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1. Introduction

Wong et al. [14-17] considered the problem that all solutions of a perturbed
linear differential equation belong to ’ (0, b) assuming the fact that all solutions of

the unperturbed equation possess the same property. For an ordinary linear
differential equations with real coefficients and under suitable conditions on the

function F, they showed that all solutions of the equation

Uyl -Awy =wF(t, y), (Ae C) on [0, b), (L.1)
are in L%V (0, b) provided that all those of the equations
(t—-Mu=0 and (7" =AM =0, (e C) (1.2)

are in L%V(O, b).

In [7-9], Ibrahim extends their results for a general quasi-differential expression
T of arbitrary order n with complex coefficients, and considered the property of

boundedness of solutions of a general integro quasi-differential equations.

Our objective in this paper is to extend the results in [6-9] and [14-18] to a
general integro quasi-differential equations with their solutions in the space
L{’V(a, b), p 2 2. Also, we show in the case of one singular endpoint and under
suitable conditions on the integrand function F that all solutions of the general
integro quasi-differential equation (1.1) are in L% (a, b))\ L (a, b) provided that all
solutions of the homogeneous integro quasi-differential equations in (1.2) are in

L (a, b) N L™ (a, b).

2. Quasi-differential Operators on L’ -spaces

We deal, throughout this paper, with a quasi-differential expression T of an

arbitrary order n defined by a Shin-Zettl matrix in the L” -space. The left-hand end-

point of the interval I = [a, b) is assumed to be regular but the right-hand end-point

may be either regular or singular.
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First, we define the L” -space.

Let K denote either R, the field of real numbers, or C, the field of complex

numbers. For some positive integers n and m, let M, ,, denote the vector space of

nxm matrices with K-valued entries and GL,, the subset of M, =M, ,
consisting of all non-singular matrices. For Ae M, ,,, let AT denote the transpose
and A* the adjoint, i.e., the complex conjugate transpose of A.

If A is a subset of M, , and [ is an interval, B(/, A) denotes the set of

Lebesgue measurable maps of I into A and ACy,.(I, A) the set of locally absolutely

continuous maps. Measurable maps are regarded as equal if they are equal almost

everywhere on /. Further we define
LP(I, A)={ye B(I, A)| |y|” is Lebesgue-integrable},
1

bl = ([1017 )7 forait v 221, 4) and pe I )

L*(I, A) ={y e B(I, A)| y is essential bounded},
M., ; = esssupye|y(x)| forall y e L*(1, A),

LP

loc

(I, A)={ye B(I, A) | y|[K € LP(K, A) for all compact
subinterval K of I, p € [1, o)}

If re[l, ), then r’ € [l, ) is always chosen such that 1 + i, =1. We always
roor

assume that p, g€ [I, ). If LV = LP(I, K*) for some positive integer s, then
(LP ) = L7 for pell, ) and L' is a subspace of (L™ )*, where (.)* denotes the
complex conjugate transpose. We refer to [5] for more details.

Let I be an interval with end-points a, b (-~ < a < b < =), let n, s be positive

integers and p, g € [, ). The quasi-differential expressions are defined in terms of



12 SOBHY EL-SAYED IBRAHIM

a Shin-Zettl matrix Z}"J(I) on an interval I.

Definition 2.1 [5, 12]. The set Z}"J(I) of Shin-Zettl matrices on / consists of
matrices are defined to be the sets of all lower triangular matrices F = {f ik } of the

form

fn,l fn,n+1

whose entries are complex-valued functions on I which satisfy the following

conditions:
fore Ly (I, M) and f, i1 € loc(I My), fjx € Ly (1, My)
forall 1< j<n and 1<k <min{j+1, n}, f; j1(x)e GL
forall 0< j<n and xe I. 2.1)

For F e Z}J(I), we define F as the (nX n) matrix obtained from F by removing

the first row and the last column, i.e.,

fia fi,2 =0
0
F = .
focvt Jaci2 0 fuotn
fn,l fn2 fn,n

Definition 2.2 [5]. For F e Z[ (1), the quasi-derivatives associated with F

are defined by

b= () { (su-1) -3 ol l]},(lstn—l),



ON SOLUTIONS OF INTEGRO QUASI-DIFFERENTIAL ... 13

[n] _ [n 1] [k 1]
YE ‘_{ Zk 1ff } (2.2)

where the prime ' denotes differentiation.

