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Abstract

New exact rotational as well as translational invariant solutions of both
parabolic and hyperbolic Liouville’s equations are found out by the
method of Lie point group similarity transformation. Solutions are

compared with earlier studied general solutions.

1. Introduction

Liouville’s equation [1, 2] is a well-studied second order nonlinear
partial differential equation that appears in many fields of Mathematics
and Physics. Liouville’s equation describes the structure of metrics with

constant Gaussian curvature which are conformal to the restrictions of
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the Euclidean metric to a two dimensional surface. In Theoretical Physics
[3-10], this equation appears in the context of mean field vorticity in
steady flow also as Chern-Simons in super conductivity and in
Electroweak theory [11-14]. Backlund and auto-Backlund transformation,
Lax Pairs are reported [2, 10, 11] for both parabolic and hyperbolic
Liouville’s equations. Even then both Liouville’s equations are not

completely integrable systems.

In this study, Lie group similarity transformation method [16] is used
to find exact solutions of both parabolic and hyperbolic Liouville’s
equations and compared with a well-known general solution. This author
already reported exact solutions of few non-linear partial differential

equations by using Lie group similarity transformation [17-20].

2. Lie Group Similarity Transformation Method of

Partial Differential Equation

Essential details of the Lie continuous point group similarity
transformation method to reduce the number of independent variables of
a partial differential equation (PDE) so as to obtain respective ordinary
differential equation (ODE) [13] is the following. Let the given PDE in

two independent variables x and ¢ and one dependent variable u be
F(x, t, u, uy, uy, Uy, Ugy, -..) =0, (2.1)

where u;, u,, ... are all partial derivatives of dependent variables u(x, ¢)

with respect to the independent variable ¢ and x, respectively.

When we apply a family of one parameter infinitesimal continuous

point group transformations

x = x+ &X(x, t, u) + O(e?), (2.2)

t =t+el(x, t, u)+O(e2), (2.3)
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u=u+el(x,t, u)+0(e2), (2.4)

we get the infinitesimals of the variables u, t and x as U, T, X,

respectively and € is an infinitesimal parameter. The derivatives of u
are also transformed as

u, =u, +€U,]+ 0(e?),

(2.5)
Uyy = Ugy + E[Uxx]+ 0(82)’ (2.6)
Uy = Uy + elUy ]+ 0(82), 2.7

where [U,], [U,.], [Uy] are the infinitesimals of the derivatives u,,

Uye, Uy, respectively. These are called first and second extensions and

that are given by [16]

[U,]=U, +(Ulu - Xy )uy — XyuZ — Touy — Tty (2.8)

U] = Uy + (20U — Xy Juy + (Ulun — 2X,, JuZ - X,

uuux

2
+ Uu - 2Xxuxx - Squxuxx - Txxut - 2Txuuxut - Tuuuxut

_2Txuxt - Tuuxxut - 2Tuuxtux’ (2-9)

[Utt] = Utt + [2Utu - Ttt ]ut - Xttux + [Uuu - 2Tuu ]utz

- 2Xtuuxut - Tuuut3 - quut Uy + [U 2Tt ]utt - 2Xtuxt

3T uyuy — X, upyu, — 3X, U u;. (2.10)
The invariant requirements of given PDE (2.1) under the set of above

transformations lead to the invariant surface conditions

oF oF oF oF oF
TW XngUEJr[Ux]a [Utt] +[Uxx] =0. (2.11)

xx
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On solving above invariant surface condition (2.11), the infinitesimals X,
T, U can be uniquely obtained, that give the similarity group under

which the given PDE (2.1) is invariant. This gives

T@+Xdu du

The solution of (2.12) are obtained by Langrange’s condition

dT dx du
T XU (213)
This yields
x =x(t, C;, Cy) and u = ult, C;, Cy), (2.14)

where C; and Cy are arbitrary integration constants and the constant
C; plays the role of an independent variable called the similarity variable
S and C, that of a dependent variable called the similarity solution

u(S) such that exact solution of given PDE, so that
w(X, t) = u(S). (2.15)

On substituting (2.15) in given PDE (2.1) gives an ordinary differential

equation with S as independent variable and u(S) as dependent

variable.

3. Similarity Transformatin of Parabolic

Liouville’s Equation

Here we apply the similarity method to find exact solutions of the

parabolic Liouville’s equations [1, 2]

Uy + Uy = Aexp(u). (3.1)

So general form of (3.1) is
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F(u, ty, uy, x, t) = 0. (3.2)
The invariant surface condition (2.11) gives

oF oF 0A
[Uxx ]8_ + [Utt] -U exp (u)

Uy duy ou =0 (3.3)

On substituting the expansions of [U,, ], [U,], and equating coefficients
of different orders of derivatives of u(x,t), we get the constrained

equations as

U; +U,, —UAexp(u) = 0, T, =T, =U =0,
Xy =20y — Xy =0, 20Uy, =Ty + Ty =0, X Xy, =0,
T, - X, =0, T, - X, =0, X, =X, =0.
3.4)

On solving above set of constraints, we get

X =ct+w,
T = —cx + k,
U = 0. (3.5)

The Lagrange’s condition (2.13) gives the similarity variable p(x, ¢) as

plx, t) = {— (%)(oﬂ +12) + (kx — wt) — (B + w? )/20}. (3.6)

Then the similarity solution of the hyperbolic Liouville’s equation (3.1) is
ulx, t) = u(p). (3.7

On substituting (3.6) in (3.1) the parabolic Liouville’s equation reduces to

an ordinary second order differential equation
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D di;t)gp) + dz;p) = —%exp(u). (3.8

On solving (3.8), we get
explu(p)] = {(2Bp" ™)/ (B + 4p")* }. (3.9)
The arbitrary constants B, ¢, and k, w are non-zero and ¢ = —1/(nA).

