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Abstract 

A general quasi-differential expression τ  of order n with complex 

coefficients and its formal adjoint 
+τ  are considered in the space 

( )., baLp
w  In the case of one singular end-point and under suitable 

conditions on the function ( ),, ytF  we show that all solutions of a 

general integro quasi-differential equation [ ] ( ) ( ),, ytwFtyI =λ−τ  

( )C∈λ  are in ( ) ( )baLbaLp
w ,, ∞

I  for all C∈λ  provided that all 

solutions of the homogeneous differential equations ( ) 0=λ−τ uI  and 

( ) 0=λ−τ+ vI  are in ( ) ( ).,, baLbaLp
w

∞
I  
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1. Introduction 

Wong et al. [14-17] considered the problem that all solutions of a perturbed 

linear differential equation belong to ( )bL ,02  assuming the fact that all solutions of 

the unperturbed equation possess the same property. For an ordinary linear 

differential equations with real coefficients and under suitable conditions on the 

function F, they showed that all solutions of the equation 

 [ ] ( ) ( )C∈λ=λ−τ ,, ytwFwyy  on [ ),,0 b  (1.1) 

are in ( )bLw ,02  provided that all those of the equations 

 ( ) 0=λ−τ uI    and   ( ) ( )C∈λ=λ−τ+ ,0vI  (1.2) 

are in ( ).,02 bLw  

In [7-9], Ibrahim extends their results for a general quasi-differential expression 

τ  of arbitrary order n with complex coefficients, and considered the property of 

boundedness of solutions of a general integro quasi-differential equations. 

Our objective in this paper is to extend the results in [6-9] and [14-18] to a 

general integro quasi-differential equations with their solutions in the space 

( ) .2,, ≥pbaLp
w  Also, we show in the case of one singular endpoint and under 

suitable conditions on the integrand function F that all solutions of the general 

integro quasi-differential equation (1.1) are in ( ) ( )baLbaLp
w ,, ∞

I  provided that all 

solutions of the homogeneous integro quasi-differential equations in (1.2) are in 

( ) ( ).,, baLbaLp
w

∞
I  

2. Quasi-differential Operators on pL -spaces 

We deal, throughout this paper, with a quasi-differential expression τ  of an 

arbitrary order n defined by a Shin-Zettl matrix in the pL -space. The left-hand end-

point of the interval [ )baI ,=  is assumed to be regular but the right-hand end-point 

may be either regular or singular. 
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First, we define the pL -space. 

Let K  denote either ,R  the field of real numbers, or ,C  the field of complex 

numbers. For some positive integers n and m, let mn,M  denote the vector space of 

mn ×  matrices with K -valued entries and mGL  the subset of mmm ,: MM =  

consisting of all non-singular matrices. For ,, mnA M∈  let TA  denote the transpose 

and *A  the adjoint, i.e., the complex conjugate transpose of A. 

If A is a subset of nn,M  and I is an interval, ( )AIB ,  denotes the set of 

Lebesgue measurable maps of I into A and ( )AIACloc ,  the set of locally absolutely 

continuous maps. Measurable maps are regarded as equal if they are equal almost 

everywhere on I. Further we define 

( ) { ( ) pp yAIByAIL ,:, ∈=  is Lebesgue-integrable}, 

p

I

p
Ip

yy

1

,
: 






= ∫  for all ( )AILy p ,∈  and [ ),,1 ∞∈p  

( ) { ( ) yAIByAIL ,:, ∈=∞  is essential bounded}, 

( )xyy IxI ∈∞ = supess:
,

 for all ( ),, AILy ∞∈  

( ) { ( ) ( )AKLKyAIByAIL pp
loc

,,:, ∈∈=  for all compact 

subinterval K of [ )}.,1, ∞∈pI  

If [ ),,1 ∞∈r  then [ )∞∈′ ,1r  is always chosen such that .1
11

=
′

+
rr

 We always 

assume that [ ).,1, ∞∈qp  If ( )spp ILL K,:=  for some positive integer s, then 

( ) pp LL
′=*  for [ )∞∈ ,1p  and 1L  is a subspace of  ( )*,∞L  where ( )*.  denotes the 

complex conjugate transpose. We refer to [5] for more details. 

Let I be an interval with end-points ( ),, ∞≤<≤−∞ baba  let sn,  be positive 

integers and [ ).,1, ∞∈qp  The quasi-differential expressions are defined in terms of 
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a Shin-Zettl matrix ( )IZ
qp
sn
,
,  on an interval I. 