The quasi-differential expression Tz associated with F is given by:
1zl = l"y[”] (n=2), (2.3)
this being defined on the set:
V(g ={yp: [.J e Ay, (I, K"), 1< j <n},

where AC,.(I, K") denotes the set of functions which are locally absolutely

continuous on every compact subinterval of /.

[0]
VE

For y € V(15 ), we define Qzy =
[n-1]
YF

Clearly the maps 7Tz:V(15)— B(I,K") and Qp:V(tz)—
ACy,.(I, K™) are linear.

In analogy to the adjoint and the transpose of a matrix, there are two different

“(formal) adjoint” of a quasi-differential expression T, we refer to [2-5] and [7-10]

for more details.
In the following, we always assume that Fe Z,{’ 4 and Tz = Tp,q- The formal

adjoint r;’ q of T, 4 is defined by the matrix F* given by

- =
F"r=-J'F*J,, (2.4)

where F* is the conjugate transpose of F and J . is the non-singular (nXxn)

matrix
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Ty = (1078 g isgsn 2.5)
d being the Kronecker delta. If F' = f ; > then it follows that
fjfk = (- 1)j+k+l?n—k+l,n—j+1‘ (2.6)
The quasi-derivatives associated with the matrix F'inZz () are therefore

e,

. — _ Y j . — _
yJ[rj] = (fn_j,n_j“) 1{()’J[rj 1]) - Zk:l (- 1)J+k+1fn_k+1,n_j+1y£rk I]}, 2.7

il = {(yﬁrn_l]) - ZZZI (- 1)n+k+l?n—k+1,1y£rk_1]}’

’C:;" p[] = i”yL”](n >?2) forall ye V(‘C:;', p'), 2.8)
vty ) ={y: W e AC, (1, K"), 1< j < n}. 2.9)

Note that: (F7)" = F and so (’C;" » )= T, 4 We refer to [2-5], [7-10] and [19,

20] for a full account of the above and subsequent results on a quasi-differential

expressions.

For ue V(t ,VE V(le—" ) and @, B e I, we have Green’s formula

psq)

B
L v, lu]—uty yvidx = [u, vI(B) - [u, v)(), (2.10)
where

[u, v](x) _ ln(z:l;(l) (- 1)r+n+1u[r]v_['m)(x)

= (= i) (@] e Q7 (x)
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v
= (i) (w, u, oy ), @.11)
‘—)J[rn—l]

see [2-5] , [7-10] and [19]. Let w: I — R be a non-negative weight function with

we L,.(I) and w> 0 (for almost all x e I). Then H" = L’ (I, K") denotes the

Hilbert function space of equivalence classes of Lebesgue measurable functions such
that

1
I, ; = (J.|y|rw)r forall ye I/ (I, F) and r e [1, o). (2.12)
: 1

The equation
Tp,glul =Awu =0, (A e C) on1, (2.13)
is said to be regular at the left end-point a € R, if for all X € [a, b),
aeR, w, fiye€ Ll[a, X, j,k=12,..n,

otherwise (2.13) is said to be singular at a. If (2.13) is regular at both end-points,

then it is said to be regular; in this case we have
a,beR, w, fjeLllabl, jk=12.,n (2.14)

We shall be concerned with the case when a is a regular end-point of the equation
(2.13), the end-point b being allowed to be either regular or singular. Note that, in
view of (2.6), an end-point of I is regular for (2.13), if and only if it is regular for the

equation

T I=Awy =0, (A e C) on1. (2.15)
3. LF -Solutions

In this section, we shall be concerned with L” -solutions of the integro quasi-
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. . . + +
differential equations, and we denote for t,, , by T and T, , by T".

