
Fundamental Journal of Modern Physics 

Vol. 8, Issue 2, 2015, Pages 125-140 

Published online at http://www.frdint.com/ 

:esphras and Keywords Einstein’s program, quantum field theory, adiabatic invariant, hidden 

variables, wave-particle duality. 

Received July 27, 2015 

 © 2015 Fundamental Research and Development International 

ON EINSTEIN’S PROGRAM AND QUANTUM THEORY 

CLAUDE ELBAZ 

Academie Europeenne Interdisciplinaire de Science (A.E.I.S.) 

Paris, France 

e-mail: claude.elbaz@science-inter.com 

Abstract 

The Einstein’s program forms a consistent system for universe description, 

beside the standard model of particles. It is founded upon a scalar field 

propagating at speed of light c, which constitutes a common relativist 

framework for classical and quantum properties of matter and interactions. 

Matter corresponds to standing waves. Classical domain corresponds to 

geometrical optics approximation, when frequencies are infinitely high, 

and then hidden. Quantum domain corresponds to wave optics 

approximation. Adiabatic variations of frequencies lead to electromagnetic 

interaction constituted by progressive waves. It leads to theoretical 

economy for Quantum Theory, with unification of first and second 

quantifications for interactions and matter, to the wave-particle duality by 

reduction of the introduced amplitude space-like function ( ),, tru  which 

completes the usual time-like function ( ),, trψ  with hidden variables. 

1. Introduction 

For the physicists, the whole universe is nowadays described by the Standard 

Model of particles, which forms a consistent theoretical system. In addition to special 

relativity, it is based upon quantum mechanics, in a probabilistic framework. It is 

constituted by matter interacting through three different kinds of forces. They are all 
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composed of fundamental particles which derive from relativist quantum fields, and 

behaving either as waves or as particles. The Standard Model has been validated in 

2012 by the B.E.H., or Higgs, boson detection, which represents its crowning. Since 

it does not include gravitation, it describes only a partial aspect of the universe. 

Until now, gravitation has resisted to its theoretical quantification. It is well 

described by general relativity, based upon a continuous field in a classical 

framework [1-5]. It has been widely confirmed by numerous experiments and by its 

theoretical consequences and practical applications. The graviton, as quantum 

particle mediating gravitation interaction, has not yet been experimentally detected 

and validated [6, 7]. On another hand, quantum field theories of gravity generally 

break down theoretically before reaching the Planck scale, which determines the limit 

between the wave and particle behavior of quantum particles [8]. We may conclude 

that the discrepancy between quantum mechanics and general relativity leans on the 

wave particle duality, together with the classical deterministic or quantum 

probabilistic approaches. 

In extension of general relativity and of his different discoveries, including in 

quantum physics, such as the stimulated emission, Einstein had proposed a consistent 

approach for physics, symmetrical to the standard model. He privileged a classical 

continuous field. “We have two realities: matter and field. … We cannot build 

physics on the basis of the matter concept alone. But the division into matter and 

field is, after the recognition of the equivalence of mass and energy, something 

artificial and not clearly defined. Could we not reject the concept of matter and build 

a pure field physics? … We could regard matter as the regions in space where the 

field is extremely strong. In this way a new philosophical background could be 

created. … Only field-energy would be left, and the particle would be merely an 

area of special density of field-energy. In that case one could hope to deduce the 

concept of the mass-point together with the equations of the motion of the particles 

from the field equations- the disturbing dualism would have been removed. … One 

would be compelled to demand that the particles themselves would everywhere be 

describable as singularity free solutions of the completed field-equations. … One 

could believe that it would be possible to find a new and secure foundation for all 

physics upon the path which had been so successfully begun by Faraday and 

Maxwell.” [1]. The Einstein’s Program has been supported, and validated, by the 

International Legal Metrology Organization. The speed of light in vacuum is 
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admitted as a “pure”, or primary, fundamental constant in experimental physics, with 

its numerical value strictly fixed, and the standard for measures of time is based on 

the period an electromagnetic wave frequency. 

