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Abstract 

New exact rotational as well as translational invariant solutions of both 

parabolic and hyperbolic Liouville’s equations are found out by the 

method of Lie point group similarity transformation. Solutions are 

compared with earlier studied general solutions. 

1. Introduction 

Liouville’s equation [1, 2] is a well-studied second order nonlinear 

partial differential equation that appears in many fields of Mathematics 

and Physics. Liouville’s equation describes the structure of metrics with 

constant Gaussian curvature which are conformal to the restrictions of 
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the Euclidean metric to a two dimensional surface. In Theoretical Physics 

[3-10], this equation appears in the context of mean field vorticity in 

steady flow also as Chern-Simons in super conductivity and in 

Electroweak theory [11-14]. Backlund and auto-Backlund transformation, 

Lax Pairs are reported [2, 10, 11] for both parabolic and hyperbolic 

Liouville’s equations. Even then both Liouville’s equations are not 

completely integrable systems. 

In this study, Lie group similarity transformation method [16] is used 

to find exact solutions of both parabolic and hyperbolic Liouville’s 

equations and compared with a well-known general solution. This author 

already reported exact solutions of few non-linear partial differential 

equations by using Lie group similarity transformation [17-20]. 

2. Lie Group Similarity Transformation Method of 

Partial Differential Equation 

Essential details of the Lie continuous point group similarity 

transformation method to reduce the number of independent variables of 

a partial differential equation (PDE) so as to obtain respective ordinary 

differential equation (ODE) [13] is the following. Let the given PDE in 

two independent variables x  and t  and one dependent variable u  be 

 ( ) ,0...,,,,,,, =xxttxt uuuuutxF  (2.1) 

where ...,, xt uu  are all partial derivatives of dependent variables ( )txu ,  

with respect to the independent variable t  and ,x  respectively. 

When we apply a family of one parameter infinitesimal continuous 

point group transformations 

( ) ( ),,, 2εε OutxXxx ++=  (2.2) 

( ) ( ),,, 2εε OutxTtt ++=  (2.3) 
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( ) ( ),,, 2εε OutxUuu ++=  (2.4) 

we get the infinitesimals of the variables ,u  t  and x  as ,U  ,T  ,X  

respectively and ε  is an infinitesimal parameter. The derivatives of u  

are also transformed as 

[ ] ( ),2εε OUuu xxx ++=  (2.5) 

[ ] ( ),2εε OUuu xxxxxx ++=  (2.6) 

[ ] ( ),2εε OUuu tttttt ++=  (2.7) 

where [ ],xU  [ ],xxU  [ ]ttU  are the infinitesimals of the derivatives ,xu  

,xxu  ,ttu  respectively. These are called first and second extensions and 

that are given by [16] 

[ ] ( ) ,2
txxtxxuxxxx uuTuTuXuXuUUU −−−−+=  (2.8) 

[ ] ( ) ( ) 3222 xuuxxuxxxxuxxxx uXuXuuUuXUUU −−+−+=  

txuutxxutxxxxxuxxxu uuTuuTuTuuXuXU 2232 −−−−−+  

,22 xxtutxxuxtx uuTuuTuT −−−  (2.9) 

[ ] [ ] [ ] 222 tuuuuxttttttutttt uTUuXuTUUU −+−−+=  

[ ] xtttttuxtuutuutxtu uXuTUuuXuTuuX 222 23 −−+−−−  

.33 txtuxttutttu uuXuuXuuT −−−  (2.10) 

The invariant requirements of given PDE (2.1) under the set of above 

transformations lead to the invariant surface conditions 

[ ] [ ] [ ] .0=
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On solving above invariant surface condition (2.11), the infinitesimals ,X  

,T  U  can be uniquely obtained, that give the similarity group under 

which the given PDE (2.1) is invariant. This gives 

 .0=−+
dU

du

dx

du
X

dt

du
T  (2.12) 

The solution of (2.12) are obtained by Langrange’s condition 

 .
U

du

X

dx

T

dT
==  (2.13) 

This yields 

 ( )21 ,, CCtxx =     and    ( ),,, 21 CCtuu =  (2.14) 

where 1C  and 2C  are arbitrary integration constants and the constant 

1C  plays the role of an independent variable called the similarity variable 

S  and 2C  that of a dependent variable called the similarity solution 

( )Su  such that exact solution of given PDE, so that 

 ( ) ( )., SutXu =  (2.15) 

On substituting (2.15) in given PDE (2.1) gives an ordinary differential 

equation with S  as independent variable and ( )Su  as dependent 

variable. 