Denote by S(t) and S(t*) S(t7) the sets of all solutions of the equations
[t-Aglli=0, (Age C) 3.1)

and

[7" = %I =0, (Aye C), (3.2)
respectively. Let ¢ j(t, A), j=1,2,..,n be the solutions of the homogeneous
equation [t —MJu =0, (A € C) satisfying

Ol M1, 1) = 8; 4y forall g € [a, b), (jok =1, 2, ..., n)
for fixed tp, a <ty <b. Then ¢;(t, A) is continuous in (¢, A) for 0 <t <b,
|A| < oo, and for fixed ¢ it is entire in A. Let 05 (t,A), k =1,2, ..., n denote the
solutions of the adjoint homogeneous equation [t — M =0,(LeC) satisfying:
(0 (19, 1) = (- )¥*7'8,,,_, forall 1y € [0, b),

(k=1,2,..,n,r=0,1,...,n—1). Suppose a < ¢ < b, by [3], [7-9] and [12-16], a

solution of the equation
1
[t=Mu=wf, (AeC), feL,(a,b) (3.3)
satisfying u(c) = 0 is given by

A—Lg

.n
1

ot 1) = (2203 20,0, 0o R (shwtsls

where @ (¢, A) stands for the complex conjugate of @ (¢, A) and for each j, k, gk

is constant which is independent of ¢, A (but does depend in general on ).

The next lemma is a form of the variation of parameters formula for a general

quasi-differential equation is given by the following Lemma.
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1 . . .
Lemma 3.1. Suppose f € L,,(0, b) locally integrable function and ©(t, L) is

the solution of the equation (3.3) satisfying:
(p[r](to, AN =0, for r=0,1,..,n-11y€ [a, b).

Then

E Z’J’,Zlocj(x)@j(r, ho)+ (A =2g)/i")

D) G R Ol ()

for some constants  0;(X), Ay (R), ..., o, (A) € C,  where @;(t, hy) and
or(t,Ny), j.k=1,2,...n are solutions of the equations (3.1) and (3.2),
respectively, &jk is a constant which is independent of t.
Lemma 3.2 [13] (Gronwall’s inequality). Let u(t) and v(t) be two real-valued
functions defined, non-negative and u, v € Ll(to, t) for t > ty, and if
'
u(t)<c+ J‘t(;/t(s)v(s)ds, ¢ >0,

for some positive constant c, then
t
u(t)<c exp(I v(s)ds} (3.5)
0

Lemma 3.3. Suppose that for some hy € C all solutions of the equations (3.1)
and (3.2) are in L%V(a, b). Then all solutions of the equations in (1.2) are in

L%V(a, b) for every complex number A € C.
Proof. The proof is similar to that in [8, Lemma 3.5].

Lemma 3.4. If all solutions of the equation [T —Aywlu =0 are bounded on

la, b) and of(t, o) € Llw(a, b) for some Ay € C, k =1, ..., n. Then all solutions
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of the equation [t—Mwlu =0 are also bounded on |a, b) for every complex

number A € C.
Lemma 3.5. Suppose that for some complex number Ly € C all solutions of the
equation (3.1) are in L (a, b) and all solutions of (3.2) are in L% (a, b). Suppose

f e Lf(a, b), then all solutions of the equation (3.3) are in L (a, b) for all

re C

Proof. Let {¢;(#, X)), ..., ©,(t, Ao)} {01 (s, X)), -.r @5 (5, A )} be two sets
of linearly independent solutions of the equations (3.1) and (3.2), respectively. Then

for any solutions @(z, A) of the equation [t—Allp = wf, (A € C) which may be

written as follows
[T=2Aowlp = (A= 2o)wo + wf

and it follows from (3.4) that

I LN ek
ot 2) =D et ro)+ > ERe(rh)

% [ 0L (1 A0 MO = g Jols. 2+ 7 nts)as, G:6)

for some constants o (A), oty (X), ..., &, (A) € C. Hence

o, 1) D7 (e 0lo; (1 20D+ D0 I T, (1 2o )

« j "0 (1, g I = Agl0s, W] + £ (5)] (s )ds. G.7)