In previous articles [8-12], we showed how the Einstein’s program forms a 

consistent system for universe description, beside the standard model. It allows us to 

complete the universe grasp, like both eyes give us access to tri-dimensional vision, 

or both ears to stereophonic audition. It founds upon a scalar field propagating at 

light velocity. Matter corresponds to standing waves, and electromagnetism, as a 

quantum interaction, to their adiabatic variations. In the geometrical optics 

approximation, when frequencies are infinitely high, the oscillations are hidden. 

In this article, we propose to show how the Einstein’s program permits to 

retrieve the main basic equations of quantum mechanics, like Schrödinger’s equation, 

Dirac’s distribution, Heisenberg’s relations, resulting from adiabatic variations or 

almost standing waves. 

2. The Einstein’s Program 

We restrict to summarize some equations deduced from Einstein’s program [8-

12], in order to show how they are related to main equations of quantum mechanics, 

otherwise widely documented. 

2.1. Standing field kinematics 

Starting from a scalar field ε  propagating at light velocity c, we are assured that 

whole following consequences are relativistic. The general harmonic solutions of the 

d’Alembertian’s equation 

 ( )( ) 0,01
222 =ε∂∂=∂ε∂−ε∆=ε µ

µ
tc  (1) 

may be reduced to two kinds of elementary ones, according to their kinematic, or 

their geometric, properties. We find progressive waves, with constant frequency 

,kc=ω  propagating at speed of light in opposite direction, like ( ),cos kxt ±ω  and 

standing waves of the form ( ) ( ) ( ) ( )00000000000 cos, ttxkutx ω=ωψ=ε  

( ).cos 00xk  The separation of variables for space and time expresses that they 

oscillate locally, defining then a system of coordinates at rest ( )., 00 tx  The functions 
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( )000 xku  and ( )000 tωψ  being independent, the frequency 0ω  is necessarily 

constant in ( ) ( )( ) 2
0

2
0

2
0

2
0000 11 ktcuu −=∂ψ∂ψ=∆ .22

0 cω−=  Progressive 

and standing waves can be considered either as basic, or as composed from others 

since 

( ) ( ) ( ) ( ),coscos2coscos 000000000000 xktxktxkt ω=−ω++ω  (2) 

( ) ( ) ( ) ( ) ( ).cossinsincoscos 000000000000 xktxktxkt −ω=ω+ω  (3) 

When the frequencies of opposite progressive waves are different in a system of 

reference ( ),, tx  

 ( ) ( ) ( ) ( ),coscos2coscos 2211 tkxkxtxktxkt βω−β−ω=+ω+−ω  (4) 

by identification with (2), they form a standing wave with main frequency 

210 ωω=ω  at rest, becoming ( ) ,221 kc=ω+ω=ω  in motion with a speed 

( ) ,2121 ccv ω+ωω−ω=β=  leading to the Lorentz transformation between the 

systems of reference ( )00 , tx  and ( ),, tx  and to its whole consequences. 

The geometric properties of standing waves are described by the function of 

space ( ),00xku  which obeys the Helmholtz’s equation .00
2

000 =+∆ uku  Its 

solutions verify Bessel spherical functions, and particularly its simplest elementary 

solution, with spherical symmetry, finite at origin of the reference system, and 

representing a lumped function, 

 ( ) ( ) ( ).sin 0000000 rkrkrku =  (5) 

In geometrical optics approximation, when the frequency is very high and tends 

towards infinity ,00 →∝=ω k  the space function 0u  tends towards Dirac’s 

distribution ( ) ( ).0000 rrku δ→  The standing wave of the field behaves as a free 

classical material particle isolated in space. 

From a kinematical point of view, the central extremum of an extended standing 

wave, either at rest or in motion, is appropriate to localize its position ,0x  exactly 

like the centre of mass for a material system. It verifies, for instance from (5), 

 ( ) .0000 =∇ xu  (6) 
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The four-dimensional Minkowski’s formalism traduces invariance properties of 

standing waves at rest, when they move uniformly. Confirmation is found into 

invariant quantities obtained from four-quantities, such as coordinates 
2

0xxx =µ
µ  or 

,
2

0
2
tcxx =µ

µ  and functions ( )0
2

xuuu =µ
µ  or ( ).0

2
tψ=ψψ µ

µ  Their space-like 

or time-like characters are absolute, depending of their referring quantities defined in 

the rest system, in which the variables of space and time are separate. 

