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Abstract

Let A be a bounded region in 7D, and let dA be its surface boundary
which we assume to be absorbing. Enclose A and its boundary with a
7-parallelotope all of whose faces are possibly square, and let the sides
be given by x = q;, a;41 for i=1, y=q;,a;4q for i =3; z =aqj, a;11
for i=5 m=aqj,a;41 for i=7 r=aqj a4 for i=9; v=aq,a
for i =11; j=a;, aj41 for i =13. Let & be the step length in the
random walk, and assume that the intervals [q;, a¢;;1] for

i=13,5,7,9, 11,13 can be subdivided into the set of points

xp, = a1 + 08k, 2y =ag, 0< Ry <ny,

Vo = a3 +0ky, yp, = a4, 0 < kg < ng,
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Zp, = a5 + Ok, zp, = ag, 0 < k3 < ng,
mp, = a7 +0ky, my, =ag, 0 <ky < ny,
Thy = ag +8ks, my, = ayp, 0 < ks < n,
Upg = @11 + Okg, Upg = a1, 0 < kg < ng,
Jky =13 + k7, jp, = a1, 0 < k7 < n7.

We say (g, Yky» Zkg ME s Thy» Vkgs Jh,) 18 an interior point of A,
if it does not lie on dA. If one of the neighboring points lies on dA or is
exterior to A, we call it a boundary point. In this paper, working
primarily in 7D, we study the following problems:

(a) What is the probability that a particle starting at an interior
point (x, y, z, m, r, v, j) reaches the specified boundary point
(%01 Y2 Zw3> Mwds Twss Vwss Juw7) before it reaches and is absorbed
at any other boundary point?

(b) What is the probability that a particle starting at an interior
point (x, y, z, m, r, v, j) In the region A reaches a specified interior
point (&1, &9, M1, N2, B1, Ba, B3) before it reaches a boundary point

and is absorbed?

(c) What is the “mean first passage time” for each point (x, v, z, m,

r,v, j)?
1. Introduction

In this paper, the problems in the abstract are studied under the
assumption that the time it takes the particle to reach the fixed boundary
or interior point is not of concern, that is, the problems are investigated
under the assumption of no time-dependence. We show in this paper, that
such an investigation leads to some inhomogeneous forms of Laplace
equation in 7D. We also give the boundary conditions along with its proof
for solving Laplace equation in 7D. A significance of the discrete to

continuous random walk derivations is the verification of some existence
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and uniqueness properties of these partial differential equations.

In Section 2, we consider the first random walk problem in the
abstract in 7D, and show that the difference equation model for this
problem when expanded in a Taylor series with remainder, and going in
the limit leads to Laplace equation in 7D. This section takes inspiration
from [1].

In Section 3, we prove the random walk process used in Section 2 for
solving Laplace’s equation in 7D. This section takes inspiration from [1],

but more importantly [2].

In Section 4, we consider the second random walk problem in the
abstract in 7D. In particular, we show the difference equation model for
this problem when expanded in a Taylor series with remainder and going
in the limit leads to an inhomogeneous form of Laplace’s equation in 7D.
If the particle starts its motion at an interior point which is not the one
we fix, then this inhomogeneous form of Laplace’s equation reduces to the
homogeneous form of Laplace’s equation in 7D. If the particle starts its
motion at the fixed interior point, then this inhomogeneous form of
Laplace’s equation blows up. A consequence of the random walk
formulation leads us to establish a relationship between the first two

random walk problems in the abstract in 7D.

Finally, in Section 5, we consider the third random walk problem in
the abstract in 7D, and show the difference equation model for this
problem when expanded in a Taylor series with remainder and going in
the limit leads to an equation of the Poisson type. This problem has been
explored in the literature as the (mean) first passage time in the context
of wvarious phenomena of physical, Dbiological, psychological and
engineering importance. For examples, see Refs. [39], [12], [38], [37], [30],
[31], [3], and [17] contained in [1]. Note that this problem is independent
of time, since the possible times until absorption for each interior point is

averaged out.
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2. Derivation of Laplace Equation in 7D

We assume the particle is equally likely to move to any of its fourteen

neighboring points from the point (x,y, z, m, r, v, j). Thus the

probability it moves to any of its fourteen neighbors is ﬁ The difference

equation for the probability that the particle reaches the boundary point
(Xw1s Yw2s Zwss Muwds Twss Vwes Jw7) from the point (x, y, z, m, r, v, j)
can be expressed in terms of the probability that it moves to any of its

fourteen neighboring points and reaches (X1, Yw2s Zw3s Mwds Twss
V6> Jw7) from one of these points. Now let f(x, v, z, m, r, v, j) be the
probability the particle starts at the interior point (x, y, z, m, r, v, j)
and reaches the boundary point (x,1, Yu2s Zw3> Mwas Twss Vw6s JwT)s

then the difference equation is obtained as

flx, y,2, m,r, v, j) = ﬁ[f(x 98, y, z,m,r, v, j)+ f(x, y 9, 2z, m,r,v, j)

+f(x, y,zx8, m,r,v, j)+ flx,y,z, m£t3, r, v, j)

+f(x, y, z,m, r£8, v, j)+ f(x, y, 2, m, 7, v£ 8, j)

