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Abstract 

In this paper, the fourth-order compact finite difference scheme has 

been presented for solving the two-dimensional Poisson equation. First, 

the given solution domain is discretized with uniform and non-uniform 

mesh size and then the partial derivative is replaced into functional 

values at each grid point by using Taylor series expansion. From this 

discretization, we obtain system of algebraic equations. Then, the 

obtained system of algebraic equations is solved by the Thomas method. 

The stability and convergent analysis of present scheme are 

investigated. To validate the applicability of the proposed method, one 

model example is considered and solved for different values of the mesh 

sizes in both directions. Numerical results are presented in tables in 

terms of root mean square error 2L  and maximum absolute error ∞L  
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norms. The numerical results presented in tables and graphs confirm 

that the approximate solution is in good agreement with the exact 

solution. 

1. Introduction 

A partial differential equation (PDE) is an equation containing a 

partial derivative of the dependent variable [9]. These equations arise in 

almost all areas of applied mathematics, physics, and some branches of 

engineering [5], for instance, in fluid mechanics, elasticity, heat transfer, 

energy systems, environmental flows, hydraulics, neutron diffusion in 

nuclear reactors, and structural analysis [18]. This partial differential 

equation is classified into parabolic, hyperbolic, and elliptic types of 

equations [5, 9, 11, 16]. Therefore the partial differential equations model 

sorts of phenomena, display different behavior, and require different 

numerical techniques for their solution [11] and simplest examples of the 

elliptic type of PDEs are Poisson’s equation and Laplace equation [5]. 

These elliptic-type equations are generally associated with equilibrium or 

steady-state problems [5]. For instance Steady-state condition in a 

communications circuit and electrical circuit are application of these 

types of equation. 

The Steady-state condition in a communications circuit can be defined 

as a condition in which some specified characteristic of a condition, such 

as a value, rate, periodicity, or amplitude, exhibits only negligible change 

over an arbitrarily long period. Again the Steady-state conditions, in an 

electrical circuit define as the condition that exists after all initial 

transients or fluctuating conditions have damped out, and all currents, 

voltages, or fields remain essentially constant or oscillate uniformly [12]. 

For example, the velocity potential for the steady flow of incompressible 

non-viscous fluid satisfies Laplace’s equation and the electric potential 

associated with a two-dimensional electron distribution of charge density 

satisfies Poisson’s equation [5]. The Poisson equation is a generalization 

form of Laplace’s equation. This equation is named after the French 

mathematician geometer, and physicist Simon Denis Poisson [1]. 
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Boundary conation of Elliptic types of PDEs equation arises in the study 

of steady-state or time-independent solutions of heat equations. Because 

these solutions do not depend on time, initial conditions are irrelevant 

and only boundary conditions are specified. Applications of Poisson 

equation also include the static displacement ( )txU ,  of a stretched 

membrane fastened in space along the boundary of a region; the 

electrostatic and gravitational potentials in certain force fields; and, in 

fluid mechanics for an ideal fluid [17]. 

Poisson’s equation is also a very powerful tool for modeling the 

behavior of electrostatic systems, but unfortunately may not only be 

solved analytically for very simplified models [1]. Because of this, these 

methods are based on advanced mathematical techniques [5]. Among 

Elliptic types of PDEs, Poisson type equations are the most practical and 

frequently investigated [1]. In solving these types of partial differential 

equations, we are looking for a function of more than a variable that 

satisfies the same relation between different partial derivatives [11]. But 

Poisson equation may not only be solved analytically for very simplified 

models. Consequently, numerical simulation must be utilized for that 

model problem due to them has complex geometries behavior within their 

practical value [1]. Therefore, several numerical methods are available 

that we use to solve the Poisson equation. The numerical methods are, in 

general, simple but generate erroneous results [5]. 

In many application areas, such as aero-acoustics and 

electromagnetic, the propagation of acoustic and electromagnetic waves 

needs to be accurately simulated over very long periods and far distances. 