Definition 2.1 [5, 12]. The set ( )IZ
qp
sn
,
,  of Shin-Zettl matrices on I consists of 

matrices are defined to be the sets of all lower triangular matrices { }kjfF ,=  of the 

form 





















=

+1,1,

1,0 0

nnn ff

f

F

L

MOM

L

 

whose entries are complex-valued functions on I which satisfy the following 

conditions: 

( )s
p
loc

ILf M,1,0 ∈  and ( ),,1, s
q
locnn ILf M
′

+ ∈  ( )s
p
lockj ILf M,, ∈  

for all nj ≤≤1   and { },,1min1 njk +≤≤  ( ) sjj GLxf ∈+1,  

for all nj ≤≤0  and .Ix ∈  (2.1) 

For ( ),,
, IZF

qp
sn∈  we define F

~
 as the ( )nn ×  matrix obtained from F by removing 

the first row and the last column, i.e., 

.

0

0

~

,2,1,

,12,11,1

2,11,1



























=

−−−

nnnn

nnnn

fff

fff

ff

F

L

L

OMM

L

 

Definition 2.2 [5]. For ( ),
~ ,

, IZF
qp
nn∈  the quasi-derivatives associated with F

~
 

are defined by 

[ ]
,: ~0

~ FF
yy =  

[ ] ( ) [ ]( ) [ ] ( ),11,:
1

~
1

,
1

~
1

1,~ −≤≤








−
′

= −

=

−−
+ ∑ njyfyfy

k

F

j

k
kj

j

Fjj
j

F
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[ ] [ ]( ) [ ]
,:

1
~

1
,

1
~~









−
′

= −

=

− ∑ k

F

n

k
kj

n

F

n

F
yfyy  (2.2) 

where the prime ′ denotes differentiation. 

The quasi-differential expression 
F
~τ  associated with F

~
 is given by: 

 [ ] [ ] ( ),2,:. ~~ ≥=τ nyi
n

F

n
F

 (2.3) 

this being defined on the set: 