In order to point out their constant frequency, we express them as 

 ( ) ( ) ( ) .,exp,, kxtkxtitkxukxt β−ω=ϕβ−ωβω=ωε  (7) 

In special and general relativity, the equations are based on mass-points, as 

singularities, moving on trajectories. They lean then directly upon geometrical optics 

approximation. The periodic equations, generic of standing fields, are hidden. The 

space coordinates ,αx  involved in the metric, are point-like dynamical variables, and 

not field variables r which would describe an extended repartition in space. Then, the 

kinematic properties for standing waves of a scalar field propagating at light velocity 

c, with constant frequency ω  and velocity v, are formally identical with mechanic 

properties of isolated matter. The Lorentz transformation is specific of standing 

waves with respect to progressive waves [10]. 

2.2. Standing field dynamics 

All above equations are unlimited with respect to space and time, since x or t 

may become infinite. Usually, one imposes boundary conditions, in which matter acts 

either as a source fixing the frequency ,ω  or as a detector annealing it, as well as a 

geometrical space boundary fixing the wavelength λ  through .2 λπ=k  This is not 

felicitous from relativistic consistency, since space and time operate separately. In 

addition, matter is heterogeneous with respect to field. In order to remain in 

homogeneous frame, we rather consider boundaries provided by wave packets. Two 

progressive waves with different frequencies 21, ωω  propagating in the same 

direction at light velocity, give rise to a wave packet propagating in the same 

direction at light velocity, with a  main wave with frequency ( ) ,221 ω+ω=ω  

modulated by a wave with frequency ( ) 2221 ω∆=ω−ω=βω 2kc∆=  and 

wavelength kβπ=Λ 2  and period .cT Λ=  Since ,1<β  the modulation wave acts 
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as an envelope with space and time extensions ,2,2 Ttx =∆Λ=∆  leading to well 

known Fourier relations π=∆∆ 2. kx  and .2. π=ω∆∆t  

Then, Fourier relations represent homogeneous boundary conditions for the 

scalar field .ε  From a physical point of view, they must be associated with the 

d’Alembertian’s equation (1) in order to complete them, emphasizing that the field 

cannot extend to infinity with respect to space and time. 

When the frequencies difference ( ) ω<<ω∆=ω−ω=βω 2221  is very 

small, it can be considered as a perturbation with respect to the main frequency, 

.δω=βω  Then a wave packet can be assimilated to a progressive monochromatic 

wave with frequency ,δω±ω=Ω  inside the limits fixed by the component 

frequencies δω+ω=ω1  and .2 δω−ω=ω  By difference with standing waves 

frequencies, which must be constant and monochromatic, progressive fields solutions 

of (1), may be more complex, with frequencies varying with space and time. An 

almost monochromatic wave is characterized by a frequency ( ),, txΩ  varying very 

slowly around a constant ω  

 ( ) ( ) ( ) ( ) constant.,,,,,, =ωω<<ΩδΩδ±ω==Ω txtxctxKtx  (8) 

From a physical point of view, we recognize the definition of an adiabatic variation 

for the frequency [13]. We can then expect that all following properties of almost 

fields occur inside such a process. Instead of admitting a constant frequency ω  of 

elementary waves propagating all over space-time as given data, we rather consider 

that it represents the mean value, all over the field, of different varying frequencies 

( )., txΩ  In other words, the modulation waves with perturbation frequencies 

( ),, txΩδ  propagating at light velocity, behave as interactions between main waves, 

leading that their mean frequency ω  remains practically constant all over the space-

time [10]. 

From a mathematical point of view, almost field properties derive from 

monochromatic ones, through the variation of constants method (Duhamel principle). 

Accordingly, following (8), an almost standing wave obeys, 

 ( ) ( ) ( ) ( ) ( ) ( ) ,2.,,,,,exp,, π+−Ω=ΦΦ=ε ntxttxtxtxitxUtx xK  (9) 

where products of second order 0≈Ωδ dt  and ,0≈δ xK.d  defined modulo ,2π  are 
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neglected at first order of approximation. This is equivalent to incorporate, in almost 

monochromatic solutions, the boundary conditions defined by Fourier relations. 

