
Fundamental Journal of Mathematics and Mathematical Sciences 

Volume 10, Issue 1, 2018, Pages 9-17 

This paper is available online at http://www.frdint.com/ 

Published online November 30, 2018 

:esphras and Keywords latin squares, mutually orthogonal latin squares, resolvable designs, 

incomplete block design and balanced incomplete block designs. 

2010 Mathematics Subject Classification: Primary 62K10; Secondary 15A24. 

Received June 26, 2018; Accepted July 20, 2018 

 © 2018 Fundamental Research and Development International 

MUTUALLY ORTHOGONAL LATIN SQUARES OF 

CONSTRUCTING RESOLVABLE BALANCED 

INCOMPLETE BLOCK DESIGNS 

ADISA JAMIU SAKA 

Department of Mathematics 

Obafemi Awolowo University 

Ile Ife 220005 

Nigeria 

e-mail: ajsaka@oauife.edu.ng 

sakajamiu@gmail.com 

Abstract 

In 1981, Khare and Federer [13] published a paper on a method of 

constructing resolvable incomplete block designs for 
2

pv =  treatments, 

where p being a prime number. Also, (Hinkelmann and Kempthorne [6, 

Chapter 3]) constructed a design for p being a prime power in incomplete 

blocks of size k. The method uses an algorithm called a successive 

diagonalizing method. It is observed that the method only worked for p 

being a prime number and equally becomes tedious to construct when 

.16>v  As such, this study proposes a new method of construction that 

captures both prime and prime power for p and also restored the 

uniqueness of the treatment pairs, that is 1=λ  for all v. It also mitigates 
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the tediousness encountered when .16>v  

1. Introduction 

At times the situations the experimenters found themselves made them to be 

totally engulfed in constructing designs in an efficient ways without losing no or 

much information. This kind of situations arise when the number of experimental 

units in an experiment is often larger than that can be accommodated in the available 

blocks of relatively uniform experimental units, in this situation it is often desirable 

to have resolvable incomplete block designs in which the incomplete blocks can be 

arranged in complete blocks or replicates. Nowadays, it has been noticed that the 

levels at which the treatments increase are so high due to a lot of favorable factors 

that are peculiar to different field of studies while the experimental units that receive 

the treatments are smaller in numbers. Meanwhile, for the experimenters to be able to 

rise to these occasions or challenges, the use of resolvable incomplete block designs 

is inevitable. 

The early sources for constructing resolvable incomplete block designs with 

some files are (Yates [21]) for square lattices, (Habshbabger [7, 8, 9]) for rectangular 

lattices, (Kempthorn [12]) and (Federer [5]) for prime power lattices, and (David [4]) 

and (John et al. [10]) on cyclic designs. Remark that there is no total absolute 

feasibility for constructing a complete file of incomplete block designs for all 

situations, yet the researchers cut edge of the algebraic structures to attain some 

simple constructions usable to the experimenters. 

Also Morgan et al. [14] presented a paper therein reviewed and extended 

mathematical knowledge of nested balanced incomplete block designs (NBIBD’s); 

isomorphism and automorphisms were defined for NBIBDs, and methods of 

construction were outlined. Peter et al. [16] showed the necessary divisibility 

conditions for the existence of a σ -resolvable BIBD ( )λ,, kv  are sufficient for 

large v. Saka and Adeleke [18] developed a new method of construction of nested 

balanced incomplete block designs in which the resulting design schemes were of the 

type that harmonizes both the Series-I and Series-II of Rajender et al. [17]. Keerti 

and Vineeta [11] introduced a new method of construction of a series of Nested 
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Balanced Incomplete Block Designs (NBIBDs) in which the inner blocks are 

constructed using Latin square. Saka et al. [19] presented a method of construction of 

designs which utilizes special matrix structures referred to as Zig-zag, the Zig-zag 

matrix structures give rise to initial blocks for resolvable nested balanced incomplete 

block designs (RNBIBDs). 

The method presented here requires no generators or tables and it leads to a 

resolvable balanced incomplete block design for p a prime or prime power, the 

number of times a pair of varieties (treatments) occur together, a concurrence, in this 

design is .1=λ  

2. Mutually Orthogonal Latin Squares (MOLS) 

Definition 1. Two Latin squares 1L  and 2L  of the same order, say n, are 

mutually orthogonal if every ordered pair ( ) ,,1,, njiji ≤≤  appears exactly once 

when 1L  and 2L  are superimposed on each other. 