( { [ ] ( ) },1,,::
1

~~~ njIACyyV n
loc

j

FFF
≤≤∈=τ −

K  

where ( )n
loc IAC K,  denotes the set of functions which are locally absolutely 

continuous on every compact subinterval of I. 

For ( ),~
F

Vy τ∈  we define 

[ ]

[ ]

.:

1
~

0
~

~























=

−n

F

F

F

y

y

yQ M  

Clearly the maps ( ) ( )n
FF

IBV K,: ~~ →ττ  and ( ) →τ
FF

VQ ~~ :  

( )n
loc IAC K,  are linear. 

In analogy to the adjoint and the transpose of a matrix, there are two different 

“(formal) adjoint” of a quasi-differential expression ,τ  we refer to [2-5] and [7-10] 

for more details. 

In the following, we always assume that 
qp
nnZF
,
,

~
∈  and .: ,~ qpF

τ=τ  The formal 

adjoint 
+τ qp,  of qp,τ  is defined by the matrix +F

~
 given by 

 ,*
~~ 1

nn JFJF −+ −=  (2.4) 

where *
~
F  is the conjugate transpose of F

~
 and nJ  is the non-singular ( )nn ×  

matrix 
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 (( ) ) nj
nk

knj
j

nJ ≤≤
≤≤

−+δ−= 1
1

1,1  (2.5) 

δ  being the Kronecker delta. If ,
~

,
++ = kjfF  then it follows that 

 ( ) .1 1,1
1

, +−+−
+++ −= jnkn

kj
kj ff  (2.6) 

The quasi-derivatives associated with the matrix +F
~

 in ( )IZ
qp
nn
,
,  are therefore 

[ ] ,:0 yy =+  

[ ] ( ) [ ]( ) ( ) [ ]
,1:

1
1,11

111
1,









−−
′

= −
++−+−=

++−
+

−
+−−+ ∑ k

jnkn

j

k

kjj
jnjn

j
yfyfy  (2.7) 

[ ] [ ]( ) ( ) [ ]
,1:

1
1,11

11









−−
′

= −
++−=

++−
++ ∑ k

kn

n

k

knnn
yfyy  

[ ] [ ]( )2:., ≥=τ +
+

′′ nyi
nn

pq  for all ( ),,
+

′′τ∈ pqVy  (2.8) 

( ) { [ ] ( ) }.1,,::
1

, njIACyyV
n

loc
j

pq ≤≤∈=τ −
+

+
′′ K  (2.9) 

Note that: ( ) FF
~~

=++  and so ( ) .,, qppq τ=τ ++
′′  We refer to [2-5], [7-10] and [19, 

20] for a full account of the above and subsequent results on a quasi-differential 

expressions. 

For  ( ) ( )+
′′τ∈τ∈ pqqp VvVu ,, ,  and ,, I∈βα  we have Green’s formula 

 { [ ] [ ]} [ ]( ) [ ]( ),,,,, α−β=τ−τ +
′′

β

α∫ vuvudxvuuv pqqp  (2.10) 

where 

[ ]( ) ( ) [ ] [ ] ( )xvuixvu rnrn

r

nrn






 −= −−

+

−

=

++∑ 11

0

1
1,  

( ) ( ( )xvQuJQi
Fnn

T

F

n ~~ ×−=  
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( ) ( [ ] [ ] )

[ ]

( ),...,,,

1

11
x

v

v

Juuui

n

nn
nn





















−=

−
+

×
−

M  (2.11) 

see [2-5] , [7-10] and [19]. Let R→Iw :  be a non-negative weight function with 

( )ILw loc
1∈  and 0>w  (for almost all ).Ix ∈  Then ( )nr

w
r ILH K,=  denotes the 

Hilbert function space of equivalence classes of Lebesgue measurable functions such 

that 

 
r

I

r
Ir

wyy

1

,
: 






= ∫  for all ( )FILy r ~

,∈  and [ ).,1 ∞∈r  (2.12) 

The equation 

 [ ] ,0, =λ−τ wuuqp  ( )C∈λ  on I, (2.13) 

is said to be regular at the left end-point ,R∈a  if for all [ ),, baX ∈  

[ ] ,...,,2,1,,,,,
1

, nkjXaLfwa kj =∈∈ R  

otherwise (2.13) is said to be singular at a. If (2.13) is regular at both end-points, 

then it is said to be regular; in this case we have 

 [ ] ....,,2,1,,,,,,
1

, nkjbaLfwba kj =∈∈ R  (2.14) 