The above solution is valid for all values of n except n is zero.

On substituting the value of the similarity variable p(x, ¢) from (3.6),

we get exact solution of parabolic Liouville’s equation (3.1).

4. Similarity Transformation and Exact Solution of

Hyperbolic Liouville’s Equation

Similarity transformation of hyperbolic part of Liouville’s equation
Uy — Uy, = Aexpl(u). (4.1)

As in the previous case, we get the infinitesimals

T = —x + k,
X =ct+w,
U-=0. (4.2)

For U = 0, the method of finding above infinitesimals are same for all

hyperbolic Klein-Gordon equations, that this author already reported in

an earlier study [20].

Similarity variable of hyperbolic Liouville’s A(x, t) is

h(x, t) = {(%)(xz ) + (kx - wt) + (k% — w? )20} (4.3)

and the similarity reduced hyperbolic Liouville’s second order ordinary
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differential equation can be found out by substituting u(x, ¢) = w(h), then

h

d?u(h)  du(h) _ _(A
2¢c

dh2 + W = —) exp (u) (44)

Then the exact solution of hyperbolic Liouville’s equation is the solution

of above equation as
explu(x, )] = { (2BR")/(B + AR")? }, (4.5)

where h(x, t) is the similarity variable (3.3). Parameters A, B and n

are arbitrary constants and B and ¢, 2 and w are nonzero, where

c = -1/(An).
5. Discussion

Corresponding to the hyperbolic Liouville’s equation generator of

infinitesimals are the following

0 d
Hl = xa_t+t$’
d
HZ_E,
d
H3_E' (b.1)

They obey the Lie algebra
[H,, Hy] = -H3,
[Hs, Hi]= Hy,
[Hy, H3] = 0. (5.2)

These three Lie group generators produce two different types of exact

solutions of both Liouville’s equations. The generator H; represents
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hyperbolic rotationally invariant solutions with respect to the

infinitesimals
X =ct,
T = cx,
U=0 (5.3)

for which all the above solutions are valid with 2 = 0 and w = 0. That

very rarely mentioned in other studies.

For the generator H, and Hs, we get translationally invariant

solutions of hyperbolic Liouville’s equation corresponding to the

infinitesimals
T =k,
X =w,
U=o0. (5.4)

For which the similarity variable is A (x, ),
hy(x, t) = (kx — wt). (5.5)

Similarly, for parabolic Liouville’s equation, there are three Lie group

generators Py, Py, Ps.

d d
Pl——xa—t+t$, (56)
d
Py =5 (5.7)
d
Py == (5.8)

Respective Lie algebras are
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[P, Py] = P, (5.9)
[P, Ps] = Py, (5.10)
[PQ,P3]=O. (511)

As in the hyperbolic case, P; represents pure rotationally invariant
solutions of Parabolic Liouville’s equation, for which £ = 0, w = 0. Since
¢ =1/2nA and c is nonzero, exclusively translational invariant solution

is not possible. But the translationally invariant solution exists only along

with rotationally invariant solution.

Solutions of both parabolic and hyperbolic Liouville’s equations can be

extended to (3 +1) dimensions. For which the similarity variables are

By = {+(=)(x? +y% + 22 —t2) + (kyx —wit)

N o

+(k2x - L()2t) + (k3x - L()3t)
+ (k2 + k3 + k3) - (w? + w3 +w})])/(20) }. (5.12)

For parabolic similarity variable in (3 + 1) dimensions is

p={-( )(x2+y2+22+t2)+(k1x—w1t)

[T

+(kgy — wat) + (kgz — wst)
+ [(kl2 + k% + k§ )+ (w? +wi + w§ )]/(2c) }. (5.13)

Backlund as well as auto-Backlund transformations and Inverse
Scattering Transformation are known for hyperbolic Liouville’s equation,
but not completely integrable system. So, the above solutions are not
stable like solitons. Due to the rotational symmetry, these solutions may

not have multi solutions like multi solitons.
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The general solutions of hyperbolic Liouville’s equation reported [7,
11] is

explu(x, )] = [2f(x).g0))/[ f(x) + g(t) + 2 . (5.14)

Obviously, our solutions are different from this class of general solutions

naturally arisen from invariant symmetry.

All even and positive values of n the denominator of solutions both
parabolic and hyperbolic Liouville’s equations are always nonzero when
B is positive valued integration constant. Such case solutions are non-
singular. Whereas, when n 1is odd and positive valued then the
denominator may be zero and that yields singular solutions for both

parabolic and hyperbolic Liouville’s equations.

It is found that similarity Lie point group transformation method is a
powerful tool for solving nonlinear PDE by converting to ODE. But this
method works only when given PDE is invariant under some similarity

group of transformation, that need not satisfy always.
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