+f(x, v, z, m, r, v, j +9)]. (2.1)
If (x, y, 2, m, r, v, j) is a boundary point, we have

flx, y, 2, m, r, v, j)

{1; lf (x’ y, 2, m,r, l)) = (xwla ywz, Zw3, mw4, rw5, vw6’ jw7)9
0’ lf (x, y’ 27 m, r’ U) # (xwl’ wa’ Zw37 mw4’ rw5’ UM)6’ ]w7)

2.2)
Remark 2.1. Note that when the particle is at a boundary
(x’ Yy, 2, m, r, U) * (xw19 yw2, 2w3, mw4, rw5, vw6’ .]w7)

it is absorbed and cannot reach the boundary point (x,,1, Y2, Zw3s Mw4s
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T'wss Uwes Jwr)- 1f one of the neighboring points of (x, y, z, m, r, v) is a

boundary point, then (2.2) is to be used in (2.1).

Remark 2.2. In the limit as the step length & — 0, the number of
points in the subdivisions [a;, as], [as, a4], [as, agl, [a7, agl, lag, a19],
@11, a12], @13, a14], tend to infinity, and the boundary points defined

actually lie on JA.
Now by Taylor’s formula, one has the following expansions:

fx£8, y,2,m,r,v, j) = flx, y, 2, m, r, v, j) £ 8 (x, y, 2, m, r, v, j)
1 9 . 3
+§8 fxx(x7 Yy, =2, m,r, 0, ])+ O(8 )7 (23)
fle, y£8, 2, m,r, v, j) = flx, y, 2, m, 7, v, j) £ 8 (x, ¥, 2, m, 7, v, j)
1 .2 . 3
+§5 fyy(x’ Yy, 2, m, r,0, .])+O(5 )’ (24)
flx,y, 228, m,r, v, j)=flx, 5,2, m,r,v, )£ 8f,(x, 5,2, m, r, v, j)
19 . 3
+ 55 for(x, 3, 2, m, r, v, j)+O(8%), (2.5)
flx, y,z, mt8,r,v, j)=flx, 5, 2, m, r,v, j)£8n(x, y, 2z, m,r, v, j)
j ) . 3
+§5 fmm(x, y; Z) m’ r; U, .])+O(5 )’ (26)
flx,y,2,m,r£8,v, j) = flx, y, 2, m, r, v, j) £ &f.(x, y, 2, m, r, v, )
1.9 . 3
+§8 frr(xa Yy, 2, m, r, 0, ])+O(8 )7 (27)
f(x,y,Z,m,ryvia,j)=f(x,y,Z,m,r,U,j)iva(x,y,Z,m,r,v,j)
1 .2 . 3
+§6 fvu(x’ Yy, 2, m, 1,0, .])+ 0(5 )9 (28)

flx, y, 2, m,r, v, j£38) = flx, y, 2, m, 7, v, j) £ 8j(x, y, 2, m, 7, v, j)



6 CLEMENT BOATENG AMPADU

1 .
+5 8@ 5.2 m r v, )+ 0.

Now using (2.3)-(2.9) in (2.1) and simplifying gives

1 <2 ) .
0= 8l (e, 3. 2o m v )+ fiy (0, 3,20 my 70, )

+o(x, 3, 2, my v, v, J)+ fram(x, ¥, 2, m, 1, 0, j)

+f(x, ¥, 2, m, r, 0, J) + fo(x, v, 2, m, 1, v, )

+f;(x, 3, 2, m, 1, v, )]+ O(8?).

(2.9

(2.10)

Multiplying (2.10) by 2—;1 and letting & — 0 gives Laplace’s equation in

7D

0= fo(x, 3, 2, m, 7,0, j) + fy,(x, ¥, 2, m, 7, v, j)
+o(x, 5, 2, my 1,0, J)+ [ (x, ¥, 2, m, 10, )

+f(x, ¥, 2, m, r, 0, J) + fo(x, v, 2, m, 1, v, )

+fji(x, ¥, 2, m, 1, v, ).

2.11)

The function f(x, y, z, m, r, v, j) is now interpreted as a probability

density. We further assume that the area @ is defined on dA and as

3 — 0, the point (xwl’ Yw2s Fw3> Myw4s Twss Vwés Jw7)

A

tends to the

(boundary) point (&, 9, 3, i, 7, 0, j) on 9A. The boundary conditions

(2.2) now take the form
flx, y, 2, m, r, v, j)
={0,if (x, y, 2, m, r, v, j) € 9A,

A A

(x, y,2,m, r,v jle (%, 3, 2 m,F 0, j)}

(2.12)

Since f(x, v, z, m, r, v, j) is now interpreted as a probability density,
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normalizing gives

ij(x, y,z,mr,v, j)dQ =1. (2.13)
0A

Now we summarize the main result of this section as follows:

Theorem 2.3. Assuming & — 0, then the limiting partial differential
equation of (2.1) is

0= fu(x, ¥, 2, m, 1,0, j) + fy,(x, ¥, 2, m, 1, 0, j)
+o (6, ¥, 2, m, 1, v, )+ fram (X, 3, 2, m, T, v, )
+r(x, ¥, 2, m, 1,0, )+ fou(x, 3, 2, m, 1,0, )
+fij(x, v, 2, m, 1, v, j)

and the boundary condition for f is
flx, v, 2, m, r, v, j)