 ( ) ( ) ( ) ( ) ( ) ( ).,,,,..,,, txUtxutxUddtdtxdttxtxd δ±=−ω≈−Ω=Φ xkxK (10) 

According to (1), ( )tx,ε  in (9) verifies, 

or0=Φ∂Φ∂−∂∂ µ
µ

µ
µ

UU  

[( ) ( ) ] ,0
222222 =Φ∇−∂Φ∂−∇−∂∂ tcUUtcU  (11) 

( ) ( ) ( ) .0or0
2222 =β+∂Ω∂=Φ∂∂ µ

µ
K. UtcUU ▽  (12) 

These relations apply to progressive waves for ,1±=β  to standing waves at rest for 

0=β  and in motion for ,1<β  to monochromatic waves for ω  and k constant, to 

almost monochromatic waves for varying ( )tx,Ω  et ( )., txK  They lead to 

dynamical properties for energy-momentum conservation, and to least action 

principles, for standing fields and almost standing fields [8-12]. 

For a standing wave with constant frequency ( ) ,0, =Ωδ tx  either at rest or in 

motion, (12) reduces to 

 0.,0 22
0

2
0 =+∂∂=∂∂ vututu ▽     or   ,0=∂ µ

µw  (13) 

where ( ) ( ) ( ) ( )22
00

22 1,1, β−==µ cxucuuw vv  is a four-dimensional 

vector. This continuity equation for 2u  is formally identical with Newton’s equation 

continuity for matter-momentum density 

 ,0. =µ+∂µ∂ v▽t    with   .22 cu µ=  (14) 

We are led to admit, by transposition, that 2u  represents the energy density of the 

standing field. 

Following relations (5) and (6), in the spherical symmetry case, for its 

kinematical behavior, the space function 0u  can be reduced to its point-like centre of 

energy density whose position 0x  is such that 

( ) ,0,0,0 2222
00 =×=∂∂+= vv ▽▽▽ tcuuu    or 
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.0=∂−∂=π µννµµν ww  (15) 

Since 2u  is a standing wave energy density spread in space, and then a potential 

energy density, Pwu ▽▽ −=−= 2F  is a density force, and tcu ∂∂ 22 v  a density 

momentum, while µνπ  is a four-dimensional force density. 

Equation (15), in which energy density µw  is a four-gradient ,a
µ∂  is 

mathematically equivalent to the least action relation 

 ∫∫ =∂δ=δ µ
µ

0,0 adxda    with   .aw µµ ∂=  (16) 

When we transpose the mass density ,22 cu=µ  taking into account identities 

( ) ( )PPPP. ××+= ▽▽▽ 222P  and ( )Pv.PP ▽+∂∂= tdtd  for c and v 

constant, after integration with respect to space, we get the equation for matter 

 { ( ) } ( ).1,2 22
0

22 β−−==+−= cmLdtdmmvmcdtd m ▽▽▽▽ pp (17) 

We retrieve the relativistic Lagrangian of mechanics for free matter 

( ).1 22
0 β−−= cmLm  

2.3. Electromagnetic interaction 

For of an almost standing wave, the continuity equation concerns the total energy 

density, ,
2

WwUW δ+=Ω=  sum of the mean standing wave w and of the 

interactions .Wδ  Relation (15) is 

 0=∂−∂= µννµµν

∏ WW    or   .0=δ+π= ∏∏
µνµνµν

 (18) 

By difference with the null four-dimensional density force µνπ  for a standing wave, 

only the total density force ∏
µν

 for an almost standing wave vanishes. In the first 

case, this asserts the space stability of an isolated standing wave, while in the second 

case, the space stability concerns the whole almost standing wave. It behaves as a 

system composed of two sub-systems, the mean standing field with high frequency 

( ) ,, ω≈Ω tx  and the interaction field with lower frequency ( ),, txΩδ  each one 
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exerting an equal and opposite density force ∏
µνµν δ−=π  against the other. 

