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Abstract

In 1981, Khare and Federer [13] published a paper on a method of

constructing resolvable incomplete block designs for v = p2 treatments,
where p being a prime number. Also, (Hinkelmann and Kempthorne [6,
Chapter 3]) constructed a design for p being a prime power in incomplete
blocks of size k. The method uses an algorithm called a successive
diagonalizing method. It is observed that the method only worked for p
being a prime number and equally becomes tedious to construct when
v > 16. As such, this study proposes a new method of construction that
captures both prime and prime power for p and also restored the

uniqueness of the treatment pairs, that is A =1 for all v. It also mitigates
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the tediousness encountered when v > 16.

1. Introduction

At times the situations the experimenters found themselves made them to be
totally engulfed in constructing designs in an efficient ways without losing no or
much information. This kind of situations arise when the number of experimental
units in an experiment is often larger than that can be accommodated in the available
blocks of relatively uniform experimental units, in this situation it is often desirable
to have resolvable incomplete block designs in which the incomplete blocks can be
arranged in complete blocks or replicates. Nowadays, it has been noticed that the
levels at which the treatments increase are so high due to a lot of favorable factors
that are peculiar to different field of studies while the experimental units that receive
the treatments are smaller in numbers. Meanwhile, for the experimenters to be able to
rise to these occasions or challenges, the use of resolvable incomplete block designs

is inevitable.

The early sources for constructing resolvable incomplete block designs with
some files are (Yates [21]) for square lattices, (Habshbabger [7, 8, 9]) for rectangular
lattices, (Kempthorn [12]) and (Federer [5]) for prime power lattices, and (David [4])
and (John et al. [10]) on cyclic designs. Remark that there is no total absolute
feasibility for constructing a complete file of incomplete block designs for all
situations, yet the researchers cut edge of the algebraic structures to attain some

simple constructions usable to the experimenters.

Also Morgan et al. [14] presented a paper therein reviewed and extended
mathematical knowledge of nested balanced incomplete block designs (NBIBD’s);
isomorphism and automorphisms were defined for NBIBDs, and methods of
construction were outlined. Peter et al. [16] showed the necessary divisibility

conditions for the existence of a © -resolvable BIBD (v, k, A) are sufficient for

large v. Saka and Adeleke [18] developed a new method of construction of nested
balanced incomplete block designs in which the resulting design schemes were of the
type that harmonizes both the Series-I and Series-II of Rajender et al. [17]. Keerti

and Vineeta [11] introduced a new method of construction of a series of Nested
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Balanced Incomplete Block Designs (NBIBDs) in which the inner blocks are
constructed using Latin square. Saka et al. [19] presented a method of construction of
designs which utilizes special matrix structures referred to as Zig-zag, the Zig-zag
matrix structures give rise to initial blocks for resolvable nested balanced incomplete
block designs (RNBIBDs).

The method presented here requires no generators or tables and it leads to a
resolvable balanced incomplete block design for p a prime or prime power, the
number of times a pair of varieties (treatments) occur together, a concurrence, in this

designis A = 1.
2. Mutually Orthogonal Latin Squares (MOLS)

Definition 1. Two Latin squares L; and L, of the same order, say n, are
mutually orthogonal if every ordered pair (i, j), 1 <i, j < n, appears exactly once

when L; and L, are superimposed on each other.

Example 1. The followings are examples of mutually orthogonal latin square of

order 4.
i[1]273 171273 @O @D 2] 33
1[4[3]2 3(21]4 13) ] 42 G124
b=mrsmams Bomarase @ S b) =G Tas [(12)
3(2]1[4 21341 32 23 [ (14 ]| (@1

Definition 2. A set of mutually orthogonal latin squares is a set of two or more

latin squares of the same order, all of which are orthogonal to one another.

Example 2. The followings are the four distinct latin squares of order n = 5.

