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In this paper, we show that gamma distributions can be considered as 

weak limits of appropriately rescaled beta distributions. 

Let X  be a random variable with a standard beta distribution, i.e., 

with a p.d.f. f  given by 

( ) ( )
( ) ,

,

1
,,

11

βα

−⋅
=βα=

−β−α

B

xx
xf    ;10 << x    ,0, >βα  

where ( ) ( ) ( )
( )β+αΓ

βΓ⋅αΓ
=βα,B  denotes Euler’s Beta function. The first 

moments are given by ( ) ,
β+α

α
=XE  ( )
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β⋅α
=XVar  (cf. 

[2], relations (25.15a) and (25.15b), p. 217). 
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Then for ,0>A  the p.d.f. of XA ⋅  is clearly given by 
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For the first moments, we thus obtain 
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Further, we consider a gamma distributed random variable Y  with a 

p.d.f. given by ( ) ( ) ( ),exp,; 1 xxxg λ−
αΓ

λ
=λα −α

α

 ;0>x  0, >λα  (cf. [1], 

relation (17.23), p. 343, with 
β

=λ
1

 there) with moments ( ) ,
λ

α
=YE  

( )
2λ

α
=YVar  (follows immediately from [1], relation (17.8), p. 339 and [1], 

relation (17.23), p. 343). Equating expectations for XA ⋅  and ,Y  we 

obtain α−λ⋅=β A  or .
A

β+α
=λ  Thus the p.d.f. of XA ⋅  becomes 
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Now, for ,∞→A  we get ( ),exp1 x
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which means that the beta distribution of XA ⋅  with parameters α  and 

β  tends weakly to the gamma distribution with parameters α  and .λ  

Note that for integer ,α  we have, by the recursive representation of the 

gamma function (cf. [3], 11.1.2.1, p. 222), 
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which gives a simple proof of (*) for this case. The more general case can 

be derived from [3], 11.1.3.1, p. 223. 

Note also that for the variances, we get 
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The following figures show some cases for different values of the 

parameters, the p.d.f. of X  in red, the p.d.f. of Y  in blue. 
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Figure 1. ,20=A  ,4.3=α  ,9.0=λ  .6.14=β  

 

 

 

Figure 2. ,50=A  ,4.3=α  ,9.0=λ  .6.41=β  
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Figure 3. ,100=A  ,4.3=α  ,9.0=λ  .6.86=β  

 

Figure 4. ,100=A  ,7=α  ,2=λ  .193=β  
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