We shall be concerned with the case when a is a regular end-point of the equation 

(2.13), the end-point b being allowed to be either regular or singular. Note that, in 

view of (2.6), an end-point of I is regular for (2.13), if and only if it is regular for the 

equation 

 [ ] ( )C∈λ=λ−τ+
,0, wvvqp  on I. (2.15) 

3. p
wL -Solutions 

In this section, we shall be concerned with p
wL -solutions of the integro quasi-
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differential equations, and we denote for qp,τ  by τ  and 
+τ qp,  by .+τ  

Denote by ( )τS  and ( )+τS  ( )+τS  the sets of all solutions of the equations 

 [ ] ( )C∈λ=λ−τ 00 ,0uI  (3.1) 

and 

 [ ] ( ),,0 00 C∈λ=λ−τ+ vI  (3.2) 

respectively. Let ( ) njtj ...,,2,1,, =λϕ  be the solutions of the homogeneous 

equation [ ] ( )C∈λ=λ−τ ,0uI  satisfying 

[ ]( ) 1,0
1

, +
− δ=λϕ rk

k
j t  for all [ ) ( )nkjbat ...,,2,1,,,0 =∈  

for fixed ., 00 btat <<  Then ( )λϕ ,tj  is continuous in ( )λ,t  for ,0 bt <<  

,∞<λ  and for fixed t it is entire in .λ  Let ( ) nktk ...,,2,1,, =λϕ+  denote the 

solutions of the adjoint homogeneous equation [ ] ( )C∈λ=λ−τ+ ,0vI  satisfying: 

( )[ ]( ) ( ) rnk
rkr

k t −
++ δ−=λϕ ,0 1,  for all [ ),,00 bt ∈  

( ).1...,,1,0;...,,2,1 −== nrnk  Suppose ,bca <<  by [3], [7-9] and [12-16], a 

solution of the equation 

 [ ] ( ) ( )baLfwfuI w ,,, 1∈∈λ=λ−τ C  (3.3) 

satisfying ( ) 0=cu  is given by 

( ) ( ) ( ) ( ) ( ) ,,,,
1,

0 ∫∑ λϕλϕξ






 λ−λ
=λϕ +

=

t

a
kj

n

kj

jk

n
dsswsfst

i
t  

where ( )λϕ+ ,tk  stands for the complex conjugate of ( )λϕ ,tk  and for each jkkj ξ,,  

is constant which is independent of λ,t  (but does depend in general on ).0t  

The next lemma is a form of the variation of parameters formula for a general 

quasi-differential equation is given by the following Lemma. 
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Lemma 3.1. Suppose ( )bLf w ,01∈  locally integrable function and ( )λϕ ,t  is 

the solution of the equation (3.3) satisfying: 

[ ]( ) 10 , +α=λϕ r
r t  for [ ).,,1...,,1,0 0 batnr ∈−=  

Then 

( ) ( ) ( ) (( ) )∑ =
λ−λ+λϕλα=λϕ

n

j

n
jj itt

1
00,,  

( ) ( ) ( ) ( )∫∑ λϕλϕξ× +

=

t

a
k

n

kj
j

jk dsswsfst 00
1,

,,  (3.4) 

for some constants ( ) ( ) ( ) ,...,,, 21 C∈λαλαλα n  where ( )0, λϕ tj  and 

( ),, 0λϕ+ tk  nkj ...,,2,1, =  are solutions of the equations (3.1) and (3.2), 

respectively, jkξ  is a constant which is independent of t. 

Lemma 3.2 [13] (Gronwall’s inequality). Let ( )tu  and ( )tv  be two real-valued 

functions defined, non-negative and ( )ttLvu ,, 0
1∈  for ,0tt >  and if 

( ) ( ) ( ) ,0,
0
∫ >+≤

t

t
cdssvsuctu  

for some positive constant c, then 

 ( ) ( ) .exp
0









≤ ∫

t

dssvctu  (3.5) 

Lemma 3.3. Suppose that for some C∈λ0  all solutions of the equations (3.1) 

and (3.2) are in ( ).,2 baLw  Then all solutions of the equations in (1.2) are in 

( )baLw ,2  for every complex number .C∈λ  

Proof. The proof is similar to that in [8, Lemma 3.5]. 