=10, if (x, y, 2z, m, r, v, j) € 9A,

A A

(x, y,2,m,r,v, j)e (%, 3, 2, m, 7,0, j)}.
3. Proof of the Random Walk Method for
Solving Laplace Equation in 7D

Our interest is to find the solution of Laplace’s equation in a region in
7D bounded by parallel and perpendicular lines in each of the axial
directions, given the value of the potential function at all points on the
boundary. Suppose the value of the potential is required at some point A
in the volume bounded by parallel and perpendicular lines in each of the
axial directions. Put a marker at the point A. The random walk method
operates as follows starting from A one can move into one of the fourteen
directions in 7D. The direction chosen is random and such that each

direction is equally likely. The probability of moving in any one direction
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1s ﬁ The choice of direction must be dependent on some suitable

random process. Following [2], one could simulate the whole process by
computer which could generate a random integer in the range 0 to 13
inclusive. A table such as the one below would then be used to interpret

this number in terms of a move in the possible fourteen directions in 7D.

Table 1. Random integer generator

Number pair Direction Pair
0, 1) (positive x-direction, negative x-direction)
2, 3) (positive y-direction, negative y-direction)
(4, 5) (positive z-direction, negative z-direction)
6, 7) (positive m-direction, negative m-direction)
8,9 (positive r-direction, negative r-direction)
(10, 11) (positive v-direction, negative v-direction)
(12, 13) (positive j-direction, negative j-direction)

Having made such one move the process is repeated until the marker
at A reaches a point on dA. At this point the value of the potential say

&, is noted. By this means a sequence {£;} is generated.

Theorem 3.1. Let y 4 denote the value of the potential at A, then

n
A n—oo n

which states that the average value of the endpoint potentials {§;} tends to

¥4, as the number of random walks tends to infinity.

Proof. Let B be an interior point. Denote the point (p;, p9, 1, 93,
n, Iy, r3) as the intersection of the gridlines in 7D emanating from the
axial directions. Now let (p;, p9, 91, 99, 11, T, T'3) be any point, (i, ig,

Jis Jo, ki, ko, kg) be any interior point, and let (a;, ag, s1, S9, fi, fa, f3)
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be any boundary point. Let B be the point (i, i3, j1, Jo, k1, kg, k3), and

let its potential be vy, and consider the potentials

i9, j1,Jo, k1, kas ks

Vi 1y, j1, jo. by, ko, kg - that 1s, the potentials to the immediate right and

left of B in the x-direction, then by Taylor series expansion of y in the

positive and negative x-direction, we obtain

oY
Vi £1,ig, j1, jo. by ko by = Viia, i, dos ks ko, ks ih[g B

+ —_—
x>

2

} +O(h®), (3.1
B

where h is the grid interval (step size). Now in the positive and negative
part of each of the remaining axial directions, we obtain Taylor series
expansion of p as follows

el

.. .. P .. . —+ _-
Vit ig %1, 1, jo. by, ko, ks wl1712,11,12,k1,k2,k3—h[ay}B

2 2
N {a_g} + O, (3.2)
ay B

9y
Vi ig, Lo, b ko, by = Viria, iy, o B ko, g ih[a_z B
h* {azw

3
e E)z_zL +0(h?), (3.3)

Y
L. - .. + p| 2
wl]_5127]17]2ilyk17k27k3 wl1,12,11,12,k1,k2,k3 —h|:am B

2 2
+h_{_a w} + O, (3.4)
2 am2 B

Y
L. - . . + p &Y
wl]_5127]17]2;k1i17k27k3 wl1,12,11,12,k1,k2,k3 —h|:ar B
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2 2
o {a_g} +O(h?), (3.5)
2 ar B

Y
L. - . . . + p ¥
wll,lg,]l,]z,kpkgil,kg wl1,12,11,12,k1,k2,k3 —h|:av B

2 2
+h_{3_ﬂ +0(h?), (3.6)
2 av B
oY
Vi in, j1, o, by ko kg t1 = Viyig, i, jo, by ko, kg ih[a_j}B
2 2
+%F_ﬂ + O(h®). (3.7
9" Ip

Now adding the right hand side of (3.1)-(3.7) gives

L4Y;, iy, 1. jos by, ko, kg

+ + + +—+t—+—
axZ 9?22 am? or? w? 9

+ h2[82w % v, O I O 32"’} +0(h%). (3.9
B
On the other hand adding the left hand side of (3.1)-(3.3) gives
Vi £1,ig. i o bk kg T Vinint1, g Ry koo kT Vi in, 4L o, ko kg (3:9)
and adding the left hand side of (3.4-3.7) gives
Vi g, iy ot ki ko, kg ¥ Viy ig, i, o, k1, ko, kg ¥ iy i, i, jo, ky, ko t1, Ry
Wiy iy, i, jo. by ko, Ry £ (3.10)

