
Fundamental Journal of Mathematics and Mathematical Sciences 

Vol. 6, Issue 1, 2016, Pages 51-66 

This paper is available online at http://www.frdint.com/ 

Published online September 4, 2016 

:esphras and Keywords special Kähler, dually flat space, Darboux’s theorem, gradient flow, 

Hamiltonian flow. 

2010 Mathematics Subject Classification: Primary 53A15; Secondary 53D25. 

*Corresponding author 

Received July 25, 2016; Accepted August 8, 2016 

 © 2016 Fundamental Research and Development International 

ON GRADIENT AND HAMILTONIAN FLOWS ON EVEN 

DIMENSIONAL DUALLY FLAT SPACES 

NOBUTAKA BOUMUKI and TOMONORI NODA
*
 

Department of Mathematics 

Tokyo University of Science 

1-3 Kagurazaka, Shinjuku-ku 

Tokyo 162-8601, Japan 

e-mail: boumuki@rs.tus.ac.jp 

General Education and Research Center 

Meiji Pharmaceutical University 

2-522-1 Noshio, Kiyose-shi 

Tokyo 204-8588, Japan 

e-mail: noda@my-pharm.ac.jp 

Abstract 

In this paper, we completely elucidate Fujiwara’s results which assert that 

some kind of gradient flow on any even dimensional dually flat space can 

be expressed as Hamiltonian flow by using Darboux type theorem for the 

canonical symplectic structure on the cotangent bundle of the space. This 

gives a variational characterization of the Fisher metric. 
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1. Introduction 

Let ( )∇,, gS  be a statistical manifold. Namely, g is a (pseudo) Riemannian 

metric and ∇  is a torsion free affine connection on differentiable manifold S such 

that g∇  is symmetric. Statistical manifolds are abstract of statistical models and 

statistical inferences, for instance, on exponential families, e- and m- connections 

correspond to maximum likelihood estimations. In particular, flat cases are very 

important and are called dually flat spaces (or Hessian manifolds). On a dually flat 

space, there exist dual structures as dual connections ∇  and ,*∇  dual coordinates 

{ }θ  and { },η  and potential functions ( )θϕ  and ( ).ηψ  Moreover, by using potential 

functions, we can construct divergence functions (or contrast functions) on the square 

of the space. The relative entropy (or a KL divergence) on an exponential family is 

an example of divergence functions. 

In Fujiwara [8, 9], the following properties of gradient equations with a 

divergence as a potential function are studied. On a dually flat space ( ),*,,, ∇∇gS  

fix a point q in S. Define ( ) ( )qpDpU ,: ∇=  and consider the gradient flow equation 

( ),grad θ−=θ Uɺ  so that in η  coordinate we have 

 ( )( ),qη−η−=ηɺ  (1.1) 

and the solution is given by ( )( ) ( ) ( ( )( ) ( )) .0 teqpqtp −η−η+η=η  This solution 

converges to q along an m-geodesic. Replacing ∇D  in U by ,*∇D  we obtain a 

steepest ascent flow of entropy. These results also hold for constraint systems on 

exponential families. Moreover, it is shown that gradient flow equations as in (1.1) 

can be expressed as Hamiltonian equations when the space has even dimension. 

Namely, if ,2dim nS =  then a gradient flow equation η−=ηɺ  on S coincides with a 

Hamiltonian equation with position ,2kkQ η=  momentum 121 −η−= k
kP  and 

Hamiltonian .K
k PQH −=  This result which shows a relationship between 

Hamiltonian and gradient flows is very mysterious and interesting because aspects of 

Hamiltonian flow are different from that of gradient flow in general. The purpose of 

this article is to make clear theoretical reasons of this relationship from symplectic 

geometric view point. 
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A symplectic structure is a differential 2 form satisfying nondegeneracy and 

integrability conditions on a differentiable manifold, and symplectic manifold is an 

abstract of phase spaces in classical mechanics. To unravel phenomena due to 

Fujiwara, we have to clear the symplectic structure on appropriate space, and in this 

paper, we give 3 kinds of correspondences between gradient and Hamiltonian flows 

on even dimensional dually flat spaces. In first and second ones, we use a Darboux 

type theorem for symplectic structure (indeed, special Kähler structure) on the square 

of a special dually flat space. To use symplectic reduction argument is the third. 

