

ON AN ASYMPTOTIC RELATIONSHIP BETWEEN BETA AND GAMMA DISTRIBUTIONS

DIETMAR PFEIFER

Institut für Mathematik
Fakultät V
Carl-von-Ossietzky Universität Oldenburg
Germany
e-mail: dietmar.pfeifer@uni-oldenburg.de

In this paper, we show that gamma distributions can be considered as weak limits of appropriately rescaled beta distributions.

Let X be a random variable with a standard beta distribution, i.e., with a p.d.f. f given by

$$f = (x, \alpha, \beta) = \frac{x^{\alpha-1} \cdot (1-x)^{\beta-1}}{B(\alpha, \beta)}, \quad 0 < x < 1; \quad \alpha, \beta > 0,$$

where $B(\alpha, \beta) = \frac{\Gamma(\alpha) \cdot \Gamma(\beta)}{\Gamma(\alpha + \beta)}$ denotes Euler's Beta function. The first moments are given by $E(X) = \frac{\alpha}{\alpha + \beta}$, $Var(X) = \frac{\alpha \cdot \beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$ (cf. [2], relations (25.15a) and (25.15b), p. 217).

Keywords and phrases: beta distribution, gamma distribution, approximation.

2020 Mathematics Subject Classification: 060E05, 060F05.

Received December 18, 2025; Accepted December 24, 2025

© 2025 Fundamental Research and Development International

Then for $A > 0$, the p.d.f. of $A \cdot X$ is clearly given by

$$\frac{1}{A} f\left(\frac{x}{A}; \alpha, \beta\right) = \frac{x^{\alpha-1} \cdot \left(1 - \frac{x}{A}\right)^{\beta-1}}{A^\alpha \cdot B(\alpha, \beta)} = \frac{x^{\alpha-1} \cdot \left(1 - \frac{x}{A}\right)^{A \cdot \frac{\beta-1}{A}}}{A^\alpha \cdot B(\alpha, \beta)},$$

$$0 < x < 1; \quad \alpha, \beta > 0.$$

For the first moments, we thus obtain

$$E(A \cdot X) = A \cdot \frac{\alpha}{\alpha + \beta}, \quad \text{Var}(A \cdot X) = A^2 \cdot \frac{\alpha \cdot \beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}.$$

Further, we consider a gamma distributed random variable Y with a

p.d.f. given by $g(x; \alpha, \lambda) = \frac{\lambda^\alpha}{\Gamma(\alpha)} x^{\alpha-1} \exp(-\lambda x)$, $x > 0$; $\alpha, \lambda > 0$ (cf. [1],

relation (17.23), p. 343, with $\lambda = \frac{1}{\beta}$ there) with moments $E(Y) = \frac{\alpha}{\lambda}$,

$\text{Var}(Y) = \frac{\alpha}{\lambda^2}$ (follows immediately from [1], relation (17.8), p. 339 and [1],

relation (17.23), p. 343). Equating expectations for $A \cdot X$ and Y , we

obtain $\beta = A \cdot \lambda - \alpha$ or $\lambda = \frac{\alpha + \beta}{A}$. Thus the p.d.f. of $A \cdot X$ becomes

$$\begin{aligned} \frac{1}{A} f\left(\frac{x}{A}; \alpha, \beta\right) &= \frac{x^{\alpha-1} \cdot \left(1 - \frac{x}{A}\right)^{\beta-1}}{A^\alpha \cdot B(\alpha, \beta)} = \frac{x^{\alpha-1} \cdot \left(1 - \frac{x}{A}\right)^{A \cdot \lambda}}{A^\alpha \cdot B(\alpha, \beta) \cdot \left(1 - \frac{x}{A}\right)^{1+\alpha}} \\ &= \frac{\lambda^\alpha}{\Gamma(\alpha)} \cdot x^{\alpha-1} \cdot \left(1 - \frac{x}{A}\right)^{A \cdot \lambda} \cdot \frac{\Gamma(\alpha + \beta)}{(\alpha + \beta)^2 \cdot \Gamma(\beta) \cdot \left(1 - \frac{x}{A}\right)^{1+\alpha}} \end{aligned}$$

$$= \frac{\lambda^\alpha}{\Gamma(\alpha)} \cdot x^{\alpha-1} \cdot \left(1 - \frac{x}{A}\right)^{A\cdot\lambda} \cdot \frac{\Gamma(A \cdot \lambda)}{(A \cdot \lambda)^\alpha \cdot \Gamma(A \cdot \lambda - \alpha) \cdot \left(1 - \frac{x}{A}\right)^{1+\alpha}},$$

$$0 < x < 1; \alpha, \lambda > 0.$$

Now, for $A \rightarrow \infty$, we get $\left(1 - \frac{x}{A}\right)^{A\cdot\lambda} \rightarrow \exp(-\lambda x)$, $\left(1 - \frac{x}{A}\right)^{1+\alpha} \rightarrow 1$ and

$$\frac{\Gamma(A \cdot \lambda)}{(A \cdot \lambda)^\alpha \cdot \Gamma(A \cdot \lambda - \alpha)} \rightarrow 1 \quad (*)$$

which means that the beta distribution of $A \cdot X$ with parameters α and β tends weakly to the gamma distribution with parameters α and λ .

Note that for integer α , we have, by the recursive representation of the gamma function (cf. [3], 11.1.2.1, p. 222),

$$\begin{aligned} \Gamma(A \cdot \lambda) &= \Gamma(A \cdot \lambda - 1) \cdot (A \cdot \lambda - 1) = \Gamma(A \cdot \lambda - 2) \cdot (A \cdot \lambda - 1) \cdot (A \cdot \lambda - 2) \\ &= \dots = \Gamma(A \cdot \lambda - \alpha) \cdot \prod_{k=1}^{\alpha} (A \cdot \lambda - k) \end{aligned}$$

which gives a simple proof of $(*)$ for this case. The more general case can be derived from [3], 11.1.3.1, p. 223.