In (15), the vanishing four-dimensional force density tensor µνπ  of a standing 

wave, asserts that the energy-momentum density four-vector µw  is four-parallel, or 

directed along the motion velocity v. By comparison, for an almost standing wave, 

the total energy-momentum density tensor ∏
µν

 which still vanishes, asserts also 

that the total energy-momentum density four-vector µW  is four-parallel, or directed 

along the motion velocity v. However, the mean energy-momentum density tensor 

,
µνπ  no longer vanishes in (18) as previously in (15): the mean energy-momentum 

density four-vector µw  is then no longer parallel. This comes from the opposite 

density force ∏
µν

δ  exerted by the interaction. 

It appears that an almost standing field behaves as a whole system in motion 

which can be split in two sub-systems, the mean standing field and the interaction 

field. Both are moving with velocity v, while exerting each other opposite forces in 

different directions, including perpendicularly to the velocity v. The perturbation 

field, arising from local frequency variations ( ),, txΩδ  introduces orthogonal 

components in interaction density force and momentum. 

Relations (17), generalized by constants variation method for mass 

( ) ( ),,, txMmtxM δ±=  become 

 ( ) .2,0,0 222 MPMcdtdPPtPMc ∇+−∇==×∇=∂∂+∇  (19) 

The density force 0≠δ∏
µν

 exerted by the interaction is formally identical with 

the electromagnetic tensor .0≠∂−∂= µννµµν AAF  We can set them in 

correspondence ,
µνµν

=δ∏ eF  through a constant charge e, in which 

( ) =δ txM , ( ) 2, ctxeV  and ( ) ( ) .,, ctxeAtxP =δ  The double sign for mass 

variation corresponds to the two signs for electric charges, or to emission and 

absorption of electromagnetic energy by matter. We retrieve the minimum coupling 

of classical electrodynamics, ( ) ( ) ,,, ctxeAptxP µµµ +=  with ( ) =2, ctxM  
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( ),,2 txeVmc +  and ( ) ( ) ,,, ctxeAptxP +=  where electromagnetic energy 

exchanged with a particle is very small with respect to its own energy 

( ) ( ) .,, µµµ <<δ= ptxPctxeA  Electromagnetic interaction is then directly linked 

to frequencies variations of the field .ε  

From (19) derives the relativistic Newton’s equation for charged matter with the 

Lorentz force 

 ( ) ( ).1 22
0 cHvEecmdtdP ×++β−−∇=  (20) 

2.4. Adiabatic invariance 

For an almost standing wave, we get from (11), to first order approximation, 

[ ] [ ] 0222 =ΩΩ+∂Ω∂δ++∂∂ v.v. ▽▽ tUUtU  or 

( ) ( 0=ΩΩ∂δ+∂ ν
ν

ν
ν WW  (21) 

with energy density ,222 cccWwW δµ±µ=µ=δ±=  four-dimensional energy 

density ( ),,2 ccWwW vµµ=δ±= νν  frequency ,Ωδ±ω=Ω  and four-

dimensional frequency ( ),, cvΩΩ=Ων  leading to 

 Ω= IW    and   νν Ω= IW  (22), 

when we take into account the double sign in frequency variation .Ωδ  The constant I 

is an adiabatic invariant density. In first approximation, they reduce to energy-

momentum densities, and to their variations, relations 

νν ω= Iw    or   ω=µ Ic2    and   ,kv β=µ I  (23) 

νν Ωδ=δ IW    or   Ωδ=δµ Ic2    and   K.v δβ=δµ I  (24) 

Integrations with respect to space of µ  and I densities, lead to relations between 

four-energy and four-frequency through the adiabatic invariant H, formally identical 

with the Planck’s constant h. 

( ) ( ) ,,, 0
2

0
2 νννν ω=ω=ω=== uHcHHucmcmcE kp  

( ) .,,1 0
2

0 ω==ν Hcmcu v  (25) 
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Adiabatic variations frequency Ω  of the standing wave corresponding to matter, lead 

to electromagnetic interaction constituted by progressive waves. Electromagnetic 

interaction energy derives from mass variation ,
2
dmcdE =  leaning directly upon the 

wave property of matter: its energy dmchddE 2=ν=  derives from variations of 

matter energy .2mchE =ν=  

3. Relations with Quantum Theory 

3.1. Theoretical economy 

The Einstein’s program tends towards a unitary theoretical economy by showing 

how, independently of any interpretations, different fundamental principles of 

Quantum Theory derive mathematically from a scalar field propagating at speed of 

light c. 