112(3]4]5 112(13(4]5 112]3]4]5 112]3]4]5
2134|151 314|512 41511123 51112(3|4
Li=|3[4|5|1|2| Lyo=[4|5|1|2|3| Ls=|5|1]2|3|4| Ly=|2|3|4|5]|1
415(11(2]3 50111234 21314151 314|512
5012|134 213|451 314(5]1]2 41511123

Definition 3. A set + > 2 MOLS of order n is called a complete set if t = n —1,

or a set of n —1 MOLS of order » is called a complete set of MOLSs.
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3. Constructions of Resolvable BIBD Using

Successive Diagonalizing Method

The successive diagonalizing method is a method for constructing resolvable
balanced incomplete block (BIB) designs for v = p2, p being a prime number, in
b= p(p+1) blocks of size p, for the number of replicates r = p +1, and for

A =1. This method is formalized below in Algorithm 1 and is exemplified in

Examples 3 and 4.

Algorithm 1. The steps constructing BIB designs with parameters v = p2, k =

p.b=p(p+1)=p>+p,r=p+1 and A=1 of Algorithm for Successive
Diagonalizing Method. For detail on the Algorithm see (Khare and Federer [13]).

Example 3. The steps of Algorithm for Successive Diagonalizing Method for

]72=9=32 are:

1123 11417 11519 1168
Ll:4 5 6 5 L2: 2 5 8 5 LQZ 2 6 7 5 L4: 2 4 9
71819 31619 31418 315|7

Example 4. The steps of Algorithm for Successive Diagonalizing Method for

p2 =16 = 42 are:

1234 1[5] 913 1[6]11]16
516 |7 2(6[10] 14 27112713
L'*91011 2L2*371115 L3*38914
13141516 4|8]127]16 4]15]10]15
1719715 1[8]11] 14
[o_[2[8[10]16] , _[2]5]12[15
T3 5113 P [3]6[ 916
461214 4711013

Remark 1. Because of the repeated application of step 3 in the algorithm, this
method has been referred to as successive diagonalizing method (Khare and Federer
[13]). However, it is observed that the method only worked for p being a prime

number but not for prime power as it can be seen from Example 4 that the design is
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not balanced (i.e., A # 1), see example 3.8 of Hinkelmann and Kempthorne [6]
where treatments are denoted by ordered pairs (x, y) with x, y =1, 2, ..., pz,
x # y, that is, pairs of treatment (3, 11) appear together in square —2(L,) and
square —4(L4 ), pairs of treatment (4, 12) appear together in square —2(L,) and
square —4(L, ) again pairs of treatment (2, 12) appear together in square —3(Ls)
and square —5(Ls ), pairs of treatment (1, 11) appear together in square —3(L;) and

square —5(Ls) and so on. This is a pointer to the fact the design is not balanced.

Also the method becomes tedious to construct when v > 16.
4. Main Results

Based on the difficulties encounter in the construction of designs when p is a

prime power and also when v <16, this new proposed method is presented in
Algorithm 2.

Algorithm 2. The steps constructing BIB designs with parameters v = p2, k
=p.b=p(p+1)=p>+p,r=p+1 and A=1 of Algorithm for MOLS of

Resolvable BIBD for both p being a prime number or prime power are:

1. Write the number 1, 2, ..., p2 consecutively in a square array of p rows and p

columns beginning in the left-hand order corner of the first row and subsequently

continuing at the beginning of each row. This is square 1 with rows being the blocks.

2. Transpose the rows and columns of the square I to obtain square 2 with rows

being the blocks.

3. Obtain the set of MOLS of order n (considered order).

4. Number the elements in the set of MOLS of order n from 1, 2, ..., n? = pz.

5. Let the letters of square I of the set of MOLS of order n form the square III.
6. Superimpose square II on I to obtain square IV.

7. Continuing the superimposition of squares, i.e., III, IV, ..., n —1 on square I
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until square k + 1 is obtained.

Design 1. The steps of Algorithm for Successive MOLS Superimposition

Method (SMSM) for p2 =32 are:

11213 1147 1(51(9 11618
L, = 516 Ly, = 58|, La=|2|6|7 Ly= 9
71819 31619 314(8 3157

Design 2. The steps of Algorithm for Successive MOLS Superimposition

Method (SMSM) for p2 = 42, where P =22 is prime power are:

1121314 1[5 913 1[6[11]16
oo 678 ], _[2]6]t0[14} ~_[2][7[12]15
Yool 12] 2 [3|7|11[15| ™ [3]8]9 |14
131141516 41812716 41711013
1[7]12]14 178107 15
L7281113L7279 16
Y3510 (16] " [3]6 12 13
416] 915 415]11]143