Some numerical methods are not accurate for solving such types of the 

equation. For instance, the finite difference method is used as the direct 

conversion of the partial differential equation from continuous function 

and operator into their discretely sampled counterpart. This converts the 

entire problem into a system of linear equations that may be readily 

solved employing matrix inversion, Jacobi, Gauss-elimination, the 

successive over-relaxation method [7]. The accuracy of such a method is 
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therefore directly tied to the ability of a finite grid to approximate a 

continuous system and errors may be arbitrarily reduced by simply 

increasing the number of samples [6]. But the method has required high 

cost regarding storage capacity in the computational domain. Anley [16] 

solved the elliptic equation by using the finite volume method. He used 

the finite volume method and the solution domain is subdivided into a 

finite number of small control volumes by a grid that grid defines the 

boundaries of the control volumes while the computational node lies at 

the center of the control volume to solve the elliptic equation. Nodal 

points are used within these control volumes for interpolating the field 

variable and usually, the single node at the center of the control volume is 

used for each control volume. But the method gives better accuracy only 

for the small number of a grid point and is difficult to compute the 

solution in a complex computational domain when step length is very 

small. Genet and Lemi [1] presented the solution of two-dimensional 

Poisson equations using the finite difference method. This method is 

mathematically simple and guarantees the necessary accuracy for a 

relatively small number of mesh-size. This confirms that the method is 

not accurate for relatively a few grid points (i.e., for mesh size very large) 

and is difficult to apply for high dimension geometric spaces. Hence this 

method does not always converge to the exact solutions for coarser step 

lengths. Mohammad and Azim [20] also presented the Numerical 

Solution of Poisson’s Equation Using a Combination of Logarithmic and 

Multiquadric Radial Basis Function Networks. In multiquadric radial 

basis functions MQ-RBFs, some parameters influence the accuracy of the 

solution. The solution diverges until the optimal shape parameters are 

obtained. As we compared to the exact solution, the approximate solution 

needs further improvement. 

Even though the accuracy of the aforementioned methods is 

promising, they require large memory and long computational time. 

Besides, the methods are not suitable for higher-dimensional and 

problems involving complex geometries. So, the treatment of the mesh 
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size and shape parameter in the applied method presents severe 

difficulties that have to be addressed to ensure the accuracy of the 

solution for the Poisson equation, and efficiency of the method applied. 

Therefore due to this end, the accumulation of errors is generated 

throughout solving the Poisson equation. Thus still, the accuracy of the 

method needs attention; because the treatment of the method used to 

solve the Poisson equation is not trivial distribution. 

To reduce the accumulation of errors, the numerical algorithm must 

be highly accurate. To accomplish this goal, high-order compact finite 

difference schemes have been developed to solve PDEs types of the 

equation in a different application (see [8, 14, 19]). High-order finite 

difference schemes can be classified into two main categories: explicit 

schemes and Pade-type or compact schemes. Explicit schemes compute 

the numerical derivatives directly at each grid by using large stencils, 

while compact schemes obtain all the numerical derivatives along a grid 

line using smaller stencils and solving a linear system of equations. 

Experience has shown that compact schemes are much more accurate 

than the corresponding explicit scheme of the same order [14]. Therefore 

to this end, this paper aims to apply the fourth-order compact finite 

difference method that is capable of solving the Two-Dimensional Poisson 

Equation and obtain an innovative solution of Poisson Equation in the 

specified solution domain. 

Statement of the problem 

Consider that the following Poisson equation which is considered in 

[1] given by: 

 ( ),, yxfUU yyxx −=+     ( ) ( ) ( )dcbayx ,,, ×∈  (1) 

which is subject to Dirichlet boundary condition. 

 ( ) ( ) ( ) ( ) ,0,,,, ==== dxUcxUybUyaU  (2) 

( )yxf ,  is assumed to be sufficiently smooth functions in 

[ ] [ ]dcbaD ,, ×=  for the existence and the uniqueness of the solution. 
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Discretized the solution domain 

Now we define a mesh size h  and k  and the constant grid point by 

drawing a horizontal and vertical line of distance '' h  and '' k  respectively 

in the ‘x’ and ‘y’ directions. These lines are called gridlines and the points 

at which they interact are known as the mesh points. The mesh point that 

lies at end of the domain is called the boundary point. The solution to the 

problem that lies at boundary points is called boundary condition. These 

boundary conditions are used to find the solution of the given model 

problem at interior points. The points that lie inside the region (inside the 

solution domain) are called interiors points. The goal is to approximate 

the solution '' jnU  at the interior mesh points. Hence we discretized the 

solution domain and generate a grid by using both uniform and non-

uniform discretize of grid point given as follows. 