Lemma 3.4. If all solutions of the equation [ ] 00 =λ−τ uw  are bounded on 

[ )ba,  and ( ) ( )baLt wk ,, 1
0 ∈λϕ+  for some ....,,1,0 nk =∈λ C  Then all solutions 
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of the equation [ ] 0=λ−τ uw  are also bounded on [ )ba,  for every complex 

number .C∈λ  

Lemma 3.5. Suppose that for some complex number C∈λ0  all solutions of the 

equation (3.1) are in ( )baLp
w ,  and all solutions of (3.2) are in ( )., baLq

w  Suppose 

( ),, baLf p
w∈  then all solutions of the equation (3.3) are in ( )baLp

w ,  for all 

.C∈λ  

Proof. Let { ( ) ( )} { ( ) ( )}001001 ,...,,,,,...,,, λϕλϕλϕλϕ ++ sstt nn  be two sets 

of linearly independent solutions of the equations (3.1) and (3.2), respectively. Then 

for any solutions ( )λϕ ,t  of the equation [ ] ( )C∈λ=ϕλ−τ ,wfI  which may be 

written as follows 

[ ] ( ) wfww +ϕλ−λ=ϕλ−τ 00  

and it follows from (3.4) that 

( ) ( ) ( ) ( )0
1,

0
1

,
1

,, λϕξ+λϕλα=λϕ ∑∑ ==
t

i
tt j

n

kj

jk

n

n

j
jj  

( )[( ) ( ) ( )] ( ) ,,, 00∫ +λϕλ−λλϕ× +
t

a
k dsswsfst  (3.6) 

for some constants ( ) ( ) ( ) ....,,, 21 C∈λαλαλα n  Hence 

( ) ( ( ) ( ) ) ( )0
1,

0
1

,,, λϕξ+λϕλα≤λϕ ∑∑ ==
ttt j

jkn

kj
j

n

j
j  

( )[ ( ) ( ) ] ( ) .,, 00 dsswsfst
t

a
k +λϕλ−λλϕ× ∫ +  (3.7) 

Since ( )baLf p
w ,∈  and ( ) ( )baLq

wk ,., 0 ∈λϕ+  for some ,0 C∈λ  then 

( ) ( )baLf wk ,., 1
0 ∈λϕ+  for some C∈λ0  and ....,,1 nk =  Setting 

 ( ) ( ) ( ) ( ) ,...,,2,1,, 0
1,

njdsswsfsC
t

a
k

n

kj

jk
j =λϕξ=λ ∫∑ +

=
 (3.8) 

then 
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( ) ( ( ) ( )) ( ) 00
1

,, λ−λ+λϕλ+λα≤λϕ ∑ =
tCt j

n

j
jj  

( ) ( ) ( ) ( ) .,,, 00
1,

dsswsst
t

a
kj

n

kj

jk λϕλϕλϕξ× ∫∑ +

=
 (3.9) 

On application of the Cauchy-Schwartz inequality to the integral in (3.9), we get 

( ) ( ( ) ( )) )( 0
1

,, λϕλ+λα≤λϕ ∑ =
tCt jjj

n

j
 

)( 0
1,

0 , λϕξλ−λ+ ∑ =
tj

jkn

kj
 

( ) ( ) ( ) ( ) .,,

11

0

pt

a

p
qqt

a
k dsswsdsswt 








λϕ














λϕ× ∫∫ +

 (3.10) 

From the inequality ( ) ( )( ),2 1 pppp
vuvu +≤+ −  it follows that 

( ) ( ) ( ( ) ( )) ( ) p
j

p
j

n

j
j

pp
tCt 0

1

12 ,2, λϕλ+λα≤λϕ ∑ =

−  

( ) ( ) p
j

pn

kj

jkpp t 0
1,

0
12 ,2 λϕξλ−λ+ ∑ =

−  

( ) ( ) ( ) ( ) .,, 0 







λϕ








λϕ× ∫∫ +

t

a

pq

p
t

a

q

k dsswsdsswt  (3.11) 

By hypothesis there exist positive constant 0K  and 1K  such that 

 ( ) ( ) 0,0, Kt
baLj p

w
≤λϕ    and   ( )

( )
,, 1

,
0 Ks

baL
k q

w

≤λϕ+
 (3.12) 

....,,2,1, nkj =  Hence 

( ) ( ) ( ( ) ( )) ( ) p
j

p
j

n

j
j

pp
tCt 0

1

12 ,2, λϕλ+λα≤λϕ ∑ =

−  

( ) ( ) p
j

pn

kj

jkppp tK 0
1,

01
12 ,2 λϕξλ−λ+ ∑ =

−  
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( ) ( ) ., 







λϕ× ∫

t

a

p
dssws  (3.13) 

Integrating the inequality in (3.13) between a and t, we obtain 

( ) ( ) ( )










ξλ−λ+≤λϕ ∑∫ =

−
pn

kj

jkpp
t

p
Kdssws

1,
0

12
2

0
2,  

( ) ( ) ( ) ( ) ,,, 0 dsswdxxwxs
t

a

s

a

pp
j∫ ∫ 








λϕλϕ×  (3.14) 

where 

 ( ) ( ( ) ( )) .2
10

12
2

p
j

n

j
j