On exponential family S, natural coordinates { }iθ  and expectation coordinates 

{ }jη  are both coordinate systems on S, but in fact, these are different world living 

in. On dually flat spaces not necessarily exponential families, these coordinates can 

be considered coordinates on the space by the flatness condition. However, we 

should consider that natural coordinates { }iθ  are on the tangent spaces and 

expectation coordinates { }jη  are on the cotangent spaces of the space, and the 

Fisher metric gives the connection between these coordinates as in the Riesz 

representation theorem. From this viewpoint, we can associate the canonical 

symplectic structure to the square of the dually flat space, and then we can 

understand the phenomena for gradient flows above. 

To see the relation between gradient and Hamiltonian flows on dually flat space, 

it is important that the existence of special dually flat space, say L. Considering the 

canonical symplectic structure on ,LL ×  we see the reason why gradient flow 

equations (1.1) correspond to Hamiltonian equations. 

Theorem 1.1. Let S be an even dimensional dually flat space. For any point on 

S, there exist a local neighborhood U of the point and a dually flat space L such that 

U is isomorphic to LL ×  as statistical manifold. The Hamiltonian equation whose 

Hamiltonian is canonical divergence with respect to the canonical symplectic 

structure  on LL ×  coincides with gradient flow equation (1.1). 

The key of this theorem is that both gradient flow (1.1) and Hamiltonian flow on 

even dimensional dually flat space can be expressed as m-geodesic, where is a 

generalization of a result “a geodesic is critical point of both length and energy 

functions” in Riemannian geometry. Hence we obtain a variational characterization 
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of Fisher metrics on even dimensional dually flat spaces. 

It should be able to see a part of connections among information geometry, 

classical and quantum physics. Indeed, Goto [12, 13] and Mrugała [19] study 

connections between thermodynamics and contact geometry which is odd 

dimensional analogue of symplectic geometry; Molitor [18] describes a connection 

between information geometry and quantum mechanics; connections between 

symplectic geometry and quantum mechanics are given by de Gosson [10], de 

Gosson and Luef [11], Censi [5] and Hsiao and Scheeres [15]. 

2. Statistical Manifolds and Gradient Flow Equations 

In this section, we review some results of information geometry and Fujiwara 

[8]. For general theory of information geometry, see Amari and Nagaoka [3], Eguchi 

[6], Matsuzoe [17], Shima [23] and the references therein. 

For dually flat space ( ),*,,, ∇∇gS  there exist ∇ -affine coordinates 

( )nθθ ,,1
…  and *∇ -affine coordinates ( )nηη ...,,1  so that 

 .,
i
j

j
i

g δ=








η∂

∂

θ∂

∂
 (2.1) 

We refer ( )nθθ ,,1
…  and ( )nηη ,,1 …  to dual coordinates and set 

.:,: j
ji

i η∂∂=∂θ∂∂=∂  Moreover, there exist (local) functions R→ϕψ S:,  

satisfying i
ii

i dddd ηθ=ψθη=ψ ,  such that .i
iηθ=ψ+ϕ  We collect relations 

between objects defined above as a lemma. 

Lemma 2.1.  Let ( )nθθ ,,1
…  and ( )nηη ,,1 …  be dual coordinates satisfying 

(2.1) on a dually flat space. Then the following hold 

,,,, i
ij

i

i

j
jj

ij
j

j

i
i

jj
i

i dgdddgdd θ=θ
θ∂

η∂
=ηη=η

η∂

θ∂
=θ

θ∂

ψ∂
=η

η∂

ϕ∂
=θ  

( ) ( ) .,:,,:
22

jij

i
jiij

jii

j
jiij gggg

η∂η∂

ϕ∂
=

η∂

θ∂
=∂∂=

θ∂θ∂

ψ∂
=

θ∂

η∂
=∂∂=  
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We now define the *∇ -divergence R→×∇ SSD :
*

 by 

( ) ( ) ( ) ( ) ( ) ( ).::,
*

qpqpqpDqpD i
i θη−ψ+ϕ==∇  

We also define ∇ -divergence by interchanging p and q in ,
*∇D  that is, 

( ) ( ).
*

: pqDqpD ∇∇ =  Then ∇D  and 
*∇D  are independent of the choice of affine 

coordinates and define functions on .SS ×  For any ( )qp,  in ( ) 0, ≥× ∇ qpDSS  

and the equality holds if and only if ,qp =  and so does .*∇D  In the case where 

exponential families { ( ( ) ( ) ( ))},exp θψ−θ+== θ xFxCpS i
i  the divergence 

( ) dx
q

p
pqpD ∫=∇ log  

is the relative entropy (or Kullback-Leibler divergence). These two divergences are 

contrast functions defined as follows. 