Since fe LP(a,b) and @f(.,Ay)e Li(a,b) for some Arye C, then

05 (.. Ao)f € L, (a, b) forsome g € C and k =1, ..., n. Setting

c=3" &M

o7 (s, Ao )‘|f(s)|w(s)ds, j=12..n (38

then
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lo(z, 1) < ijl(|0€j(7»)| +CjM))@;(2, Aol +[A =4

n jk . t
<y e e a0

On application of the Cauchy-Schwartz inequality to the integral in (3.9), we get

o7 (s, Mg )h(p(s, Mw(s)ds.  (3.9)

ot 20 < D" (o ) + 0 . 2o )

n .
) SRS IR

1l

From the inequality (u +v)? < 2(p_1)(up +v?), it follows that

1

— a( P
oy (1, Lo )‘ w(s)ds (J (s, 7»)|pw(s)dsj . (3.10)

jote, WP < 22PN (o, ()] + C;0)7 [0 (1 M)
j=1

20p-y _ p§ " o P

2 |7\’ 7\’0| J',kzlla | |(p](t’ 7“0 )l

Al

By hypothesis there exist positive constant K and K; such that

P
o (1, A )‘qw(s)ds]q ( j (s, 7»)|pw(s)dsj. 3.11)

<K, (3.12)
L (a, b)

"(p](t, 7\40 )"L{)‘,(a, b) < KO and H(pZ(S, 7\,0)

j, k=1,2,.., n. Hence

lo(r. V)P < 22<P—”Z’;=l(|oc JM+C )P e (2, Ao

- n j p
D DL A LGN
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v ( [ ' lo(s, M| w(s)dsj. (3.13)

Integrating the inequality in (3.13) between a and ¢, we obtain

t P
p 2(p-1)y _ p§ " Jk
L|(p(s, M w(s)ds < Ko + [2 [A =X Lk:ll& | ]

t N
X.[ |(pj(s, Ao )|p(J‘ |o(x, 7»)|pw(x)dxjw(s)ds, (3.14)
a a
where
= 22(p-1) PN
K, = 220 V! Zj=1(|ocj(m| +C; ()P (3.15)
Now, on using Gronwall’s inequality, it follows that

t
[[lots. 207 wisyas < &,
0
n . Pt
eXP(ZZ(P—l)KlpPu - %O|sz’k:1|§;jk| L |(Pj(S, Lo )lpw(s)dsj- (3.16)

Since, ¢;(7, Ag) € Liy(a,b) for some Aye C and for j=1,..n then
o(t, \) e L5 (0, b) forall Ae C.

Remark. Lemma 3.5 also holds if the function fis bounded on [a, b).

Lemma 3.6. Let f € LE (0, b). Suppose for some Ay € C:

(i) All solutions of (t* = A)e* = 0 are in L1 (a, b).

(ii) (pj(t, Xo), j =1, ..., n are bounded on [a, D).

Then all solutions §(t, A) of the equation (3.3) are in LE,(a, b) forall A e C.
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4. LF -boundedness
In this section, we shall consider the question of determining conditions under
which all solutions of the equation (1.1) are in L% (a, b) N\ L (a, b).

Suppose there exist non-negative continuous functions k() and A(f) on

[a, b), a < b < o such that the function F(t, y) in (1.1) satisfies:
|F(t, y) < k(t)+ h@t)|y@)® for 20, —o00 < y(t) < oo, 4.1
for some 6 € [0, 1]; see [1, 8] and [18-19].

In the sequel, we shall require the following nonlinear integral inequality which

generalizes those integral inequalities used in [1], [7-9], and [13-18].

Lemma 4.1 (cf. [8, 17]). Let u(t) and v(t) be two non-negative functions,

locally integrable on the interval I = [a, b). Then the inequality
t
u(t)<c +J v($)u®(s)dx, ¢ >0,
0

for 0 < 6 <1, implies that

1

(1-0)

u(t) < [c(l_c) +(01- G)J;v(s)ds] 4.2)

In particular, if v(s) e LN(a, b), then (4.2) implies that u(t) is bounded.
Theorem 4.2. Suppose that F satisfies (4.1) with 6 =1, and that
() S(t)U S(t*) < L=(0, b) for some Ay € C,
(i) k(1) and h(r)e L. (0, b) forall t € [a, b).

Then all solutions ©(t, ) of the equation (1.1) are bounded on [a, b) for all
Ae C.