pp CKK λ+λα= ∑ =

−  (3.15) 

Now, on using Gronwall’s inequality, it follows that 

( ) ( ) 2
0

, Kdssws
t

p ≤λϕ∫  

( ) ( ) ( ) .,2exp 0
1,

01
12











λϕξλ−λ ∫∑ =

−
t

a

p
j

pn

kj

jkppp
dsswsK  (3.16) 

Since, ( ) ( )baLt
p
wj ,, 0 ∈λϕ  for some C∈λ0  and for ,...,,1 nj =  then 

( ) ( )bLt p
w ,0, ∈λϕ  for all .C∈λ  

Remark. Lemma 3.5 also holds if the function f is bounded on [ )., ba  

Lemma 3.6. Let ( ).,0 bLf p
w∈  Suppose for some C∈λ0 : 

(i) All solutions of ( ) 0=ϕλ−τ ++ I  are in ( )., baLq
w  

(ii) ( ) njtj ...,,1,, 0 =λϕ  are bounded on [ )., ba  

Then all solutions ( )λϕ ,t  of the equation (3.3) are in ( )baLp
w ,  for all .C∈λ  

 



ON SOLUTIONS OF INTEGRO QUASI-DIFFERENTIAL … 

 

21 

4. p
wL -boundedness 

In this section, we shall consider the question of determining conditions under 

which all solutions of the equation (1.1) are in ( ) ( ).,, baLbaLp
w

∞
I  

Suppose there exist non-negative continuous functions ( )tk  and ( )th  on 

[ ) ∞≤< baba ,,  such that the function ( )ytF ,  in (1.1) satisfies: 

 ( ) ( ) ( ) ( ) σ+≤ tythtkytF ,     for    ( ) ,,0 ∞<<∞−≥ tyt  (4.1) 

for some [ ];1,0∈σ  see [1, 8] and [18-19]. 

In the sequel, we shall require the following nonlinear integral inequality which 

generalizes those integral inequalities used in [1], [7-9], and [13-18]. 

Lemma 4.1 (cf. [8, 17]). Let ( )tu  and ( )tv  be two non-negative functions, 

locally integrable on the interval [ )., baI =  Then the inequality 

( ) ( ) ( ) ,0,
0∫ >+≤ σ
t

cdxsusvctu  

for ,10 <σ≤  implies that 

 ( ) ( ) ( ) ( )
( )

.1
1

1

0

1 σ−σ−








σ−+≤ ∫

t

dssvctu  (4.2) 

In particular, if ( ) ( ),,1 baLsv ∈  then (4.2) implies that ( )tu  is bounded. 

Theorem 4.2. Suppose that F satisfies (4.1) with ,1=σ  and that 

(i) ( ) ( ) ( )bLSS ,0∞+ ⊂ττ U  for some ,0 C∈λ  

(ii) ( )tk  and ( ) ( )bLth w ,01∈  for all [ )., bat ∈  

Then all solutions ( )λϕ ,t  of the equation (1.1) are bounded on [ )ba,  for all 

.C∈λ  

Proof. Note that (4.1) and Lemma 3.6 implies that all solutions are defined on 
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[ );, ba  see [2, Chapter 3], [7-9] and [13] and let { ( ) ( ) ...,,,,, 0201 λϕλϕ tt  

( )},, 0λϕ tn  { ( ) { ( ) ( )}00201 ,...,,,,, λϕλϕλϕ +++ sss n  be two sets of linearly 

independent solutions of the equations (3.1) and (3.2), respectively, and let ( )λϕ ,t  

be any solution of (1.1) on [ ),, ba  then by Lemma 3.1, we have 

( ) ( ) ( ) ( ) ( )0
1,

0
1

0 ,
1

,, λϕξλ−λ+λϕλα=λϕ ∑∑ ==
t

i
tt j

n

kj

jk

n

n

j
jj  

( ) ( ) ( ) .,, 0∫ λϕ× +
t

a
k dsswysFs  

Hence 

( )λϕ ,t ( ) ( ) ( )0
1,

0
1

0 ,, λϕξλ−λ+λϕλα≤ ∑∑ ==
tt j

jkn

kj

n

j
jj  

( ) ( ) ( ) ( )( ) ( ) .,, 0∫ λϕ+λϕ× +
t

a
jk dsswsshsks  (4.3) 

Since ( ) ( )baLsk w ,1∈  and ( ) ( ) nkbaLs wk ...,,2,1,,, 0 =∈λϕ ∞+  for some 

,0 C∈λ  we have ( ) ( ) ( )baLsks wk ,, 1
0 ∈λϕ+  for some .0 C∈λ  Setting 

 ( ) ( ) ( ) ....,,2,1,, 0
1,

0 njdsswsksC
t

a
k

n

kj

jk
j =λϕξλ−λ= ∫∑ +

=
 (4.4) 

Then 