Note also that for the variances, we get

$$Var(A \cdot X) = A^2 \cdot \frac{\alpha \cdot \beta}{(\alpha + \beta)^2(\alpha + \beta + 1)} = \frac{\alpha}{\lambda^2} \cdot \frac{A \cdot \lambda - \alpha}{A \cdot \lambda + 1} \rightarrow \frac{\alpha}{\lambda^2} = Var(Y)$$

for $A \rightarrow \infty$.

The following figures show some cases for different values of the parameters, the p.d.f. of X in red, the p.d.f. of Y in blue.

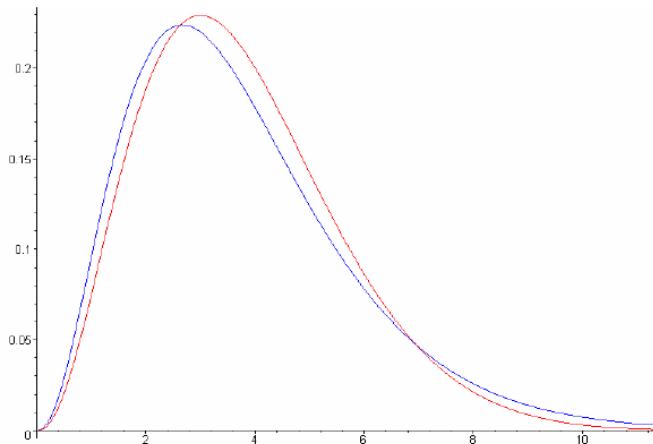


Figure 1. $A = 20$, $\alpha = 3.4$, $\lambda = 0.9$, $\beta = 14.6$.

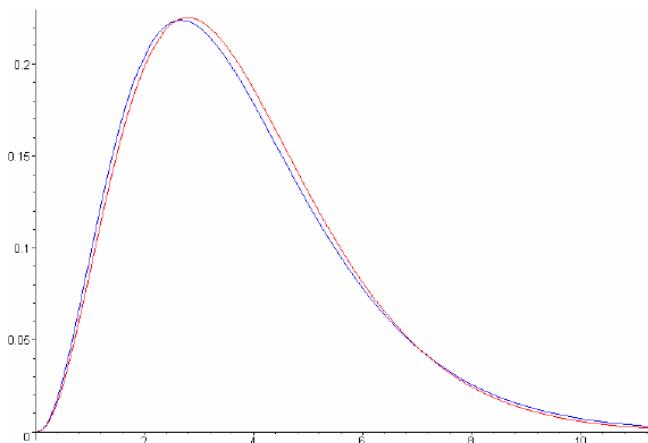


Figure 2. $A = 50$, $\alpha = 3.4$, $\lambda = 0.9$, $\beta = 41.6$.

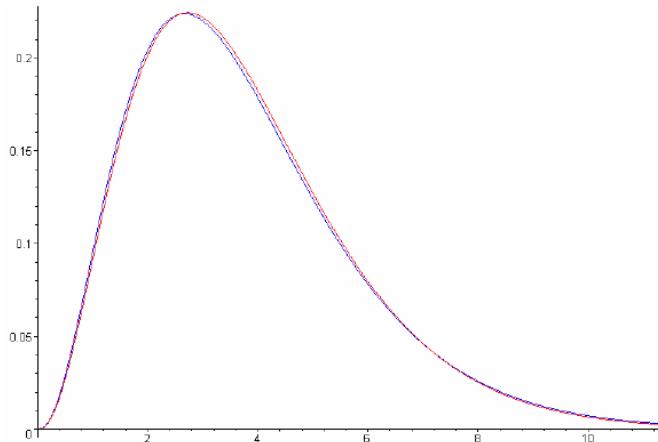


Figure 3. $A = 100$, $\alpha = 3.4$, $\lambda = 0.9$, $\beta = 86.6$.

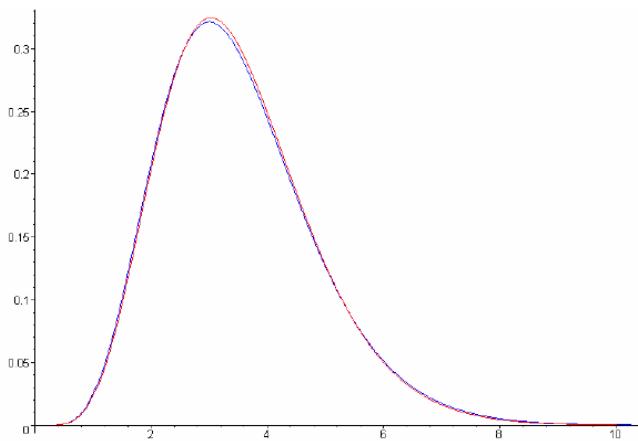


Figure 4. $A = 100$, $\alpha = 7$, $\lambda = 2$, $\beta = 193$.

References

- [1] N. L. Johnson, S. Kotz and N. Balakrishnan, *Continuous Univariate Distributions*, Volume 1, 2nd ed., Wiley, N.Y., 1994.
- [2] N. L. Johnson, S. Kotz and N. Balakrishnan, *Continuous Univariate Distributions*, Volume 2, 2nd ed., Wiley, N.Y., 1995.
- [3] A. Jeffrey, *Handbook of Mathematical Formulas and Integrals*, 2nd ed., Academic Press, London, 2000.