Since Laplace equation in 7D implies

2 2 2 2 2 2 2
B R R R R R (311
ox dy 0z om or v Jj
it follows that upon neglecting higher-order terms in (3.8) and equating

the remaining term to the sum of (3.9) and (3.10), we get the following:
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Y493 iy, ok ko kg = Vi Lig, fr o,k ko by F Vi in®1, i, o, Ry Ry kg
Vi ig, W+, o, by ko kg T Vi ig, 1, Jot1, Ry, ko, kg
i g, o dos kit ko kg Vi dg, i, o, by ko £l By

iy ig, j1, oo by, ke, kg +1 (3.12)

which 1s true for all interior points and therefore defines a set of

equations with surface boundary conditions

¥0,0,0,0,0,0,0 = VO,O,O,O,O,O,O

¥1,0,0,0,0,0,0 = V1,0,0,0,0,0,0

etc., (3.13)

where Vi1 49 61,52, 71,72, f3 represents the (known) values of p at the
boundary point (al, a2, sl, s2, f1, f2, f3). The equations defining

Yp1.po.a1.az. .5,y AT thus
1
Viy ig, 1. jo by ko ks = ﬂ[wi1i1,i27j171'2,k17k27k3 Vi ig 1, jr,jo. by ko, ks
Vi) ig, ¥, jo, by ke, ks T Piyig, jr, jot1, By, ko, ks
i iy, 1. jo. ki t1, ko kg T+ iy ig, i, jo. By ket Ry
i g,y oy R g, Ry +1
Val,a2, 1,52, f1, 72, f3 = Val,a2,s1,s2, f1, £2, 3 (3.14)

This completes the first part of the proof. Now let P12 L2 /1.12.f3 1,
i,i9, J1,J2, k1, ke, kg

the probability of absorption at the boundary (al, a2, sl, s2, f1, f2, f3)

starting from the interior point (i, is, j1, Jo, k1, ko, k3), and executing a
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random walk of the type already described in this paper. Suppose that a

reward Vi1 49 61, 52,71,72,f3 18 associated with the absorption at

(a1, a2, s1, s2, f1, f2, f3) and let E be the expected

P1,P2,91,92,1,12,73
reward starting from the point (p;, p9, q1, Q2, 11, Ia, 13), that is, the

average reward over a large number of trials. Consider the absorption at
(al, a2, sl, s2, f1, 2, f3) starting from (i, i9, Jj1, jo, k1, kg, k3). This

can occur in one of 14 ways,

(a) a first move to (i; 1, ig, ji, Jo, Ry, k9, kg) and then absorption at
(a1, a2, s1, s2, f1, f2, f3) from there,

(b) a first move to (ij, iy 1, ji, Jjo, k1, k9, kg) and then absorption at
(a1, a2, s1, s2, f1, f2, f3) from there,

(c) a first move to (i1, ig, j; £1, jo, y, kg, k3) and then absorption at
(a1, a2, s1, s2, f1, f2, f3) from there,

(d) a first move to (i1, ig, ji1, jo 1, Ry, k9, k3) and then absorption at
(a1, a2, s1, s2, f1, f2, f3) from there,

(e) a first move to (i1, i, J1, jo, B £ 1, k9, k3) and then absorption at
(a1, a2, s1, s2, f1, f2, f3) from there,

() a first move to (i1, is, j;, Ja, k1, kg £ 1, k3) and then absorption at
(a1, a2, s1, s2, f1, f2, f3) from there,

(g) a first move to (i1, i, J1, jo, k1, ke, k3 £1) and then absorption at
(a1, a2, s1, s2, f1, f2, f3) from there.

By elementary laws of probability, we have,

al,a2,sl,s2,f1,f2,f3 _ L al,a2,sl,s2,f1,f2,f3 al,a2,sl,s2,f1,f2,f3
1,19, 1, J2, k1, ke, kg 14 Y i£l,i9, j1,Jo, k1, ko, k3 i,i9%l, ji,jo, k1, ko, kg
al,a2,sl,s2,f1,2,f3 al,a2,sl,s2,f1,f2,f3

1,12, 111, jo, Ry, kg, ks 1,49, 1, Jj2%1, Ry, ko, kg
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al,a2,sl,s2,f1,2,f3 + Pal,a2,sl,82,fl,f2,f3
01,19, J1,J2, k1 £1, kg, kg 11,19, J1,J2, k1, ko £1, kg

al,a2,sl,s2,f1,2,f3 3.15
0,19, J1,J2. k1, ko, kg £1 1 ( ' )
By definition of mathematical expectation

al,a2,sl,s2,f1,f2,f3 _ @ =
Val,a2,81,82,f1,f27f3pi1,iz,j17j2,k1vk27k3 _Ell’LZ’h’m’kl’kZ’kS-
al,a2,sl,s2, f1,f2,f3

Now if we multiply (3.15) by Vi1 49 51,s2,71, 2,3 and sum over all

possible points (al, a2, s1, s2, f1, 2, f3), then (3.15) which is valid for

all interior points can be written as
11,12, J1,J2, k1, R, k3 14 Yl ig, j1,Jo. ki ko Ry 11,1911, j1, Jo, k1, ko s k3

+Ei1,i2,j1i1,j2,k1,k2,k3 + Ei1,i2,j1,j2i1,k1,k2,k3

By iy, j1, oo k1 ko ks iy ig, i, ok Ry £ kg

+Ei1,i2,j1,j2,k1,k2,k3ir1]- (3.16)