Design 3. The steps of Algorithm for Successive MOLS Superimposition

Method (SMSM) for p2 =52 are:

1123415 116 |11]16|21 1(10) 14|18 22
678910 207 | 12]17 |22 216 [15]19]23
Ly=|11 12|13 |14 |15 | Lo=|3| 8 | 13|18 |23 | Ly=|3| 7 |11 |20 |24
16 | 17 | 18 1 19| 20 419 14|19 24 418 |12]16 |25
21122232425 510 ]15]20 |25 519 [13]17]21
171131925 1 12120 | 24 117 (1511923
2|8 |14]20] 21 219 (|13]16]25 2|18 |11]20] 24
Ly=|3|9 |15]|16|22| Ls=[3|10|14 |17 |21 | L¢g=|3| 9 |12]16]| 25
4110111723 416 |15]18]22 41101131721
5016 [12]18] 24 517 |11(19 123 516 | 14|18 22

Design 4. The steps of Algorithm for Successive MOLS Superimposition

Method (SMSM) for p2 = 8% where P =23 is prime power are:
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I[2[3[4]5]6]7]38 1] 9 [17][25[33[41[49]57
9 [10|11 1213141516 2101826 34|42 50|58
1718192021 222324 311 (192735 | 43| 51|59
L1:25 26 |27 2829303132 L2:4 1220 [ 2836 | 44 [ 52 | 60
3334 [35|36]|37]38]39]40 5132129374553 61
41 |42 | 43744 |45 [ 46 | 47 | 48 6| 14[22]30(33]46|54]62
49 |50 | 51 |52 | 53 | 54 | 55 | 56 7115 [23 [ 3139 |47 |55 ] 63
57 |58 | 59 | 60 | 61 | 62 | 63 | 64 816 [24 3240 | 48|56 | 64
T]16][19]26 374455 62 T[11]21 3134485460
211 [ 24|25 3847|5261 2116 222833435363
311017 3239465360 3190 [23[20]40]42[52[62
;| A3 ]2 31404150 57| [4[14[24]26|39 | 455157
37151121 23]30[33]48 5158 TIE 151727 |38 44 [ 50 | 64
6152020344356 |57 612183237 |47 4959
7114212835 42|49 | 64 711319 25|36 | 46 | 56 | 58
810 [18]27(36 485463 81020303541 55]61
1]10]23]28]38]45]56] 59 T[13]18]30]39] 435264
219 [26 313746 51|64 214 [17[29 [ 36 |48 [ 55 [ 59
3116 2130|3647 50|57 3115 [24 [ 28|37 [41 |54 |53
;|45 182535 48[ 63 62| , _[4]16]23[27[34[46[ 4961
STI5 14193234 (415563 | ©[5]9 [22]26]35 47|56 | 60
61324 |27 33425560 610 21|25 |40 |44 [ 5163
71121726 (40| 43|54 | 61 711120323345 |50 |62
S[11[ 2229 (3949|4958 8121931 38425357
T]12]24]29[35]46 5063 1115]22[32]36 425161
215193040 |45 [ 4960 2122127304156 |62
3141831334456 |61 3132026384849 63
;o [A[9[21[32]38[43[55]58]  [4[10[19]29[33[47 5464
" [5]16[20 2530 425459 | 7® [5[11] 18| 28|40 |46 |55 |57
61123263641 53] 64 61617313545 5258
711022273748 52|57 719 [24[30[34]44[53]59
13172834 |47 5162 814232537 [43[50] 60

14 (20 | 27| 40| 47|53 | 58
1323 |32|35|44 54|57
1212225 (34|45 |54 | 64
11|17 |30 | 37| 42|56 | 63
10 |24 |31 36| 43|49 |62
9 | 19]28 |39 |48 |50 |61
16 | 18 | 29 | 38 | 41 | 51 | 60
1521 |26]33]46|52]59

Ly

o ~I| O] ot x| W rof =

5. Conclusions

The method of Mutually Orthogonal Latin Squares of Resolvable Balanced

Incomplete Block Designs was used to construct designs for p either being prime
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order or prime power and it equally restored lost of balance in the example given by

Hinkelmann and Kempthorne [6, Chapter 3]. Finally, it mitigates the tediousness

encountered in the construction when v > 16.
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