Let S be a differentiable manifold and let R→× SSD :  be a non-negative 

function satisfying identity of indiscemibles, namely ( ) 0≥qpD  for any 

( ) SSqp ×∈,  and the equality holds if and only if .qp =  If we define a matrix 

[ ]D
ij

D
gg =  by 

[ ] [ ] [ ],: jijiji
D
ij DDDg ∂∂−=∂∂⋅=⋅∂∂=  

then [ ]D
ij

D
gg =  is positive semi-definite, where [ ]⋅⋅D  denotes the restriction of D 

to the diagonal of .SS ×  A function D on SS ×  is a contrast function if matrix 

Dg  is positive-definite, and then Dg  is a Riemannian metric on S. As we saw 

above, a statistical structure naturally defines contrast functions, conversely a 

contrast function defines statistical structures on the manifold. 

We next refer to results of gradient flow equations on dually flat spaces due to 

Fujiwara [8, 9]. Note that the notations of divergence functions in [8] are reverse to 

that of our divergences. 

Theorem 2.2.  Let ( )*,,, ∇∇gS  be a dually flat space, and fix a point q in S. 
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(1) Define a function on S by ( ) ( ),,: qpDpU ∇=  and consider the gradient 

flow equation 

 ( ).grad θ−=θ Uɺ  (2.2) 

Then the solution of this equation is given by 

( )( ) ( ) (( )( ) ( )) teqpqtp −η−η+η=η 0  

which converges to q along *m -geodesic as .∞→t  

(2) If S has even dimension, then gradient flow equation 

 η−=ηɺ  (2.3) 

can be reformulated as a Hamiltonian equation whose position is ,2kkQ η=  

momentum is ,1 12 −η−= k
kP  and Hamiltonian is  ( ).,,1 nkPQH k

k …=−=  

Proof. (1) Since ( ) ( ) ( ) ( ) ( )( ) ( ),qpqqpqpD η⋅θ−θ+ψ−ψ=  we have 

( ) ( ) ( ),qpU jjj η−ψ∂=θ∂  and 

( ( ))qg jj
iji η−η−=θɺ  

because .jj η=ψ∂  By multiplying jig  the both sides of the equality and taking the 

summation, we have ( ( )).qg jj
i

ji η−η−=θɺ  On the other hand 

,
dt

d

dt

d
g

j
i

i

ji
ji

η
=

θ

θ∂

η∂
=θɺ  

so that in η -coordinates the gradient flow equation (2.2) has form 

( )( ).qη−η−=ηɺ  

By integrating this equality, we obtain ( )( ) ( ) (( )( ) ( )) .0 teqpqtp −η−η+η=η  

(2) In view of (2.3), we have 

( ) .0
1

1221222
12

=ηη−ηη
η

= −−
−

kkkk

k

H
dt

d
ɺɺ  
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Direct calculation gives us the equivalence of the Hamiltonian equation 

k

k

k

k

Q

H

dt

dP

P

H

dt

dQ

∂

∂
−=

∂

∂
= ,  

and 

., 121222 −− η−=ηη−=η kkkk ɺɺ  

For ,F∈f  vector field grad f is defined by g(grad ) ( ),, YdfYf =  and is expressed 

as ( )fg j
ij∂  in coordinates. Hence gradient flow equation (2.2) is expressed as 

( ) ( )( )qUg j
iji η−η−=ηθ∂−=θ ɺɺ ,  

in (∇θ  affine), ( *∇η  affine) coordinates, respectively. In the case where normal 

distributions, if we take delta distribution at the origin as q, then we get a result in 

Nakamura [20]. In the case where exponential families, the potential function for ∇  

divergence is ( ) −=ηU (entropy of +)p const., then the gradient flow equation is a 

steepest ascent flow of entropy. Especially by taking a uniform distribution as q it 

becomes an Ornstein and Uhlenbeck process [22]. 

While (2) of the theorem shows that gradient flow equation (2.3), more generally 

(2.2) is reformulated as Hamiltonian equation, it is very mysterious and interesting 

result. In the next section, we clear the reason why gradient flow can be rewritten to 

Hamiltonian equation. 