3. Similarity Transformatin of Parabolic 

Liouville’s Equation 

Here we apply the similarity method to find exact solutions of the 

parabolic Liouville’s equations [1, 2] 

 ( ).exp uAuu xxtt =+  (3.1) 

So general form of (3.1) is 
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 ( ) .0,,,, =txuuuF ttxx  (3.2) 

The invariant surface condition (2.11) gives 

 [ ] [ ]
( )

.0
exp

=
∂

∂
−

∂

∂
+

∂

∂

u

uA
U

u

F
U

u

F
U

tt
tt

xx
xx  (3.3) 

On substituting the expansions of [ ],xxU  [ ],ttU  and equating coefficients 

of different orders of derivatives of ( ),, txu  we get the constrained 

equations as 

( )

.0,0,0

,0,02,02

,0,0exp

===−=−

==+−=−−

====−+

uxtuxutx

uxxttttuttxuxx

utxxtt

XXXTXT

XXTTUXUX

UTTuUAUU

 

 (3.4) 

On solving above set of constraints, we get 

,wctX +=  

,kcxT +−=  

.0=U  (3.5) 

The Lagrange’s condition (2.13) gives the similarity variable ( )txp ,  as 

 ( ) ( ) ( ) ( ) .2
2

, 2222







 +−−++






−= cwkwtkxtx
c

txp  (3.6) 

Then the similarity solution of the hyperbolic Liouville’s equation (3.1) is 

 ( ) ( )., putxu =  (3.7) 

On substituting (3.6) in (3.1) the parabolic Liouville’s equation reduces to 

an ordinary second order differential equation 
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( ) ( )

( ).exp
22

2

u
c

A

dp

pdu

dp

pud
p −=+  (3.8) 

On solving (3.8), we get 

 ( )[ ] { ( ) ( ) }.2exp
21 nn ApBBppu += −  (3.9) 

The arbitrary constants ,B  ,c  and ,k  w  are non-zero and ( ).1 nAc −=  

The above solution is valid for all values of n  except n  is zero. 

On substituting the value of the similarity variable ( )txp ,  from (3.6), 

we get exact solution of parabolic Liouville’s equation (3.1). 

4. Similarity Transformation and Exact Solution of 

Hyperbolic Liouville’s Equation 

Similarity transformation of hyperbolic part of Liouville’s equation 

 ( ).exp uAuu xxtt =−  (4.1) 

As in the previous case, we get the infinitesimals 

,kcxT +−=  

,wctX +=  

.0=U  (4.2) 

For ,0=U  the method of finding above infinitesimals are same for all 

hyperbolic Klein-Gordon equations, that this author already reported in 

an earlier study [20]. 

Similarity variable of hyperbolic Liouville’s ( )txh ,  is 

 ( ) ( ) ( ) ( )






 −+−+−






= cwkwtkxtx
c

txh 2
2

, 2222  (4.3) 

and the similarity reduced hyperbolic Liouville’s second order ordinary 
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differential equation can be found out by substituting ( ) ( ),, hutxu =  then 

 
( ) ( )

( ).exp
22

2

u
c

A

dh

hdu

dh

hud
h 






−=+  (4.4) 

Then the exact solution of hyperbolic Liouville’s equation is the solution 

of above equation as 

 ( )[ ] { ( ) ( ) },2,exp
21 nn AhBBhtxu += −  (4.5) 

where ( )txh ,  is the similarity variable (3.3). Parameters ,A  B  and n  

are arbitrary constants and B  and ,c  k  and w  are nonzero, where 

( ).1 Anc −=  

5. Discussion 

Corresponding to the hyperbolic Liouville’s equation generator of 

infinitesimals are the following 

,1 x
t

t
xH

∂

∂
+

∂

∂
=  

,2 x
H

∂

∂
=  

.3 t
H

∂

∂
=  (5.1) 