. al,a2,s1,s2,f1,f2,f3 _ . .
At the boundary points we have Pal,a2,sl,s2,f1,f2,f3 =1 since there is a

unit probability of absorption at the boundary point (al, a2, sl, s2, f1,
12, f3) considering we are already there to begin with. Thus at boundary

points we have

3 al,a2,sl,s2, f1,f2,f3
Eal,a2,81,s2,f1,f2,f3 = Val,a2,81,82,f17f27f3Pa1,027815327flff2ff3

= Va1,a2,51,52, 1, f2, 3 (3.17)

Thus, E satisfies the equations

DP1,P2,91,92,1,72,73

1
Ei1,i2,j1,j2,k1,k2,k3 T 14 Ei1i1,i2,j1,j2,k1,k2,k3 + Ei1,i2i1,j1,j2,k1,k2,k3
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+E + FE

1,19, 111, jo, Ry, ko, ks 1,19, J1, jo X1, k1, ko, kg

+Ei iy o kit ke ks T i iy i o by ke 1 kg

+E; iy 1, jos by, ky, kg £l ]
Eq1,a2,51,52, 71,72, 13 = Val,a2,51,52, 71, £2, £3- (3.18)

A comparison of (3.14) and (3.18) shows that they are in fact identical

with E A solution of

P1.P2.q1. G .1,y L Place of vy 000

E is therefore a solution of p PL, D2, 41,49, and it is

P1,DP2,91,92,1,12,13 n,rp,r3°

E that i1s found experimentally by the procedure

P1,D2,91,92,1,12,13

described at the beginning of this section.
4. An Inhomogeneous forms of Laplace Equation in 7D

Let (x, y, 2, m, r, v) be an interior point in the second random walk
problem of the abstract, and let (&, &3, N1, M2, 11, Y2, ¥3) be a fixed

interior point. Since the problem is time independent, and the particle

does not stop its motion once it reaches (&;, &s, Ny, Mo, Y1, Y2, Y3) for the

first time, it is possible for the particle to pass through the point

(&5 €2, M1> M2» Y1> Yo, Y3) more than once before it reaches and is

absorbed at the boundary. Consequently, if the particle begins its motion

at (&, &, M1, N2s Y1> Y2, ¥Y3), it has unit probability of reaching
(&1, €2, N> M2»> Y15 Y2, Y3), since it is already there to begin with.

However, it can also move to one of its 14 neighboring points and each

(&1, €2, M1> Mas V1> Y2, Y3) from there if the neighbor is not a boundary
point. Therefore, if we introduce a function w(x,y, z,m, r, v) that
characterizes the prospects of a particle reaching (&;, &9, M1, N2,
Y1, Y2, Y3 ), from the starting point (x, y, z, m, r, v), we cannot consider

w(x, y, z, m, r, v) to be a probability distribution since it may assume
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values exceeding unity. In particular, w(&;, &2, N1, N2> Y1, Y2, ¥3) = 1.
4.1. The difference equation for w(x, y, z, m, r, v)
Case (I). If (x, y, z, m, r, v) is a boundary point, then
w(x, y, z, m, r,v) = 0. (4.1)

Case (II)' If (xa Yy, 2, m, r, U) * (gl’ &27 n]_a n27 Y]_a ’Y27 Y3)a then
1
w(x, y, 2, m, r,v) = 7 [wlx £38, y, 2, m, 7, v)

+w(x, y£98,z, m, r,v)+w(x, y,zx 8, m, r, v)

+w(x, y,z, mt8, r,v)+w(x, y, z, m, r+ 38, v)

+w(x, y, z, m, r, v £ §)]. (4.2)
Case (II). If (x, y, 2, m, r, v) = (&1, &g, M1, M2, Y1, Y2, ¥3), then

w(él’ &2’ N> M2 Y15 Y2 'YS)

1
=1 +ﬁ[w(gl * 87 g2’ N1, N2> Y1, Y2, ’Y3)

+w(&;, &2 £8, My, Mg, Y1, Y2, V3) T w(&p, &2, M £, Mg, V1, V2, V3)
+w(§1’ &2’ MNi> N2 * 8’ Y1, Y2, Y3)+ w(al’ &2’ N> N2> 71 * 8’ Y2, ’Y3)
+LU(§]_, &27 Tlla TI2’ Yla YZ * 87 'Y3)

+LU(§1, §2’ N> M2 Y15 Y2, V3 * 6)] (43)
4.2. Taylor expansions in the right hand side of (4.2)
wlx £38, y, 2z, m, 1,0, j)

=w(x, y, 2, m, r, v, j) £ dw,(x, y, 2z, m, r, v, j)

+%82wxx (x, ¥, 2, m, 7, v, j)+O(8?), (4.4)
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w(x, y+3d, z, m, r,v, j)

=w(x, y, 2z, m, 1, v, j)+dw,(x, y, 2, m, 1, v, j)

1 .
+§82wyy(x’ y; Z) m’ r; U, .])+ 0(83 )’ (45)

w(x, y, 28, m, r, v, j)

=w(x, y, 2z, m, 1,0, j)+dw,(x, y, 2, m, r, v, j)

+%52wzz(x, y, 2, m, 1, v, j)+O(8?), (4.6)

w(x, y, z, mtd, r,v, j)