Proof. Note that (4.1) and Lemma 3.6 implies that all solutions are defined on
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la, b); see [2, Chapter 3], [7-9] and [13] and let {@;(7, A¢), @2(7, Ag), ...,

0,(t, )} {07 (s, 20), {03 (5, Xg), s 91 (s, Ag)} be two sets of linearly
independent solutions of the equations (3.1) and (3.2), respectively, and let ¢(z, A)

be any solution of (1.1) on [a, b), then by Lemma 3.1, we have

o0 = D7 @ 00,00 ho)+ - (h=2o)D T e h)

X J‘t 07 (5, Lo )E (s, y)w(s)ds.

Hence

ot 1< D0 e o1 Ao )+ M=o 3 16791 o)

t
XJ‘
a

Since k(s) e Llw(a, b) and @f(s,Ag)e Lio(a,b), k=1,2,...,n for some

9 5. 2 J(k(s) + h(s) (5. W) ols)es 43)

Ao € C, we have @f (s, Ag)k(s) e Llw(a, b) for some Ay € C. Setting

=S fkjf
C=n=nol R 165)

(P-]'(—(S, 7"0)

k(s)w(s)ds, j=1,2,..,n (44
Then

ot M < D7 (€ +la; 0Dlos (5 Ao )
S ) SRS [Ty

P
X L ‘(pz(t, Ao )‘h(s)|(p(s, y)w(s)ds. 4.5)
By hypothesis, there exist positive constants K, and K such that

19;(1. 20)| < Ky and \w;:(r, Ao)

< K, forall 7 € [0, b),
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j, k=1, ..., n. Hence

|o(1, )| < Kozjzl(cj +]o; (M) + KoKy|A = Ao

<>l I(:h(s)|(p(s, A)w(s)ds. “6)

Applying Gronwall’s inequality to (4.6) and using (ii), we deduce that |@(z, )| is

finite and hence the result.

Theorem 4.3. Suppose that F satisfies (4.1) with 6 =1, and that
() S(t)US(t") < L (a, b) for some Ay € C,
(ii) k(¢) and h(t)e Li(a, b) forall t € [a, D).

Then all solutions @(z, A) of the equation (1.1) are in L% (a, b) forall A e C.

Proof. The proof follows on applying the Cauchy-Schwartz inequality for the
integral in (4.5) as:

)
()

and hence the result. We refer to [1] and [16] for more details.

0k 1. Ao Yo ofs. Mw(s)ds

1 1
o7 (s, A )‘q|h(s)|q w(s)ds]q (J lo(s, 1) 7 w(s)dsj b , 4.7

Corollary 4.4. Suppose that |F(t, y) = h(t)y(t), S(t) < Ll (a, b), S(17)c
L1 (a, b) for some Ay € C and h(t)e LE(a, b) for some p =2, te [a,b). Then
all solutions ¢(t, \) of the equation (1.1) are in LE (a, b) forall A e C.

Corollary 4.5. Suppose that for some Aye C, S(t) < L5(0, b), S(t")
c L1 (a, b) and k(t)e LE(a, b). Then all solutions of the equations [t —Aw]o

= wk arein L% (a, b) for every complex number A € C.
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Next, for considering (4.1) with 0 < ¢ < 1, we have the following.

Theorem 4.6. Suppose that F(t, y) satisfies (4.1) with 0< o<1, S(t)US(t")

c L% (a, b), & > 2 for some Ao € C and that
() k(t) e L (a, b) forall t € [a, b),
(i) h(t) e L1, b) forall t € [a, b).

Then all solutions @(t, \) of the equation (1.1) are in L%(a, b), &> 2 for all
Ae C.