3. Symplectic Structure and Hamiltonian Equations on ST *  

First of all, we construct symplectic structures on the square of dually flat space 

from contrast functions. To distinguish between the first and second factors of 

,SS ×  we denote not SS ×  but 21 SS ×  and put * on coordinates of the second 

factor, e.g., 
**

, ji θξ  and so on. Let R→× 21: SSD  be a contrast function, and 

define a map form 21 SS ×  to ST*  by 

( ) ( ),,*,

*:

1

211

Dd

STSSDd

ξξξ

→×

֏
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where i

i
d

D
Dd ξ

ξ∂

∂
=1  denotes the exterior derivative along the first factor of 

.21 SS ×  Define a two form ω  by the pull-back of the canonical symplectic structure 

on ST *  with respect to this map :1Dd  

( ) ( ) )( .*
*

*:*,
2

01
ji

ji
dd

D
dDd ξ∧ξ

ξ∂ξ∂

∂
=θ−=ξξω  

This ω  is a symplectic form on a neighborhood of the diagonal of .11 SS ×  In 

general, ω  is only nondegenerate on a neighborhood of the diagonal of ,21 SS ×  and 

then not necessarily define a global symplectic structure on .21 SS ×  However, we 

do not need the range where ω  is nondegenerate in this paper, from now on we 

assume that ω  above define a global symplectic form on .21 SS ×  For detail see 

Barndorff-Nielsen and Jupp [4] and Noda [21]. 

For example, if we take nS R=  and R→× 21: SSD  as 

( ) ,*
2

1
*

2ξ−ξ=ξξD  

where ⋅  denotes the Euclid norm. Then this is a contrast function on ,
nn
RR ×  

and the induced symplectic structure is the canonical symplectic structure 

ji
ij

i

i

i dddd **
0 ξ∧ξδ=ξ∧ξ=ω ∑  

on .* 2nnT RR =  Hence the symplectic structure associate with the Hellinger 

distance is the canonical symplectic structure on the cotangent bundle. 

For general dually flat spaces, we have 

Lemma 3.1.  Let ( )*,,, ∇∇gS  be a dually flat space. Then the symplectic 

structure on 21 SS ×  defined by ∇D  is given by 

.******
0 ji

ijj
k

ik
ij

ji
ij

i
i ddgddggddgdd η∧η−=θ∧η−=θ∧θ−=θ∧η=ω  
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If we use ,∗∇D  then 

.*******
0 ji

ij
j

ikj
ik

ji
ij

i
i ddgddggddgdd η∧η−=η∧θ−=θ∧θ−=θ∧η−=ω  

Proof. Let ( )nθθ ,,1
…  and ( )nηη ,,1 …  be ∇  affine and *∇  affine 

coordinates on S, respectively. By choosing ( )*, j
i ηθ  as coordinates on ,21 SS ×  we 

have 

,
*

2
j
i

j
i

D
δ−=

η∂θ∂

∂ ∇  

and in view of Lemma 2.1, we obtain the results. 

Note that in expressions of 0ω  above, the second term 
ji

ij ddg **
0 θ∧θ−=ω  is 

symplectic structure, more precisely Kähler structure, defined on the tangent bundle 

of S. Moreover, we can define a special Kähler structure on 21 SS ×  by setting 

*ηθ ⊕ gg  and .*∇⊕∇  Then the associate complex structure J satisfies 

.: *i
iJ −∂=∂  (For special Kähler manifolds, see Freed [7], Alekseevsky-Cortés-

Devchand [2].) While we can define symplectic structures on 21 SS ×  by 

ii dd *θ∧θ  and ,*
ii dd η∧η  we ignore these structures since they does not induced 

from divergence functions. 

Now we see properties of symplectic structure 0ω  as in Lemma 3.1. First of all, 

we see alternative way to get 0ω  which gives a classical mechanical characterization 

of the structure. 

Consider coordinates ( )**
1 ,, nηη …  on .21 SS ×  Namely, if we regard the first 

factor 1S  as tangent space and second factor 2S  as cotangent space, and 21 SS ×  as 

the cotangent bundle of S, then the canonical symplectic structure on 21 SS ×  is 

given by 

,*
0

i
i dd θ∧η=ω  

where ( )nθθ ,,1
…  and ( )**

1 ,, nηη …  are ∇  affine and *∇  affine coordinates on 
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1S  and ,2S  respectively. This symplectic structure coincides with the form as in 

Lemma 3.1, so we use the same notation. From this viewpoint, potential functions ψ  

and *ϕ  satisfy a Legendre relation in analytical mechanics. 