=w(x, y, 2z, m,r, v, j) £ dw,y,(x, y, 2, m,r, v, j)
+ 1 52 ( N+ 083
5 O Wnm (2, y, 2, m, 1, v, J)+0(8”), 4.7

w(x, y, 2z, m, r£38, v, j)

=w(x, y, 2z, m,r, v, j) £ dw,(x, y, 2, m,r, v, j)

+%52wrr(x, y, 2, m, 1, v, j)+O(8%), (4.8)

w(x, y, z, m, r,v*3, j)

=w(x, y, 2, m, r, v, j) £ dw,(x, ¥, 2, m,r, v, j)

+%52wvl)('x’ y; Z) m’ r; U, .]) + 0(83 )’ (49)

w(x, y, 2z, m, r, v, j £ 9)

= w(x, y, 2, m, 1, v, j) £ dw;(x, y, 2, m,r, v, j)

+%82wjj(x, y,z,mr,v, j)+ 0(83). (4.10)
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4.3. The main theorem
Theorem 4.1. For small 3, the inhomogeneous form of Laplace

equation arising from (4.2) and (4.3) is given by

Wyy +Wyy + Way + Wiy + Wy + Wy + W

0(6)’ if (x’ Y, 2, m, T, l)) # (&1’ &2’ M1 N2> Y1, Y2, 73)>
=J-14 .
= 0@©), if (x,y, 2 m,r,v)=(, &, M1, N2, 11, Y2, ¥3)-

Proof. We consider two cases.

Case (I). We assume (x, y, z, m, r, v) # (§;, &2, M1> N2, Y15 Y2, ¥3)-
Now substituting (4.4)-(4.10) into (4.2) and simplifying gives

2 2 2
3y_ 90 5 S
O%) = 7 e * 7 W ¥ 77 Wzz

82 82

82
+— W, + vav.

+ T Wmm + 1 (4.11)

Now multiplying (4.11) by % gives the first part of the theorem.
)

Case (II)' We assume (x7 Yy, 2, m, r, U) = (g]_a g27 Tlla TIZ, Yl, YZ, Y3)
Again substituting (4.4)-(4.10) into (4.3) and simplifying gives

3 82 82 82
0(6 )Z 1+ﬁwxx +Ewyy +szz

82 82 82
+Ewmm +ﬁwrr +vav' (412)

Now multiplying (4.12) by ;—;L and subtracting one from both sides of the

equality gives the second part of the theorem, and the proof is complete.

Remark 4.2. From Theorem 4.1, it is clear that if 8 - 0 and
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(x, 5, 2, m, r,v) = (&1, &2, M1> N2> Y1» Y2, ¥Y3), we have blow up. On the
other hand if § - 0 and (x, y, 2z, m, r, v) # (&1, €2, M1> N2> V1> Y2> V3 )>

then we recover the homogeneous form of Laplace’s equation in 7D.

5. Connecting the First and Second
Random Walk Problems

5.1. A seven dimensional Dirac delta function with singular point

If 8 50 in Theorem 4.1, then w(x, y, z, m, r, v, j) is a density
function, and thus the property of the integral of w(x, v, z, m, r, v, j)
over a small neighborhood of (x, y, z, m, r, v, j) is of most interest. Now
consider the 7-parallelotope with center at (&;, &2, N1, N2, Y1, Y2, ¥Y3) and

with sides proportional to the square of the step length 8, that is, the
sides of the 7-parallelotope have area proportional to &2. The total

surface area of the 7-parallelotope is then proportional to 1482, this

14

quantity multiplied by = tends to a finite nonzero limit as & — O.
)

Since the right hand side of the expression in Theorem 4.1 vanishes for
(x, ¥, 2, my r, v, j) # (&, &2, N1» N2s Y1> Y2, Y3 ), and its integral over the
7-parallelotope has a finite nonzero limit as & — 0, then in the limit
w(x, y, z, m, r, v, j) must behave like a 7-dimensional extension of the
Dirac Delta function with singular point (§;, &5, M1, M2, Y1, Y2, Y3) Which

we introduce as follows:
8(xx = &1)3(y — &2)8(z —My)d(m —Mg)d(r — v1)3(v — v2)8(j - v3) = O,
(x, Yy, 2, m,r,uv, ]) * (g17 §2a T.I]_7 TIZ, Yl’ Y2, Y3)7

” ”Rs(x —E)8(y — &9)8(z = 11)8(m —M2)8(r — v1)8(v — ¥2)8(j — ¥3)

X dxdydzdmdrdvdj =1,
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where R 1s any open region in the 7-parallelotope containing the point

(&1, €25 1> N2> Y15 Y25 ¥3)-
5.2. A mean value type property

Theorem 5.1. Let f(x, y,z, m,r,v, j) be continuous on the T7-

parallelotope with center at (§;, &y, M1, N2, Y1, Y2, ¥3), then we have

f&1, €2, M1, M9, Y15 Y2, V3)

- ”...”Rf(x, y, 2, m, 1, v, j)3(x — €)8(y — &)8(z - my)

X 8(m — Mg )d(r — v1)d(v — v9)8(j — Y3 )dxdydzdmdrdudj.