* A uniform Cartesian grid point can be generated as: 

,...210 bxxxxa M =<<<<=    ,1 jhxx jj +=+    ;
M

ab
h

−
=  

,...210 dyyyyc N =<<<<=    ,1 nkyy nn +=+    .
N

cd
k

−
=  (3) 

* A non-uniform Cartesian grid point can be generated as: 

( ),1randhx j ×=    ,1 jj xxh −= +  

( ),1randkyn ×=    ,1 nn yyk −= +  (4) 

where ( ) ,10 Mj =  ( ) .10 Nn =  M  and N  are the maximum numbers of 

grid points, respectively, in the x  and y -direction. Then the present 

paper is organized as follows. Section two is a description of numerical 

methods, section three, stability and convergence analysis, section four is 

the results of numerical experiments, section five is the discussion and 

section six is the conclusion. 
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2. Formulation of the Numerical Scheme 

Assuming that ( )yxU ,  has continuous higher order partial derivative 

on the region [ ] [ ].,, dcbaD ×=  For the sake of simplicity, we use 

( ) ,, jnnj UyxU =  jn
p
xp

p

U
x

U
∂=

∂

∂
 and jn

p
yp

p

U
y

U
∂=

∂

∂
 for 1≥p  is thp  

order derivatives. To construct the scheme, assume that for the 

approximate value of the following from the model problem in Eq. (1) as 

follow: 

( ) ( ) ( ) ( )4223110000 , UUaUUaUayxUU yyxx ++++≈+  

( ),87653 UUUUa ++++  (5) 

( ) ( )., 432110000 ffffbfbyxf ++++≈  (6) 

By using Taylor series expansion, we have: 

0
3

3

0
2

2

001 !3!2
U

h
U

h
UhUU xxx ∂+∂+∂+=  

( ),
!5

5

!4
6

0
5

0
4

4

hOU
h

U
h

xx +∂+∂+  (7) 

0
3

3

0
2

2

003 !3!2
U

h
U

h
UhUU xxx ∂−∂+∂−=  

( ),
!5

5

!4
6

0
5

0
4

4

hOU
h

U
h

xx +∂−∂+  (8) 

0
3

3

0
2

2

002 !3!2
U

h
U

h
UhUU yyy ∂+∂+∂+=  

( ),
!5

5

!4
6

0
5

0
4

4

hOU
h

U
h

yy +∂+∂+  (9) 

0
3

3

0
2

2

004 !3!2
U

h
U

h
UhUU yyy ∂−∂+∂−=  
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( ).
!5

5

!4
6

0
5

0
4

4

hOU
h

U
h

yy +∂−∂+  (10) 

Adding Eq. (7) to Eq. (8) and Eq. (9) to Eq. (10), we obtain 

( ) ( ),
!4

2 6
0

4
4

00131 hOU
h

UhUaUUa xx +









∂+∂+=+  

( ) ( ),
!4

2 6
0

4
4

00142 hOU
h

UhUaUUa yy +









∂+∂+=+  (11) 

where 0
6

6

1 360
U

h
T x∂=  and 0

6
6

2 360
U

h
T x∂=  are their local truncation 

errors. Again using the Taylor series expansion we have: 

( ) ( )0
2

00
22

2

0006 2
!2

UUU
h

UUhUU yxyxyx ∂+∂+∂+∂+∂+=  

( )0
3

0
3

0
3

0
3

3

33
!3

UUUU
h

yyyxxxyx ∂+∂+∂+∂+  

( )0
4

0
4

0
4

0
4

0
4

4

464
!4

UUUUU
h

yxyyyxxyyxxxyx ∂+∂+∂+∂+∂+  

( 0
5

0
5

0
5

0
5

5

32234
10105

!5
UUUU

h

yxyxyx
x ∂+∂+∂+∂+  

) ( ),5 6
0

5
0

5
4

hOUU y
xy

+∂+∂+  (12) 

( ) ( )0
2

00
22

2

0005 2
!2

UUU
h

UUhhUU yxyxyx ∂+∂−∂+∂+∂−=  

( )0
3

0
3

0
3

0
3

3

33
!3

UUUU
h

yyyxxxyx ∂+∂+∂+∂−  

( )0
4

0
4

0
4

0
4

0
4

4

464
!4

UUUUU
h

yxyyyxxyyxxxyx ∂+∂−∂+∂−∂+  

( 0
5

0
5

0
5

0
5

5

32234
10105

!5
UUUU

h

yxyxyx
x ∂+∂+∂+∂−  
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) ( ),5 6
0