Such an evolution appeared already in the past in Quantum Mechanics, when, 

beyond its agreement with experiment, the non relativist Schrödinger’s equation was 

derived from the relativist Klein-Gordon’s equation as an approximation. 

Nevertheless it continued to serve as fundamental basis for the elaboration of the 

Copenhagen consistent interpretation, (description of a single quantum particle in 

motion, wave-particle duality behavior obeying uncertainty principle, Dirac’s 

relativist equation, superposition principle, the statute of the observer associated with 

the admitted collapse of the wave function…). At the present time, the more general 

relativist Quantum Field Theory has introduced some distance with Quantum 

Mechanics description. For instance, a quantum particle is no longer considered as 

single; its presence is not experimentally permanent, since it can be created or 

annihilated; its experimental point-like character behavior is not of prime importance 

since it derives as a kind of resonance from a continuous field expressed by partial 

differential equations; its mass is not a constant independent of time but varies 

according to the Feynman process; its interactions verify gauge theories, in which the 

lagrangian is invariant under continuous local transformations. 

All these features are consistent with the above equations deriving from the 

Einstein’s program. Since it leans on a generating basic c-scalar field, which provides 

a physical general framework, it draws our attention to some main problems of 

Quantum Theory such as the Planck’s constant statute, the hidden variables, the 
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wave-particle duality, and the relation between matter and interactions, which should 

ask to be deepened further. 

3.2. The Planck’s constant statute 

3.1.1. First and second quantifications 

The relations (21-25) show that h corresponds formally to a phenomenological 

constant value of an adiabatic invariant, which structure derives from the c-scalar 

field. A unique equation (21) gathers its application to standing fields, behaving like 

matter ,
2

mchE =ν=  and to the perturbation field as electromagnetic interaction 

.2dmchddE =ν=  By comparison, two decades separates historically, the discovery 

of first quantification ,ν= hE  for electromagnetic energy, from the second 

quantification, for matter. In addition, the particles of matter, such as electrons, and 

of interactions, such as photons, are entirely independent, physically and 

geometrically. Physically, they derive in Quantum Theory, from fundamental fields, 

each one with specific nature and properties [15]. Nevertheless, they all have in 

common energy as profound nature, which authorizes their interactions and 

transformations, following some well defined processes. Geometrically, the 

independency of matter and interactions particles appears in the emission-absorption 

of the second by the first ones, merged with the creation-annihilation process. For 

instance in the Compton effect, their solutions show that, instead of being absorbed, 

the light verifies the relativist laws of light reflection from a moving mirror, 

performed by electron [8]. 

In these conditions, “since the photon is generally observable only when it 

disappears, a new type of atomic detector, able to record the trace of a single photon, 

without absorbing energy,” [18] has been realized by S. Haroche and his 

collaborators. 

3.1.2. Secondary fundamental constant 

The Planck’s constant h plays a fundamental role at the foundation of Quantum 

Theory, together with the speed of light in vacuum c. However, Einstein’s program 

consequences (21-25) show that h statute must not be considered on the same footing 

as c: theory and experiment show how, until now, it may be put into the background. 

From a theoretical point of view, quantum theories are fundamentally relativistic, 
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leaning then also upon the speed of light constant c. By opposition, general relativity, 

which has still resisted to its quantification [9], has not been superseded to describe 

gravitation, in a classical and determinist framework, ignoring h [1-5]. From an 

experimental point of view, the graviton, as quantum particle mediating interaction, 

has not yet been experimentally detected and validated [6, 7]. What is more 

significant, the speed of light in vacuum c is admitted as a “pure”, or primary, 

fundamental constant in experimental physics, with its numerical value strictly fixed, 

for the International Legal Metrology Organization. In other words, it is admitted that 

no error affects its knowledge and its effective utilization. 

By comparison, the Planck’s constant, which value )29(62606957.6=h  

3410−× Js is known with an uncertainty of 710−  is only a secondary, or “composed” 

fundamental constant. At present time, it does not serve, in experimental physics, to 

determine the standard of mass-energy through the relation ,
2

mchE =ν=  even 

though an electromagnetic frequency can be measured with the best accuracy in 

physics nowadays, with an uncertainty less than 1810−  following the standard of time 

[16-17]. 