Proof. For 0 < a <1, the proof is the same up to (1.1). In this case (4.5)

becomes

ot 1 < D7 (€5t 1o Dl 1 2ol + A= o

n . t
X Zj’k:1|§ﬂ< o, (2. A )|L

Applying the Cauchy-Schwartz inequality to the integral in (4.8) we get
t
I
(e}

1
" (et o
< (J‘ ‘(pzr(s, Ao )‘ |h(s)|”w(s)ds] [I (s, 7u)|aw(s)dsj , (4.9)

o7 (s, A Jh(s)o(s, k)|0w(s)ds. 4.8)

i 5. 5 ols. 1) w(s)s,

where W =0/(a—0), o >2. Since @f(t,Ay)e Li(a, b) for some Aje C,
k=12, .,n and h(s)e L?V/(u_l_c)(a, b) by hypothesis, then we have

of (1, hol|h(t)) € L (a, b), for some Aye C, k =1, 2, .., n. Using this fact and
(4.9), we obtain

lo(t, M) < Z';zl(cj +]o (W)@ (1, Ao)| + Ko[A = Ao
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(¢
n P ! o o
DI S LY )I(L [o(s, M) w(s)ds] . (410
where K = |z (¢, Ao )h(t)"u, [ "H denotes the norm in I, (a, b). The inequality
(u+v)* < 2(0(—1)(1/[0( +v%)
implies that

[ote, 1 < 22O (CF a0 o (1 R )| + 220K

n . t o
xPh=ol* Y 1E% %0, %o)l“(fa (s, x)l“w(s)dsj . @1

Setting K = jt|(pj(t, %0)|aw(s)ds for some Age C, j=1,..,n and integrating
a

(4.11), we obtain

t
j lp(t, M) w(s)ds < Ky + 22D KA — o[
0

xzzkzllﬁfklo‘ﬂle(s, ko)l“lu:lw(x, k)l“w(x)dx) ]w(s)ds, (4.12)

where K, = 22(0‘_1)2’;:1(6'? + |0cj(7»)|a )K.

An application of Lemma (4.1) for 0 < 6 <1 and of Gronwall’s inequality to
(4.12) for © =1, yields the result.

Theorem 4.7. Suppose that F satisfies (4.1) with 0<c <1, S(t)US(t")

c L0, )N L= (a, b), o > 2 for some Ay € C and that
() k() e LY (a, b) forall t € [a, b),

(i) h(t) e Lb(a, b) for some p, 1< p<2/(1-0).

Then all solutions @(¢, A) of the equation (1.1) are in LY (a, b)) L”(a, b) for all
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A e C.

Proof. Since S(t)U S(t") < L%(a, )N L™ (a, b) for some Ay e C, then
(pj(s, Ao)e Lh(a, b) and ¢;(t,hy)e Li(a, ), j, k=1,..,n for every p,q
> 2 and for some Ay € C.

First, suppose that h(t) € LE (a, b) for some p, 1< p < 2. Setting

Ko =[0;(, Ao)]. and K1:H<p;(s, xO)H k=12 n (413)

we have from (4.8),

ol M < Ko Y, (€ +|o ;0D + KoKifh =2l

X Zj ol |§jk |J:h(s)|(p(s, 7»)|G w(s)ds.

Since h(t)e LE(a, b) for some p, 1< p <2, then Lemma 4.1 together with

Gronwall’s inequality implies that @(z, A) € L”(a, b) for all A € C, i.e., there exists

a positive constant K, such that
oz, M) < K, forall Le C, t € [a, b). (4.14)
From (4.8) and (4.14), we obtain
n
o0 M < Ko D (€ +]o (] + Ks o6 o)
for an appropriate constant K3. Since ¢ ;(z, Ay ) € L%V(a, b) for some Ay € C, this
proves @(t, A) e L% (a, b) forall Ae C,1< p <2.

Next, suppose that h(t)e LF (a, b) for some p,2< p <2/(1-0c). Define
q =2 by
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(which is possible because of the restriction on g).

Thus ¢ ;(t A)@f (s, ho) e LL(a, b)  and  @f(s, ho)h(t) € L} (a, b),

n= au 5’ o=2; j, k=1,.., n Repeating the same argument from (4.8) to

(4.12) in the proof of Theorem 4.6, we obtain that @(¢, A) € LY (a, b). Returning to

(4.9), we find that the integral on the left-hand side is bounded, which implies by
(4.8) that

ot < D7 (Cht oy (] + K3 (1 o)

for an appropriate constant K. Since ¢;(z, Ag)€ L™ (a, b), this completes the

proof. We refer to [1], [7-9] and [17, 19] for more details.
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