5
0

5
4

hOUU y
xy

+∂+∂+  (13) 

( ) ( )0
2

00
22

2

0007 2
!2

UUU
h

UUhhUU yxyxyx ∂+∂+∂+∂+∂+=  

( )0
3

0
3

0
3

0
3

3

33
!3

UUUU
h

yyyxxxyx ∂+∂+∂+∂+  

( )0
4

0
4

0
4

0
4

0
4

4

464
!4

UUUUU
h

yxyyyxxyyxxxyx ∂+∂+∂+∂+∂+  

( 0
5

0
5

0
5

0
5

5

32234
10105

!5
UUUU

h

yxyxyx
x ∂+∂+∂+∂+  

) ( ),5 6
0

5
0

5
4

hOUU y
xy

+∂+∂+  (14) 

( ) ( )0
2

00
22

2

0008 2
!2

UUU
h

UUhhUU yxyxyx ∂+∂−∂+∂+∂−=  

( )0
3

0
3

0
3

0
3

3

33
!3

UUUU
h

yyyxxxyx ∂+∂+∂+∂−  

( )0
4

0
4

0
4

0
4

0
4

4

464
!4

UUUUU
h

yxyyyxxyyxxxyx ∂+∂−∂+∂−∂+  

( 0
5

0
5

0
5

0
5

5

32234
10105

!5
UUUU

h

yxyxyx
x ∂+∂+∂+∂−  

) ( ).5 6
0

5
0

5
4

hOUU y
xy

+∂+∂+  (15) 

Now adding Eqs. (11-14) all together we obtain: 

( ) [ ( )0
2

0
23

0387653 24 UUhUaUUUUa yx ∂+∂+=+++  

( ) ( )].6
!4

4 6
0

4
0

4
0

4
4

hOUUU
h

yxxyyx +∂+∂+∂+  (16) 

( ) .
360 0

66
6

3 U
h

T yx ∂+∂=  Is it a local truncation error? From the model 
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problem we have: 

[ ],0
2

0
2

0 UUf yx ∂+∂−=  

[ ],0
4

0
4

0
2

224
UUf

yxx
x ∂+∂−=∂  

[ ].0
4

0
4

0
2

422
UUf

yxy
y ∂+∂−=∂  (17) 

Using Eq. (17), from Eq. (6) we obtain: 

[ ],0
2

0
2

000 UUbfb yx ∂+∂−=  (18) 

( ) ( ) ( )







+∂+∂+=+++ 4

0
2

0
2

2

0143211 2

2
4 hOff

h
fbffffb yx  

( ) ( 







∂+∂+∂+∂+∂+∂−= 0

4
0

4
0

4
0

4
2

0
2

0
2

1 4222242

2
4 UUUU

h
UUb

yxyyxx
yx  

( ).4hO+  (19) 

Now substituting Eqs. (5) and (6) into the model problem in Eq. (1), we 

obtain: 

( ) ( ) ( )8765342231100 UUUUaUUaUUaUa ++++++++  

( ).4321100 ffffbfb ++++=  (20) 

Again substituting Eqs. (11), (16), (18) and (19) into Eq. (20), we obtain: 











∂+∂++










∂+∂++ 0

4
4

0010
4

4

00100 !4
2

!4
2 U

h
UhUaU

h
UhUaUa yyxx  

( ) ( )







∂+∂+∂+∂+∂++ 0

4
0

4
0

4
4

0
2

0
23

03 6
!4

4
24 UUU

h
UUhUa yxxyyxyx  

[ ]0
2

0
2

0 UUb yx ∂+∂−=  
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( ) ( .
2

2
4 0

4
0

4
0

4
0

4
2

0
2

0
2

1 422224 







∂+∂+∂+∂+∂+∂− UUUU

h
UUb

yxyyxx
yx  

This gives the system of linear equation in the form of: 

,0422 4210 =+++ aaaa  

( ) ,42 1031
2 bbaah −−=+  

( ) ,42 1032
2 bbaah −−=+  

,2 13
2 bah −=  

( ) ,122 131
2 baah −=+  

( ) .122 132
2 baah −=+  (21) 