3.3. Wave-particle duality 

However, owing to the numerical values of the fundamental constants ( )Gch ,,  

only, involved in the relations cc GmhchmcE λ=λ=ν== 22  for a material 

particle, the Planck’s constant h, together with the speed of light c and the gravitation 

constant G, allows to determine the physical boundary limits ( )cE λν,,  to the wave-

particle duality behaviour, for a particle with mass m, behaving as a standing wave of 

the c-scalar field with frequency ν  [8] . 

Instead to differentiate fundamental material and interactions particles of the 

standard model, as bosons or fermions, by their quantum statistical and spin 

properties, the Einstein program incites us to discriminate them by their relativist 

properties of motion, depending they have a rest mass or not. The distinction is 

exclusive since particles without mass, like photons and gluons for interactions, move 

always with light speed: it can never be different. On the contrary, particles with 

mass, like fermions for matter, have a motion velocity v strictly inferior to light speed 

c, following the generic relation ( ) ,2121 ccv ωωω−ω=β= +  in which the 
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frequencies 21, ωω  are hidden in the particle-geometrical optics approximation. 

As a consequence of the Einstein’s program (5), the Compton’s wavelength 

π==λ 2000 hkcmh  characterizes a material quantum particle, through a space-

like bunched function ( ).000 rku  It tends towards a Dirac’s distribution 

( ) ( ),0000 rrku δ→  without the Planck’s constant, when the frequency is very high 

and tends towards infinity ,00 →∝=ω k  in geometrical optics approximation: the 

standing wave of the field behaves then as a free classical material particle isolated in 

space. Such a limit approximation appears as more physical than the difficult and 

controversial collapse of the wave function ,ψ  which time-like character is not 

suitable to describe a distribution in space. 

In quantum domain, in absence of a space-like function describing the extension 

of a quantum particle, its point-like character for the photon is implicitly admitted 

because of the Planck’s constant in the Einstein’s relation ,ν= hE  and for matter in 

the de Broglie’s relation .2mchE =ν=  In quantum mechanics equations, it remains 

through the constancy of the photon frequency and the mass for a free particle. In 

quantum field equations, the interactions arise from variations of the mass-energy of 

matter through the lagrangian. 

From a physical point of view, it is obvious that a particle cannot be strictly 

point-like, since its energy density would be infinite. In quantum mechanics, where 

experiment is privileged, like in Young double-slit, the extended character of energy 

repartition is approximated by splitting it in two parts: all energy is concentrated in a 

point, interaction remains only as information all around space-time, following the 

(5) and (6) approximations. 

3.4. Hidden variables 

According to Einstein, the probabilistic experimental behaviour of quantum 

particles, like electrons, proves that the quantum mechanics description is 

incomplete. “The statistical character of the present theory would then have to be a 

necessary consequence of the incompleteness of the description of the systems in 

quantum mechanics.” 

Such an incompleteness does not concern the equations of quantum mechanics 

themselves. From a mathematical point of view, they do not need to be modified or 
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supplemented. They are mathematically complete, when we stay in the consistent 

quantum framework. For instance, in Bohm’s hidden variable theory [14], the 

nonlocal quantum potential ( ) ,8 222 aahQ π∇−=  which constitutes an implicate 

hidden order in the guidance of a particle, derives from the usual Schrödinger 

equation ( ) ,82 222 mhtih πψ∇−=∂πψ∂  through the solution .2exp. hSia π=ψ  

However, the equations resulting from Einstein’s program specify particularly 

how, and why, quantum mechanics, and more generally quantum theory formalisms, 

are physically incomplete. They do not take account of the space-like amplitude 

function ( ),0ru  which describes a particle in its rest system. It represents an 

extraneous complement to the quantum framework, which is based upon time-like 

equations: of Klein-Gordon for bosons, (from which derives the non-relativist 

Schrödinger equation), of Dirac for fermions, or of introduced lagrangian densities 

for massive particles [15]. The discrepancy between time-like and space-like 

characters is absolute. 
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