Example 1. The followings are examples of mutually orthogonal latin square of 

order 4. 

 

Definition 2. A set of mutually orthogonal latin squares is a set of two or more 

latin squares of the same order, all of which are orthogonal to one another. 

Example 2. The followings are the four distinct latin squares of order .5=n  

 

Definition 3. A set 2≥t  MOLS of order n is called a complete set if ,1−= nt  

or a set of 1−n  MOLS of order n is called a complete set of MOLSs. 
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3. Constructions of Resolvable BIBD Using 

Successive Diagonalizing Method 

The successive diagonalizing method is a method for constructing resolvable 

balanced incomplete block (BIB) designs for ppv ,2=  being a prime number, in 

( )1+= ppb  blocks of size p, for the number of replicates ,1+= pr  and for 

.1=λ  This method is formalized below in Algorithm 1 and is exemplified in 

Examples 3 and 4. 

Algorithm 1. The steps constructing BIB designs with parameters == kpv ,2  

( ) 1,1, 2 +=+=+= prppppbp  and 1=λ  of Algorithm for Successive 

Diagonalizing Method. For detail on the Algorithm see (Khare and Federer [13]). 

Example 3. The steps of Algorithm for Successive Diagonalizing Method for 

22 39 ==p  are: 

 

Example 4. The steps of Algorithm for Successive Diagonalizing Method for 

22 416 ==p  are: 

 

 

Remark 1. Because of the repeated application of step 3 in the algorithm, this 

method has been referred to as successive diagonalizing method (Khare and Federer 

[13]). However, it is observed that the method only worked for p being a prime 

number but not for prime power as it can be seen from Example 4 that the design is 
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not balanced (i.e., ,)1≠λ  see example 3.8 of Hinkelmann and Kempthorne [6] 

where treatments are denoted by ordered pairs ( )yx,  with ,...,,2,1, 2pyx =  

,yx ≠  that is, pairs of treatment ( )11,3  appear together in square ( )22 L−  and 

square ( ),4 4L−  pairs of treatment ( )12,4  appear together in square ( )22 L−  and 

square ( )44 L−  again pairs of treatment ( )12,2  appear together in square ( )33 L−  

and square ( ),5 5L−  pairs of treatment ( )11,1  appear together in square ( )33 L−  and 

square ( )55 L−  and so on. This is a pointer to the fact the design is not balanced. 

Also the method becomes tedious to construct when .16>v  

4. Main Results 

Based on the difficulties encounter in the construction of designs when p is a 

prime power and also when ,16<v  this new proposed method is presented in 

Algorithm 2. 

Algorithm 2. The steps constructing BIB designs with parameters kpv ,2=  

( ) 1,1, 2 +=+=+== prppppbp  and 1=λ  of Algorithm for MOLS of 

Resolvable BIBD for both p being a prime number or prime power are: 

1. Write the number 2...,,2,1 p  consecutively in a square array of p rows and p 

columns beginning in the left-hand order corner of the first row and subsequently 

continuing at the beginning of each row. This is square 1 with rows being the blocks. 

2. Transpose the rows and columns of the square I to obtain square 2 with rows 

being the blocks. 

3. Obtain the set of MOLS of order n (considered order). 

4. Number the elements in the set of MOLS of order n from ....,,2,1 22 pn =  

5. Let the letters of square I of the set of MOLS of order n form the square III. 

6. Superimpose square II on I to obtain square IV. 

7. Continuing the superimposition of squares, i.e., 1...,,IVIII, −n  on square I 
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until square 1+k  is obtained. 

Design 1. The steps of Algorithm for Successive MOLS Superimposition 

Method (SMSM) for 22 3=p  are: 

 

Design 2. The steps of Algorithm for Successive MOLS Superimposition 

Method (SMSM) for ,422 =p  where 22=P  is prime power are: 

 

 

Design 3. The steps of Algorithm for Successive MOLS Superimposition 

Method (SMSM) for 22 5=p  are: 

 

 

Design 4. The steps of Algorithm for Successive MOLS Superimposition 

Method (SMSM) for 22 8=p  where 32=P  is prime power are: 
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5. Conclusions 

The method of Mutually Orthogonal Latin Squares of Resolvable Balanced 

Incomplete Block Designs was used to construct designs for p either being prime 
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order or prime power and it equally restored lost of balance in the example given by 

Hinkelmann and Kempthorne [6, Chapter 3]. Finally, it mitigates the tediousness 

encountered in the construction when .16>v  
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