Now by solving the system of linear equation in Eq. (21), we obtain the 

value of arbitrary constant given by: ,
8

2
1

21
h

b
aa −==  ,

2

2
1

3
h

b
a −=  

,40
2
1

0
h

b
a =  .8 10 bb =  

Now after certain simplification with ,11 =b  in Eq. (20), we obtain 

the proposed scheme given by 

[ ] [ ] 087654321 204 UUUUUUUUU −+++++++  

( ).8
2 43210

2

fffff
h

++++−=  

Implies that: 

[ ]1,,11,,14 −−++ +++ jijijiji UUUU  

[ ] jijijijiji UUUUU ,1,11,11,11,1 20−++++ −−+−++−+  
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( ).8
2 1,,11,1,,

2

−−++ ++++−= jijijijiji fffff
h

 (22) 

With its local truncation is: 

 
( ) ( ) ( ) ( )

.
1212360360

12 ,
2

2
3

2
4

4
6

4
4

, jiyyxyji U
xyxy

hT 












∂

∆
−∂

∆
+∂

∆
−∂

∆
=  (23) 

Hence from Eq. (22), we obtain tri-diagonal coefficient matrix of system of 

linear equation. To solve this system of equation, we use the Thomas 

method. Because of to solve these types of system of the equation the 

most recommended numerical method is the Thomas method. This is due 

to the coefficient matrix contains several zero entries. 

3. Stability Analysis and Convergent of the Proposed Method 

The Fourier analysis (Von-Neumann) stability analysis technique is 

applied to investigate the stability analysis of the proposed method. Such 

an approach has been used by many researchers like [3, 4, 13, 21, 22]. 

Now assume that the trial solution of the given problem at the points 

( )ji yx ,  is 

 ,aKpij
nj eu λ=  (24) 

where ,1−=p  ,NaKa π=  (R∈k  set of a real number), ∈λ  (set of a 

complex number) and ( ) .11 Na =  Substituting Eq. (24) into Eq. (22), we 

obtain: 

[ ( ) ( ) ]aaaa pihKjiphKjpihKjiphKj eeee 1111
4 −−++

λ+λ+λ+λ  

[ ( ) ( ) ( )111111 −++++− λ+λ+λ+
iphKjiphKjiphKj aaa eee  

( ) ] aa pihKjipihKj ee λ−λ+
−− 20
11  

( ( )111
2

8
2

+−+ λ+λ+λ−=
iphKjpihKjpihKj aaa eee

h
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( ) ( ) ).111 −+−
λ+λ+

iphKjiphKj aa ee  

On dividing both sides of this equation by ,apihKjeλ  we obtain: 

[ ] [ aaaa phK
a

phK
aa

phK
a

phK
eeee λ+λ+λ++λ+ −−− 114  

] 201 −λ+λ+
−−− aa phK

a
phK

a ee  

( ),8
2

1
2

−−
λ+++λ+−= a

phKphK
a

aa ee
h

 

( ) ( ) ( ) 40cos4cos488cos16 11 −λ+λ+λ+λ+ −−
aaaaaaa hkhkhk  

( ) .cos28 12222 −λ++λ+= aaa hhkhhh  

This implies that: 

( ) ( ) 





 −+λ+






 −+λ − 212

4

1
cos2

4

1
cos2 hhkhhk aaaa  

( ) ( ) .052cos
2

1
4 22 =



 +−






 −+ hhkh a  

Multiplying both sides of the above equation by ,aλ  we obtain: 

[( ) ( ) ( )]

( ( ) )

( ( ) )

( ( ) )
,0

cos48

cos48

cos48

54cos82

2

2

2

22
2 =

+−

+−
−

+−

+−−
λ−λ

hhk

hhk

hhk

hhkh

a

a

a

a
aa  

[( ) ( ) ( )]

( ( ) )
.01

cos48

54cos82

2

22
2 =−

++

+−−
λ−λ

hhk

hhkh

a

a
aa  

Let [( ) ( ) ( )]22 54cos8 hhkhX a +−−=  and ( ( ) ).cos48 2hhkY a ++=  

.1
22 =

λ
−λ

Y

Xa
a  

By using perfect square, we have: 
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.1
22







+=






 −λ

Y

X

Y

X
a  

( ( ).
1

1 22
2

XYX
YY

X

Y

X
a ++=






+±=λ  (25) 

Since for any value of mesh-size ,h  [( ) ( )ahkhX cos8 2−=  

( )] 154 2 ≤+− h  and ( ( ) ) .1cos48 2 >++= hhkY a  Hence from Eq. 