Lemma 3.2.  On symplectic manifold ( ),, 021 ω× SS  the Hamiltonian vector 

field of the canonical divergence ∇D  is given by 

 ( ) ( ( ) ( )) ( ( ) ( )) .,
*

**

i

iii

ii
D pqqpqpX

η∂

∂
η−η−

θ∂

∂
θ−θ=

∇
 (3.1) 

 Proof. For the canonical divergence ( ) ( ) ( ) ( ) ( ),* * pqpqqpD i
i θη−ψ+ϕ=∇  

we have 

i
ii

ii

ii

i

dddddD θη−ηθ−θ
θ∂

ψ∂
+η

η∂

ϕ∂
=∇

***

*

*
 

i
ii

ii
ii

i dddd θη−ηθ−θη+ηθ= ****  

( ) ( ) .*** i
iii

ii dd θη−η+ηθ−θ=  

It follows that the first factor of 
∇DX  generates ∇ -geodesic, and the second 

generates *∇ -geodesic. If we fix a point in 2S  and identify 2S  with S by using a 

certain parallel translation, then the Hamiltonian vector field 
∇DX  reduces to 

( ( ) ( )) ,
i

ii qp
θ∂

∂
θ−θ  

hence this vector filed on S generates ∇ -geodesic. Similarly, fixing a point in 1S  and 

taking a parallel translation, we get a vector field 

( ( ) ( ))
i

ii pq
η∂

∂
η−η  

on S which generates *∇ -geodesic. Therefore geodesics on S with respect to dual 

connections can be obtained by Hamiltonian flow for the divergence. 

Under these preparations, we describe the reason why gradient flow equation 
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(1.1) can be expressed as a Hamiltonian equation. While we notice that (1.1) looks 

like the second factor of (3.1), at this time the symplectic structure is unclear. In this 

reason, we construct a dually flat space L such that ( )0, ω× LL  is (locally) 

symplectic diffeomorphic to S and a Hamiltonian flow on LL ×  coincides with 

gradient flow (1.1). 

In Lemma 3.2, we calculate Hamiltonian vector filed 
∇DX  on SS ×  with 

respect to ,0ω  in view of the definition of the divergence ,∇D  for example, we try 

to compute the Hamiltonian vector field of ( ) ( )qpH θη−= *  which is a part of the 

divergence. Then we have 

,
*

*

i

ii

i
HX

η∂

∂
η−

θ∂

∂
θ=  

and we want to show this coincides with (2.3). 

Lemma 3.3.  Let mL  be a dually flat space defined as the following: =L  

{ },,,1 mθθ …  ( ) ( ),log1∑ θ−−=θψ
i

i  ( ) 1−θ−=η ii
 and ( ) −=ηϕ .log∑ ηi  

For this L, the symplectic structure associated to divergence ∇D  on 

( )021 , ω× LL  is given by 

,
2

*
*

0 ∑
η

η∧η
=θ∧η=ω

i i

iii
i

dd
dd  

and the Hamiltonian vector filed of i
iH θη−= *  is 

.
*

*

i

i
i

iHX
η∂

∂
η−

η∂

∂
η−=  

Proof. By ( ) ,
1−θ−=η i

i  we have ,2 ij
i

ijg δη=  and then 

.
2

*
** ∑

η

η∧η
=η∧η=θ∧η

i i

ii
j

ij
i

i
i

dd
dgddd  

Next for ,* i
iH θη−=  we have 
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,
*

*

i

ii

i
HX

η∂

∂
η−

θ∂

∂
θ=  

by using 1−η−=θ i
i  and 

,
2

i
i

j
i

j

i η∂

∂
η=

η∂

∂

θ∂

η∂
=

θ∂

∂
 

we obtain 

.
*

*

i

ii

i
HX

η∂

∂
η−

η∂

∂
η−=  

It follows Darboux type theorem for even dimensional dually flat spaces. 

Theorem 3.4.  Let S be a n2  dimensional dually flat space. For any point 

,Sp ∈  there exist a neighborhood U of p and canonical symplectic structure 

∑
= −

−

η

η∧η
=ω

n

k k

kk dd

1
2

12

212
1  

on U such that 

 ( ) ( ),,~, 10 ω−ω× ULL nn  (3.2) 

where  ≃ means symplectic diffeomorhic. 