Proof. Let ¢ > 0 be given. Recall from [1] the Dirac delta function,

3(x) can be defined as the limit of a sequence of discontinuous functions,

d.(x), where

1 .
5.(v) = {3 <o
0, if |x| > e

From this definition, we see that by shifting 8.(x) to the right by &;

units, we can define

1 .
Se(x—§1)= E, if |x—§l|<6,
0, if |x-§&>e

A similar definition holds for

65()"&2), 66(2_n1)> Se(m_nQ)’ 65(7'— Yl)’ 86(0_72)5 and 66(.] _73)'

Now let

R=[-+&, e+ & [x[-e+E&, e+ & x[-e+my, e +my]
X [—e+ Mg, e+ Mol x[-e+ v, e+ v ]x[-c+ v9, ¢ + V5]

X [—E+Y3, E+Y3]



20 CLEMENT BOATENG AMPADU

which contains the point (§;, &9, My, Na2» Y15 Y2, ¥3), then from Ref. [13]
contained in [1], we see that R is a compact, path-wise connected Jordan

domain in R’ with positive volume 128¢7. Since f is continuous on R,

then invoking the Mean Value Property for Integrals in Ref. [13]

contained in [1], we deduce the following:

f(&p ‘V;z, N1, N2> Y1, Y2, Yg)

= lim jjjj flx, y,z, mr v j) 1 dxdydzdmdrdvdj
<=0 R 128¢7

- nm”---HRf(x, ¥, 2 m, v, 3 (x - £1)8.(y - )8, (z = my)

e—0

X 8.(m —Mg)8.(r = 11)8.(v — v2)8.(j — v3)dxdydzdmdrdudj
- H ijf(x, ¥, 2 m, 7, v, j)8(x — &)8(y — £5)8(z — 1)

x 8(m —ng)d(r — v1)d(v — v9)8(j — v3)dxdydzdmdrdudj.

5.3. A green type function with homogeneous boundary
conditions

Observe that as & — 0, the boundary points of the discrete problem
tend to points on 0A, and if (x, y, 2, m, r, v, j) is a boundary point then
w(x, y, z, m, r, v, j) vanishes on dA. To analyze the properties of the
solution of this boundary problem, we replace w(x, v, z, m, r, v, j) with
the following, which is an extension of the Green’s function,
K(x, y, z, m, r, v, J; &, &9, M1s Mo, Y1s Y2, ¥3)- In particular, this so-

called Green’s function for Laplace’s equation in 7D with homogeneous

boundary conditions, we define to be a solution of
VZK = —8(x — & )3(y ~ §2)8(z — m1)8(m — n)8(r — 1)

X 8(v —v9)8(j —v3), (x, ¥ 2 m,r v, j)e oA
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which satisfies the boundary condition
K(x’ Y, 2, m,r,, .]7 E.!]_’ E.yZ’ Th, 112, 'Y]_a 'Y27 'YS) = Oa (xa Yy, 2, m,r,u0, j)G aA

Note that

02 32 32
+ +—

vi-2 %
dx 8y2 922

AN LI LI €
+—t—+—+—.
om? o2 w? 9>

5.4. The main theorem

Consider the Green’s function K(x, y, z, m, r, v, j; &, &o, N1, N2,
Y1, Y2, Ya) associated with the second random walk problem and the
function f(x, y, z, m, r, v, j) associated with the first random walk

problem. Now consider the seven dimensional extension of Green’s second
identity and apply it to both functions, integrating over the region A and
its boundary 0A, gives

J' j J' jA{fsz — KV2fldxdydzdmdrdudj

SIRE e

where ai is a derivative normal to dA, and @ is an area on dA, and
n

Now the connection between the first two random walk problems is given

as follows:
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Theorem 5.2. The density function f(x, y, z, m, r, v, j) for the first
random walk problem, and the Green’s function K(x, y, z, m, r,v, J
€1, €9, N1> N2> Y1, Yo, Y3) for the second random walk problem are

related by

f(&1, €25 M1s M2 Y15 Y2 Y3)

aK(j?,‘, 5]’ éa 7;7', fa l}a ]7 gla gz’ Th, n27 Y17 YZ’ Y3)
on '

Proof. Observe from (2.11) that V?f =0, and from the Green’s

function for Laplace equation in 7D,
VZK = =8(x - &)8(y — £2)8(z = 1)8(m —2)3(r = 11)3(v — v2)8(j - ¥3).
So upon using Theorem 5.1, the left hand side of (5.1) becomes

J‘ J‘ J’ I A{fVZK - KV2f}dxdydzdmdrdudj

- _J-J....J-J.Af(x, ¥, 2, m, T, 0, J)

X 8(x = &1)8(y — £2)8(z — n1 )d(m — )
X 8(r — v1)8(v — v9)8(j — v3)dxdydzdmdrdvdj
= —f&, &2, s M2, 115 Y25 V3)- (5.2)
Now from (2.12) and (2.13), it follows on the boundary we have
f(x, 5,2, m, r, v, j)

% aK(x’ Y, &, m,r,0, j; 8::'1, &2’ N1, N2> Y1, Y2, 73)
on '