(25) we have: 

( ( )22
2

1
1 XYX

YY

X

Y

X
a ++=






+±=λ  

221
XYX

Y
+±≤  

221
XYX

Y
++<     Triangular inequality 

.1
1 22

<++≤ XYX
Y

 

Hence we obtain the required criteria for stability investigation of the 

proposed method. Therefore the proposed method is strictly stable for 

solving two-dimensional Poisson equations. 

Theorem 2. The difference equation given in the form of Eq. (12) is 

stable if for which the eigenvalues of the coefficient matrix of the system of 

the differential equation are satisfied Real ( ) .0<λ j  

Proof. See reference [3]. 

Since from the principal part of the local truncation error, the derived 

local truncation error for the proposed scheme is 

( ) .291492
360 ,

66
0

666
2

, jiyxyyyxxyyxxxyxji UU
h

T ∂+∂+∂+∂+∂=  



SOLUTION OF TWO DIMENSIONAL POISSON EQUATIONS 

 

15 

( 666
0,0 92

360

1
limlim xxxyxhjih hT ∂+∂= →→  

) .02914 ,
66

0
6 →∂+∂+∂+ jiyxyyyxxyy UU  

 Thus this implies that, 0, →jiT  as .0→h  So that, the scheme is 

consistent with the order of ( ) ( ).666 hOyxO =∆+∆  Hence the scheme is 

convergent. 

Criteria for investigating the accuracy of the method 

This section presented the criteria that the accuracy of the present 

method is investigated. The accuracy of the solution will depend on how 

small we make the step size, .hyx =∆=∆  To test the performance of the 

proposed method to give an accurate solution for the given model 

problem, maximum absolute error, 2L  and ∞L  norms are calculated by 

using the following formula: 

( ) ,,max ,
1

jiji
Nn

uyxuL −=
≤≤

∞  

( )∑ =
−=

N

j
jiji uyxu

N
L

0

2
,2 ,

1
( ) ,11 Mi =  

where N  is the maximum number of step, ( )ji yxu ,  is the exact solution 

and jiu ,  is approximation solution of the Poisson equation in Eq. (1) at 

the grid point ( )., ji yx  

4. Numerical Experiments and their Results 

To test the validity of the proposed method, we have considered the 

following three model problem considered in [1]. Numerical results and 

errors are computed and the outcomes are represented tabularly and 

graphically. 

Example 1. Consider the classical two-dimensional equation 
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considered in [1] 

( ) ( ),sinsin2 2 yxuu yyxx πππ−=+    ( ) ( ) ( ).1,01,0, ×∈yx  

The subjected Dirichlet boundary condition is given by: 

( ) ( ) ( ) ( ) .0,0,,1,0 ==== yxuxuyuyU  

40

1
==∆=∆ hyx  and the exact solution is given by: 

( ) ( ) ( ).sinsin, yxyxu ππ=  

Table 1. Comparison of Point-wise maximum absolute error ( )∞L  and 

root mean square error ( )2L  with uniform mesh size equal 

401==∆=∆ hyx  

Specific grid 

points 

Point-wise maximum absolute 

error obtained by Genet 

Mekonnen and Lemi Guta in 

[1]  

Point-wise maximum absolute 

error and root mean square 

error by present methods 

x  y  ∞L  ∞L  2L  

41  41  0265.2 −E  045710.2 −E  050651.4 −E  

21  41  0275.3 −E  046359.3 −E  057489.5 −E  

43  41  0265.2 −E  045710.2 −E  050651.4 −E  

41  21  0275.3 −E  046359.3 −E  057489.5 −E  

21  21  0230.5 −E  041420.5 −E  051302.8 −E  

43  21  0275.3 −E  046359.3 −E  057489.5 −E  

41  43  0265.2 −E  045710.2 −E  050651.4 −E  

21  43  0275.3 −E  046359.3 −E  057489.5 −E  

43  43  0265.2 −E  046359.3 −E  055710.2 −E  
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Figure 1. Physical Behavior of Approximate solution for given example 

on uniform mesh size .401==∆=∆ hyx  

 