( ) ( ( ) ) ( )0
1

,, λϕλα+≤λϕ ∑ =
tCt jjj

n

j
 

( )0
1,

0 , λϕξλ−λ+ ∑ =
tj

jkn

kj
 

( ) ( ) ( ) ( ) .,,
0

0∫ ϕλϕ× +
t

k dsswyssht  (4.5) 

By hypothesis, there exist positive constants 0K  and 1K  such that 

( ) 00, Ktj ≤λϕ    and   ( ) 10, Ktk ≤λϕ+
 for all [ ),,0 bt ∈  
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....,,1, nkj =  Hence 

( ) ( ( ) ) 010
1

00, λ−λ+λα+≤λϕ ∑ =
KKCKt

n

j
jj  

( ) ( ) ( ) .,
01,

dsswssh
t

jkn

kj
λϕξ× ∫∑ =

 (4.6) 

Applying Gronwall’s inequality to (4.6) and using (ii), we deduce that ( )λϕ ,t  is 

finite and hence the result. 

Theorem 4.3. Suppose that F satisfies (4.1) with ,1=σ  and that 

(i) ( ) ( ) ( )baLSS w ,∞+ ⊂ττ U  for some ,0 C∈λ  

(ii) ( )tk  and ( ) ( )baLth q
w ,∈  for all [ )., bat ∈  

Then all solutions ( )λϕ ,t  of the equation (1.1) are in ( )baLp
w ,  for all .C∈λ  

Proof. The proof follows on applying the Cauchy-Schwartz inequality for the 

integral in (4.5) as: 

( ) ( ) ( ) ( )dsswssht
t

a
k λϕλϕ∫ + ,, 0  

( ) ( ) ( ) ( ) ( ) ,,,

11

0

pt

a

pqq
t

a

q

k dsswsdsswshs 







λϕ








λϕ≤ ∫∫ +

 (4.7) 

and hence the result. We refer to [1] and [16] for more details. 

Corollary 4.4. Suppose that ( ) ( ) ( ) ,, tythytF =  ( ) ( ),, baLS p
w⊂τ  ( ) ⊂τ+S  

( )baLq
w ,  for some C∈λ0  and ( ) ( )baLth p

w ,∈ for some ,2≥p  [ )., bat ∈  Then 

all solutions ( )λϕ ,t  of the equation (1.1) are in ( )baLp
w ,  for all .C∈λ  

Corollary 4.5. Suppose that for some ( ) ( ) ( )+τ⊂τ∈λ SbLS p
w ,,0,0 C  

( )baLq
w ,⊂  and ( ) ( )., baLtk p

w∈  Then all solutions of the equations [ ]ϕλ−τ w  

wk=  are in ( )baLp
w ,  for every complex number .C∈λ  
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Next, for considering (4.1) with ,10 <σ≤  we have the following. 

Theorem 4.6. Suppose that ( )ytF ,  satisfies (4.1) with ,10 <σ≤  ( ) ( )+ττ SS U  

( ) 2,, ≥α⊂ α baLw  for some C∈λ0  and that 

(i) ( ) ( )baLtk w ,α∈  for all [ ),, bat ∈  

(ii) ( ) ( )( )baLth w ,1 σ−−αα∈  for all [ )., bat ∈  

Then all solutions ( )λϕ ,t  of the equation (1.1) are in ( ) 2,, ≥αα baLw  for all 

.C∈λ  

Proof. For ,10 <α≤  the proof is the same up to (1.1). In this case (4.5) 

becomes 

( ) ( ( ) ) ( ) 0
1

0,, λ−λ+λϕλα+≤λϕ ∑ =

n

j
jjj tCt  

( ) )( ( ) ( ) ( ) .,,, 00
1,

dsswsshst
t

a
kj

n

kj

jk σ+

=
λϕλϕλϕξ× ∫∑  (4.8) 

Applying the Cauchy-Schwartz inequality to the integral in (4.8) we get 

)( ( ) ( ) ( ) ,,,
0

0 dsswsshs
t

k
σ+ λϕλϕ∫  

)( ( ) ( ) ( ) ( ) ,,,

1

0

α

σ

α
µ

µ
µ

+








λϕ














λϕ≤ ∫∫

t

a

t

a
k dsswsdsswshs  (4.9) 

where ( ) .2, ≥ασ−αα=µ  Since ( ) ( )baLt wk ,, 0
α+ ∈λϕ  for some ,0 C∈λ  

nk ...,,2,1=  and ( ) ( )( )baLsh w ,1 σ−−αα∈  by hypothesis, then we have 

( ( ) ) ( ),,, 0 baLtht wk
µ+ ∈λϕ  for some ....,,2,1,0 nk =∈λ C  Using this fact and 

(4.9), we obtain 

( ) ( ( ) ) ( )∑ =
λ−λ+λϕλα+≤λϕ

n

j
jjj KtCt

1
000,,  
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( ) ( ) ( ) ,,, 0
1,

α

σ

α

= 







λϕλϕξ× ∫∑