This theorem shows that on any dually flat space with even dimension there is a 

natural symplectic structure, and gradient flow equation (2.3) coincides with 

Hamiltonian equation with θη−= *H  because of the lemma above. Hence, we 

obtain a correspondence between gradient and Hamiltonian flow on dually flat 

spaces. By Theorem 3.4, if S has even dimension, then any dually flat space admits a 

natural symplectic structure defined from the canonical divergence which associate to 

Poincaré metric. Hence, we should consider Theorem 3.4 as Darboux theorem on 

dually flat spaces (indeed, this is for special Kähler structures). 

This is the first method, but is hard to be able to see a connection between the 

structures. So we give a supplement of the relation between symplectic structure 1ω  
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and statistical structure on the space. Fix a point q in n2  dimensional dually flat 

space S, and let ( ) ( ).qpDpU ∇=  Then for ,21 ni ≤≤  we have 

( ).qU iii η−η=∂  

We separate n21 ,, ηη …  into even and odd indexes, and take even indexes as η  

coordinates and odd indexes as 1−θ−  coordinates which think of that of cotangent 

spaces. In this case, expressing the symplectic structure 0ω  by η  coordinates, then 

we obtain .1ω  Moreover, in a direction gradient flow is expressed as m-geodesic 

flow, in another direction Hamiltonian flow is m-geodesic flow. 

Newt we see more direct correspondence between two kinds of geometric flows. 

As we see above, the second factor of the Hamiltonian vector field 
∇DX  looks like 

the gradient flow ( ( ) ( ))pq ii η−η=ηɺ  which is expressed by η -coordinates on S. 

To identify S with the second factor of 21 SS ×  by using a parallel translation, we 

take L as in Lemma 3.2 instead of S, where we need even dimensional L. We 

consider mL  such that ,dim2 Snm ==  then the second part of Hamiltonian vector 

field 
∇DX  generates an m-geodesic by Lemma 3.2, and then corresponds to (2.3). 

In these correspondences, the essential reason is that potentials of Fisher metric 

on dually flat space S and of symplectic structure on SS ×  are both canonical 

divergences, and geodesics can be cahracterized to Riemannian and symplectic 

geometry. 

As the last, we construct a correspondence between gradient and Hamiltonian 

equations via the symplectic reduction argument. For detail of symplectic reductions, 

see Abraham and Marsden [1], Guillemin and Sternberg [14] and Marsden and 

Weinstein [16]. 

Although, we also consider the space as in Lemma 3.2, we need even 

dimensional space, say ,2n  so we use the notation 'S  instead of L. Namely, let 

'S  satisfies { },...,,' 21 nS θθ=  ( ) ( )∑ θ−−=θψ
i

i ,log1  ( ) 1−θ−=η ii  and ( )ηϕ  

.log∑ η−= i  We choose ( )*
2

*
1

21 ,,,,, n
n ηηθθ ……  as a coordinates system on 

.'
2

'
1 SS ×  Define the action of n

R  on '
2

'
1 SS ×  by 
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( ) ( )………… ,,;,,,,:*, *
2

*
12

212
kkkk

kk aaa +η+ηθθ=ηθ⋅ −
−  

for every ( ) ....,,1
n

naaa R∈=  The infinitesimal generator is ,2*12* kk
kV ∂+∂= −  

,1 nk ≤≤  and because 

( ) ( ) ,0212
0 =θ+θ=ω − kk

k dVi  

the moment map of this action is ( )....,, 21221 nn θ+θθ+θ −  Moreover, since the 

reduced space at the origin can be identified with the subset 0*
2

*
12 =η+η − kk  in 

( ),01−µ  the reduced symplectic structure 0
~ω  coincides with 0ω  restricted to 

{( ) }.1,0,0;*, *
2

*
12

212 nkkk
kk ≤≤=η+η=θ+θηθ −

−  

Hence, we have 

j
jk

n

k

k
k

n

k

k dgddd η∧η=θ∧η=ω −

=

−
−

=

− ∑∑ ,12

1

*
12

12

1

*
120 22~  

∑
= −

−−

η

η∧η
=

n

k k

kk dd

1
2

12

12
*

122  

which coincides with the symplectic structure in Theorem 3.4 up to scalar 

multiplication. Note that under the identification of the reduced space, we have 

.
*
2

2

*
1

1

n

n

η

θ
==

η

θ
⋯  
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