=f(x, 5,2, m, r, v, j)

aK(i" 5}’ é’ 7;7" ’:’ l}a ]a &1’ €2a Th, TIZ’ Yl’ YZ’ Y3)
on

X

(5.3)
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and since K vanishes on the boundary, the right hand side of (5.1) now

becomes

J.J.A flx, y,z,m,r,v, j)

BK(fc, 5], é, 7;1, ;', 0, ]7 ala &27 T.|17 nZ, Y17 YZ’ Yg)dQ

% on

aK(QZ‘, 5], é7 7’;],, ’:a ﬁ7 ]7 &la §27 n]_7 n27 ’Y]_? Y27 Y3)
on

Thus by equating the right hand side of (5.2) to the right hand side of the

equation immediately above, the result follows.
6. An Equation of the Poisson Type

6.1. The difference equation for the mean first passage time

We assume the particle takes steps of length & at intervals of time T,

and 1s equally likely to move to each of its 14 neighboring points from the

point (x, y, z, m, r, v, j), thus the mean first passage time for each point,
which we denote by N(x, y, z, m, r, v, j), obeys the following difference

equation

N(x, y, 2, m, r, v, j)
1 .
=1+ [IN@£8 5,2 m v, )

+N(x, y+9,2,m,r,v, j)+ N(x, y, 2+ 8, m, r, v, j)
+N(x, y,2,m+38,r,v, j)+ N(x, y, 2, m, r £ 3, v, j)

+N(x, y, 2, m, r,v+38, j) +N(x, y, 2, m, r, v, j £)]. (6.1)

Note that the above equation expresses the expected time until

absorption, N(x, y, z, m, r, v, j), in terms of the expected time until

absorption for each of its 14 points, multiplied by the probability ﬁ that
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the particle moves to each of these points. The time T is added as it
signifies how long it takes for the particle to reach one of the neighboring

points in a single step.
6.2. Taylor expansions in the right hand side of (6.1)
Now by Taylor’s formula, one has the following expansions:

N(x <3, y, 2 m,r, v, J)

= N(x’ y’ 2> m’ r> U, .])i_SNx(x’ y’ 2> m’ r> U, J)
+l82N (x, v, 2z, m, 1,0, j)+O(8°) (6.2)
9 XX y Y 2, »y I U, J ’ .
N(x, yt8,2,m,r, v, J)
= N(‘x’ y’ 23 m’ r> U, J)iSNy(x’ y’ 23 m’ r> U, .])
12 - 3
+§8 Nyy(x7 Y, 2, m,r,u0, ])+O(8 )’ (63)
N(x, y, 28, m, r, v, j)
= N(x’ y’ 2> m’ r> U, .])i_SNZ(x’ y’ 2> m’ r> U, J)
+l82N (x, v, z, m, 1,0, j)+ O(8°) (6.4)
2 zz » Y 2 » I U, J ’ .

N(x, y, 2z, mt38, 1,0, j)
= N(x’ y’ 2> m’ r> U, .])i_SNm(x> y’ 2> m’ r> U, J)

1

3 8Ny (x, ¥, 2, m, 1, v, j)+O0(3%), (6.5)

+

N(x, y,z,m, r£8,v, j)

= N(x’ y’ 2> m’ r> U, J)i_SNr(x, y’ 2> m’ r> U, J)

+%52Nrr(x, y, 2, m, 1,0, j)+O(8%), (6.6)
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N(x, y, 2, m, r,v+3, j)

= N(x, 5, z, m, r,v, j)£8N,(x, y, z, m, 7, v, j)
+ 182N (x, v,z m, 1 v, j)+O() 6.7)
2 UU 9 y’ 9 9 b 9 J 9 .
N(x, y, z, m, r,v, j+98)
= N(x, y, 2, m, r, v, j)£3N;(x, y, 2, m, 1, v, j)
19 - . 3
+§8 Nji(x, y, 2, m, r, v, j)+ O(3”). (6.8)

6.3. The main theorem

2
Theorem 6.1. Assume D = lims_,0 ;50 %, then the limiting partial

differential equation arising from (6.1) is given by
1
§D[Nxx +Nyy + Ny + Ny + Ny + Ny + Nj ] = -1,

The boundary condition for N is given by
N(x, y, 2, m,r, v, j) =0, (x, 2 mr,v, j)e dA

Proof. Substitute (6.2)-(6.8) into (6.1) and simplifying gives

1 o9 1 c2 1 2 1 ¢2
0:T+E8 Nxx-i-ﬁﬁ Nyy+E8 sz+ﬁ8 Nmm
1 <2 1 <2 1 2 3
+ﬁ8 Nr,. +ﬂ8 NUU +ﬂ8 N]j +0(8 ) (69)

Now multiplying (6.9) by % gives

1 <9 1 <2
%8 Nyy +%8 NZZ +

1

= 8°N,,.,

0=2+%82Nxx+

+ %SZNW +

1

1
7 8Ny, + - 8N j; + O(8°). (6.10)
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2
By assumption D = limg_, . _)Og—r and applying this assumption to

(6.10), multiplying the result by é, and keeping the term éD[N e T

Ny, + N, + Npypy + Ny + Ny, + Nji] on the left hand side of the
equation gives the desired result. Now if (x, y,z, m,r, v, j) is a
boundary point, then, N(x, y, z, m, r, v, j) =0, since the time until

absorption at any boundary point is zero. ,
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