t

a
j

n

kj

jk
dsswst  (4.10) 

where ( ) ( ) ,, 00 µ
+ λϕ= thtK k  µ.  denotes the norm in ( )., baLw

µ  The inequality 

( ) ( )( )αα−αα +≤+ vuvu 12  

implies that 

( ) ( ) ( ( ) ) ( ) ( ) α

=

−αααα−αα ∑ +λϕλα+≤λϕ 0
1

12
0

12 2,2, KtCt
n

j
jjj  

( ) ( ) ( ) .,, 0
1,

0

σ
αα

=

αα








λϕλϕξλ−λ× ∫∑

t

a
j

n

kj

jk
dsswst  (4.11) 

Setting ( ) ( )∫
α

λϕ=
t

a
j dsswtK 01 ,  for some nj ...,,1,0 =∈λ C  and integrating 

(4.11), we obtain 

( ) ( ) ( ) αα−αα λ−λ+≤λϕ∫ 00
12

2
0

2, KKdsswt
t

 

( ) ( ) ( ) ( ) ,,, 0
1,

dsswdxxwxs
t

a

s

a
j

n

kj

jk ∫ ∫∑





















λϕλϕξ×

σ
αα

=

α
 (4.12) 

where ( ) ( ( ) ) .2
1 1

12
2 ∑ =

αα−α λα+=
n

j jj KCK  

An application of Lemma (4.1) for 10 <σ≤  and of Gronwall’s inequality to 

(4.12) for ,1=σ  yields the result. 

Theorem 4.7. Suppose that F satisfies (4.1) with ,10 <σ≤  ( ) ( )+ττ SS U  

( ) ( ) 2,,,0 ≥α⊂ ∞α baLbLw I  for some C∈λ0  and that 

(i) ( ) ( )baLtk w ,α∈  for all [ ),, bat ∈  

(ii) ( ) ( )baLth p
w ,∈  for some ,p  ( ).121 σ−≤≤ p  

Then all solutions ( )λϕ ,t  of the equation (1.1) are in ( ) ( )baLbaLw ,, ∞α
I  for all 
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.C∈λ  

Proof. Since ( ) ( ) ( ) ( )baLbaLSS w ,, ∞α+ ⊂ττ IU  for some ,0 C∈λ  then 

( ) ( )baLs
p
wj ,, 0 ∈λϕ  and ( ) ( ) nkjbaLt q

wk ...,,1,,,, 0 =∈λϕ+  for every qp,  

2≥  and for some .0 C∈λ  

First, suppose that ( ) ( )baLth p
w ,∈  for some .21, ≤≤ pp  Setting 

 ( ) ∞λϕ= 00 ,tK j    and   ( ) ,...,,2,1,,, 01 nkjsK k =λϕ=
∞

+  (4.13) 

we have from (4.8), 

( ) ( ( ) ) 0
1

100, λ−λ+λα+≤λϕ ∑ =

n

j
jj KKCKt  

( ) ( ) ( ) .,
1,

dsswssh
t

a

n

kj

jk σ

=
λϕξ× ∫∑  

Since ( ) ( )baLth p
w ,∈  for some ,p  ,21 ≤≤ p  then Lemma 4.1 together with 

Gronwall’s inequality implies that ( ) ( )baLt ,, ∞∈λϕ  for all ,C∈λ  i.e., there exists 

a positive constant 2K  such that 

 ( ) 2, Kt ≤λϕ  for all [ ).,, bat ∈∈λ C  (4.14) 

From (4.8) and (4.14), we obtain 

( ) ( ( ) ) )( 0
1

30 ,, λϕ+λα+≤λϕ ∑ =
tKCKt j

n

j
jj  

for an appropriate constant .3K  Since )( ( )baLt wj ,,
2

0 ∈λϕ  for some ,0 C∈λ  this 

proves ( ) ( )baLt p
w ,, ∈λϕ  for all .21, ≤≤∈λ pC  

Next, suppose that ( ) ( )baLth p
w ,∈  for some ( ).122, σ−≤< pp  Define 

2≥q  by 

pq

11
−

α

σ−α
=  
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(which is possible because of the restriction on q). 

Thus )( )( ( )baLst
q
wkj ,,, 00 ∈λϕλϕ +

 and )( ( ) ( ),,, 0 baLths wk
µ+ ∈λϕ  

,
σ−α

α
=µ  ;2≥α  ....,,1, nkj =  Repeating the same argument from (4.8) to 

(4.12) in the proof of Theorem 4.6, we obtain that ( ) ( ).,, baLt w
α∈λϕ  Returning to 

(4.9), we find that the integral on the left-hand side is bounded, which implies by 

(4.8) that 

( ) ( ( ) ) ( )0
1

3 ,, λϕ+λα+≤λϕ ∑ =
tKCt j

n

j
jj  

for an appropriate constant .3K  Since ( ) ( ),,, 0 baLtj
∞∈λϕ  this completes the 

proof. We refer to [1], [7-9] and [17, 19] for more details. 
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