Figure 2. Physical Behavior of Exact solution for given example on 

uniform mesh size .401==∆=∆ hyx  
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Figure 3. Variation of exact versus numerical solution for given example 

with uniform mesh size .401==∆=∆ hyx  

Table 2. Comparison of Point-wise maximum absolute error ( )∞L  and 

root mean square error ( )2L  with non-uniform mesh size equal 

Specific grid 

points 

Point-wise maximum 

absolute error obtained by 

Genet Mekonnen and Lemi 

Guta in [1]  

Point-wise maximum absolute 

error and root mean square 

error by present methods 

x  y  ∞L  ∞L  2L  

127.0  0975.0  0251.3 −E  043477.4 −E  040248.1 −E  

6324.0  0975.0  0292.6 −E  030690.2 −E  048766.4 −E  

8147.0  0975.0  01015.1 −E  035356.1 −E  046195.3 −E  

127.0  2285.0  0216.9 −E  032017.2 −E  041895.5 −E  

6324.0  2785.0  01532.3 −E  036866.1 −E  049754.3 −E  

8147.0  2785.0  01269.1 −E  046610.6 −E  045700.1 −E  

127.0  5469.0  0259.9 −E  032450.2 −E  042914.5 −E  

6324.0  5469.0  01105.2 −E  031009.1 −E  045948.2 −E  

8147.0  5469.0  0233.7 −E  034153.1 −E  043358.3 −E  
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Figure 4. Physical Behavior of Approximate solution for given example 

on non-uniform mesh size. 

 

Figure 5. Physical Behavior of Exact solution for given example on non-

uniform mesh size. 



KEDIR ALIYI KOROCHE 

 

20 

 

Figure 6. Variation of exact versus numerical solution for given example 

on non-uniform mesh size. 

 

Figure 7. Variation of Point-wise absolute errors between exact and 

numerical solution for given example on uniform versus non-uniform 

mesh size. 

5. Discussions 

In this paper, we presented a fourth-order compact finite difference 

method to obtain an innovative solution for two-dimensional Poisson 

equations. The innovative solution, obtained within the fourth-order 

compact finite difference method, discussed only the case of the Dirichlet 

boundary condition. Regarding this partial differential equation, we note 

that there are two main ways of compact finite difference discretization 
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(over a uniform grid and non-uniform grid points). When we apply the 

compact finite difference method to the continuous two-dimensional 

Poisson equation the equation is replaced by a “discrete” approximation. 

The number of those discrete points can be selected uniformly or non-

uniformly depending on the mesh size ( ).h  The mesh is the set of 

locations where the discrete solution is computed. Two key parameters of 

the mesh are the local distance between adjacent points in space. Fourth-

order Compact finite difference discretization is simple to implement by 

using both equal mesh size and non-uniform mesh size as shown above in 

the table and graph. The full discretization of the Poisson equation by the 

present method leads to the system of linear equations which is solved by 

using the Thomas method. The convergence has been shown in the sense 

of maximum point-wise absolute error norm ( )∞L  and root mean error 

( ),2L  their values are given in tables and they are compared with pre-

existing results. The stability and convergence of the present method are 

also investigated by using the Von-Neumann stability analysis technique. 

The results presented in Tables 1 and 2 demonstrate fourth-order finite 

difference method gives a more accurate numerical solution than the pre-

existing method in the literature. As we see from Figure 7 the present 

method is more accurate when we investigate the solution of the model 

problem on non-uniform grid point discretization of the solution domain. 

Moreover, Figures 3 and 6 specifies that the present method gives an 

accurate solution for the 2D Poisson equation on both uniform and non-

uniform grid point discretization of solution domain and the approximate 

exact solution very well. 

6. Conclusion 

The key purpose of this work is to formulate and investigate the 

fourth-order compact finite difference method for solving two-dimensional 

Poisson equations. To further collaborate the applicability of the proposed 

method; tables of point-wise absolute error and root mean square error 

and graphs have been plotted for Example 1, for the exact solution versus 

the numerical solutions at different values of x on both uniform and non-
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uniform grid points. Table 1, shows the absolute errors obtained by my 

fourth-order compact finite difference method have been compared with 

absolute errors obtained by [1] on uniform grid points and it shows that 

the present method is the more convergent method. Table 2, also shows 

the absolute errors obtained by the present method have been compared 

with absolute errors obtained by [1] on non-uniform grid points and then 

also it is showing that the present method is accurate than the previous 

method. Generally, the present method is computational: stable, effective, 

simple to use, convergent, and gives an accurate solution than some 

previously existing methods. 
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