyxN ,,,,,,
14

1
δ±+τ=  

( ) ( )jvrmzyxNjvrmzyxN ,,,,,,,,,,,, δ±+δ±+  

( ) ( )jvrmzyxNjvrmzyxN ,,,,,,,,,,,, δ±+δ±+  

( ) ( )].,,,,,,,,,,,, δ±+δ±+ jvrmzyxNjvrmzyxN  (6.1) 

Note that the above equation expresses the expected time until 

absorption, ( ),,,,,,, jvrmzyxN  in terms of the expected time until 

absorption for each of its 14 points, multiplied by the probability 
14

1
 that 
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the particle moves to each of these points. The time τ  is added as it 

signifies how long it takes for the particle to reach one of the neighboring 

points in a single step. 

6.2. Taylor expansions in the right hand side of (6.1) 

Now by Taylor’s formula, one has the following expansions: 

( )jvrmzyxN ,,,,,,δ±  

( ) ( )jvrmzyxNjvrmzyxN x ,,,,,,,,,,,, δ±=  

( ) ( ),,,,,,,
2

1 32 δ+δ+ OjvrmzyxNxx  (6.2) 

( )jvrmzyxN ,,,,,, δ±  

( ) ( )jvrmzyxNjvrmzyxN y ,,,,,,,,,,,, δ±=  

( ) ( ),,,,,,,
2

1 32 δ+δ+ OjvrmzyxN yy  (6.3) 

( )jvrmzyxN ,,,,,, δ±  

( ) ( )jvrmzyxNjvrmzyxN z ,,,,,,,,,,,, δ±=  

( ) ( ),,,,,,,
2

1 32 δ+δ+ OjvrmzyxNzz  (6.4) 

( )jvrmzyxN ,,,,,, δ±  

( ) ( )jvrmzyxNjvrmzyxN m ,,,,,,,,,,,, δ±=  

( ) ( ),,,,,,,
2

1 32 δ+δ+ OjvrmzyxNmm  (6.5) 

( )jvrmzyxN ,,,,,, δ±  

( ) ( )jvrmzyxNjvrmzyxN r ,,,,,,,,,,,, δ±=  

( ) ( ),,,,,,,
2

1 32 δ+δ+ OjvrmzyxNrr  (6.6) 
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( )jvrmzyxN ,,,,,, δ±  

( ) ( )jvrmzyxNjvrmzyxN v ,,,,,,,,,,,, δ±=  

( ) ( ),,,,,,,
2

1 32 δ+δ+ OjvrmzyxNvv  (6.7) 

( )δ±jvrmzyxN ,,,,,,  

( ) ( )jvrmzyxNjvrmzyxN j ,,,,,,,,,,,, δ±=  

( ) ( ).,,,,,,
2

1 32 δ+δ+ OjvrmzyxN jj  (6.8) 

6.3. The main theorem 

Theorem 6.1. Assume ,
7

lim
2

0,0 τ

δ
= →τ→δD  then the limiting partial 

differential equation arising from (6.1) is given by 

[ ] .1
2

1
−=++++++ jjvvrrmmzzyyxx NNNNNNND  

The boundary condition for N  is given by 

( ) ( ) .,,,,,,,0,,,,,, AjvrmzyxjvrmzyxN ∂∈=  

Proof. Substitute (6.2)-(6.8) into (6.1) and simplifying gives 

mmzzyyxx NNNN 2222

14

1

14

1

14

1

14

1
0 δ+δ+δ+δ+τ=  

( ).
14

1

14

1

14

1 3222 δ+δ+δ+δ+ ONNN jjvvrr   (6.9) 

Now multiplying (6.9) by 
τ7

14
 gives 

mmzzyyxx NNNN 2222

7

1

7

1

7

1

7

1
20 δ

τ
+δ

τ
+δ

τ
+δ

τ
+=  

( ).
7

1

7

1

7

1 3222 δ+δ
τ

+δ
τ

+δ
τ

+ ONNN jjvvrr   (6.10) 
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By assumption 
τ

δ
= →τ→δ 7

lim
2

0,0D  and applying this assumption to 

(6.10), multiplying the result by ,
2

1
 and keeping the term [ +xxND

2

1
 

]jjvvrrmmzzyy NNNNNN +++++  on the left hand side of the 

equation gives the desired result. Now if ( )jvrmzyx ,,,,,,  is a 

boundary point, then, ( ) ,0,,,,,, =jvrmzyxN  since the time until 

absorption at any boundary point is zero. , 
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