They obey the Lie algebra 

[ ] ,, 321 HHH −=  

[ ] ,, 213 HHH =  

[ ] .0, 32 =HH  (5.2) 

These three Lie group generators produce two different types of exact 

solutions of both Liouville’s equations. The generator 1H  represents 



B. V. BABY 

 

56 

hyperbolic rotationally invariant solutions with respect to the 

infinitesimals 

,ctX =  

,cxT =  

0=U  (5.3) 

for which all the above solutions are valid with 0=k  and .0=w  That 

very rarely mentioned in other studies. 

For the generator 2H  and ,3H  we get translationally invariant 

solutions of hyperbolic Liouville’s equation corresponding to the 

infinitesimals 

,kT =  

,wX =  

.0=U  (5.4) 

For which the similarity variable is ( ),,1 txh  

 ( ) ( ).,1 wtkxtxh −=  (5.5) 

Similarly, for parabolic Liouville’s equation, there are three Lie group 

generators ,1P  ,2P  .3P  

,1 x
t

t
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−=  (5.6) 

,2 x
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.3 t
P

∂

∂
=  (5.8) 

Respective Lie algebras are 



NEW EXACT SOLUTIONS OF LIOUVILLE’S EQUATIONS 

 

57 

[ ] ,, 321 PPP =  (5.9) 

[ ] ,, 231 PPP =  (5.10) 

[ ] .0, 32 =PP  (5.11) 

As in the hyperbolic case, 1P  represents pure rotationally invariant 

solutions of Parabolic Liouville’s equation, for which ,0=k  .0=w  Since 

nAc 21=  and c  is nonzero, exclusively translational invariant solution 

is not possible. But the translationally invariant solution exists only along 

with rotationally invariant solution. 

Solutions of both parabolic and hyperbolic Liouville’s equations can be 

extended to ( )13 +  dimensions. For which the similarity variables are 

{ ( )( ) ( )twxktzyx
c

h 11
2222

1 2
−+−+++=  

( ) ( )twxktwxk 3322 −+−+  

[( ) ( )] ( ) }.22
3

2
2

2
1

2
3

2
2

2
1 cwwwkkk ++−+++  (5.12) 

For parabolic similarity variable in ( )13 +  dimensions is 

{ ( )( ) ( )twxktzyx
c

p 11
2222

1 2
−++++−=  

( ) ( )twzktwyk 3322 −+−+  

[( ) ( )] ( ) }.22
3

2
2

2
1

2
3

2
2

2
1 cwwwkkk ++++++  (5.13) 

Backlund as well as auto-Backlund transformations and Inverse 

Scattering Transformation are known for hyperbolic Liouville’s equation, 

but not completely integrable system. So, the above solutions are not 

stable like solitons. Due to the rotational symmetry, these solutions may 

not have multi solutions like multi solitons. 
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The general solutions of hyperbolic Liouville’s equation reported [7, 

11] is 

 ( )[ ] [ ( ) ( )] [ ( ) ( ) ] ..2,exp
2

0ztgxftgxftxu ++=  (5.14) 

Obviously, our solutions are different from this class of general solutions 

naturally arisen from invariant symmetry. 

All even and positive values of n  the denominator of solutions both 

parabolic and hyperbolic Liouville’s equations are always nonzero when 

B  is positive valued integration constant. Such case solutions are non-

singular. Whereas, when n  is odd and positive valued then the 

denominator may be zero and that yields singular solutions for both 

parabolic and hyperbolic Liouville’s equations. 

It is found that similarity Lie point group transformation method is a 

powerful tool for solving nonlinear PDE by converting to ODE. But this 

method works only when given PDE is invariant under some similarity 

group of transformation, that need not satisfy always. 
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