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Abstract 

Geometric monotone properties of the first nonzero eigenvalue of 

Laplacian form operator under the action of the Ricci flow in a compact n-

manifold ( )2≥n  are studied. We introduce certain energy functional 

which proves to be monotonically non-decreasing, as an application, we 

show that all steady breathers are gradient steady solitons, which are Ricci 

flat metric. The results are also extended to the case of normalized Ricci 

flow, where we estabilish non-existence of expanding breathers other than 

gradient solitons. 

1. Introduction 

The Ricci flow, purposely designed to solve geometrization conjecture, was 

introduced by Hamilton [6] in 1982. However, it gains stupendous popularity since it 

does not only solve geometrization conjecture but consequently provides the 

complete proof of the longstanding Poincare conjecturé which had been proposed 

over a hundred years earlier. This earned G. Perelman the Field Medal Award as 

listed as one of the Seven Millennium Prize Problems by the Clay Mathematics 

Institute in 2000. The Ricci flow has since then become a powerful tool in the hands 

of topologists, geometers, analysts and theoretical physicists. 
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Here, we consider an n- dimensional compact manifold ,2, ≥nM n  on which a 

one parameter family of Riemannian metrics ( ) [ )∞∈ ,0, ttgij  is defined. We refer 

to ( ( ))tgM n ,  as the solution of the Ricci flow, if it satisfies the following nonlinear 

evolution partial differential equation 

 ijij Rg
t

2−=
∂

∂
 (1.1) 

written in local coordinate, where ijR  is the Ricci curvature tensor of the manifold. 

The Ricci flow is thus, a process of deforming Riemannian metric by the negative of 

its Ricci curvature to obtaining a nicer form. It is considered [6] together with the 

initial condition 

 ( ) 00 gg =  (1.2) 

to have a solution, at least for a short time (see also [7, 16]). This result has since 

been extended to non-compact case in [17]. 

The Ricci tensor can be linearised to obtain 

 ( ) ( ),,
2

1 1 ggQgR ijijgij ∂+∆
−

= −  (1.3) 

where g∆  is the Laplace-Beltrami operator acting on manifold ( )gM n ,  and 

( )ggQij ∂−
,

1
 is a lower order term, quadratic in inverse of g and its first order 

partial derivative. Hence, the Ricci flow equation is a heat-like (diffusion-reaction) 

equation. 

The Laplace-Beltrami operator =∆ g  div. grad. is defined (in local coordinate) 

as 

 ( ),
1

g j
ij

i gg
g

∂∂=∆  (1.4) 

where == gdxdxgg
ji

ij , determinant of g and ( ) ,
1−= ij

ij
gg  inverse metric. For 

example, in the usual Euclidean space, the Laplace-Beltrami operator is exactly the 

usual Laplace operator 

 ,

1,

2

∑
= ∂∂

∂
=∆

n

ji
ji

xx
 (1.5) 
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where we can consider the eigenvalue problem for the Laplace 

iii uu λ=∆−  

and we have the sequence 

( )∞→∞→λ≤≤λ≤λ<λ≤ ii ,....0 210  

as the eigenvalues of the laplacian repeated according to their geometric 

multiplicities and any iu  corresponding to iλ  is the eigenfunction, the eigenspace 

being finite dimension. In this respect, various eigenvalue problems arise, such as 

 φ=Ω∂⊆Ωλ=∆− ,in nuu R�  (1.6) 

so also Dirichlet ( )Ω∂= on0u  and Neumann ( 0=
∂

∂

N

u
 on Ω∂  where N is the unit 

normal vector exterior to the boundary of )Ω  counterparts. These can easily be 

generalised to the Riemannian Manifold ( )gM n ,  with or without boundary, where 

the Laplace-Beltrami operator is viewed as self-adjoint operator on ( )nML2  and M 

has a pure point spectrum of a sequence of eigenvalues { }n
ii 1=λ  and the 

eigenfunction iu  form orthonormal basis of ( )nML2  with ( ) .12 =n
MLiu  

In this paper, we consider boundariless manifold or we easily assume the 

boundary is empty, in this case, the first eigenvalue is equal to zero, because, here the 

constant functions are nontrivial solutions of the eigenvalue problem, while the first 

eigenvalue is always positive, if a boundary exists. Studying the behaviours of 

eigenvalues of Laplacian operator is not out of place as its properties such as 

monotonicity, multiplicity, asymptotic etc., provide us with rich information about 

the topology and geometry of the underlying manifold. In the first of his three 

groundbreaking papers [15], G. Perelman introduces the energy functional F  and 

shows that it is non-decreasing along the modified Ricci flow coupled with certain 

conjugate heat equation. He establishes that monotonicity of F  implies that of the 

first nonzero eigenvalue of the operator R+∆−4  and applies the monotonicity to 

rule out nontrivial steady and expanding breathers on compact manifold. In [13], L. 

Ma shows that the eigenvalues of Laplace-Beltrami operator on compact domain of 

Riemannian manifold associated with the Ricci flow is non-decreasing but with 

nonnegativity assumption on the scalar curvature R and X. Cao has since extended 
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this result to the eigenvalues of the operator ,
2

R
+∆−  [1]. In [2], the monotonicity 

of eigenvalue of 
4

1
, ≥+∆− ccR  is established without sign assumption on the 

curvature operator and both compact steady and expanding Ricci breathers are trivial. 

In [10], a family of functional kiL F−  which happens to be non-decreasing under 

the Ricci flow is constructed and the result extended to Rescaled Ricci flow in [11]. It 

turns out that the Ricci flow is a special case of Rescaled Ricci flow. More 

interestingly, these results can be extended to any other type Laplace operator under 

closed Riemannian manifold, for instance, the first eigenvalue of p-Laplace operator 

( )2≥p  with Einstein metric is monotonically non-decreasing [18], In this case, 

when ,2=p  the main result coincides with that of [13]. See also [12] for results in 

Harmoni-Ricci flow. 

Throughout this paper, we adopt Einstein summation convention, where the 

volume element on manifold ,µ= ddxg i  metric ( ) ,, ijji gg =∂∂  where 

ii
x∂

∂
=∂  are the components of the metric. The Levi-Civita connection is defined 

by k
k
ijji

∂Γ=∂∇∂  while its Christoffel’s symbols are given by =Γk
ij  

( ).
2

1
ijliljjli

kl gggg ∂−∂+∂ ijR  and R are the Ricci and scalar curvature tensors 

respectively, where ,ij
ij

RgR =  the trace of Ricci tensor. The contracted second 

Bianchi identity is given as RRg kjki
ij ∇=∇

2

1
 and the inner product 

∫ µ= n
M

gklij
jlik dqpggqp .:,  We sometimes write M instead of nM  to mean 

Manifold of dimension n=  without fear of confusion. 

We note that the geometric quantities associated with the underlying manifold 

evolve as the manifold itself evolves under the Ricci flow, for instance, we consider 

the evolution of those quantities that will be directly useful in the subsequent 

sections. 

Lemma 1. If a one-parameter family of metric ( )tg  solves the Ricci flow (1.1), 

then, the inverse metric, the Christoffel’s symbols, the volume element, the scalar 

curvature and Laplace-Beltrami operator evolve as follows 
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( ),,2 ijliljjli
klk

ijkl
jlikij RRRg

t
Rggg

t
∂−∂+∂=Γ

∂

∂
=

∂

∂
 

,2,
2

1 2
ijij

ij RRR
t

Rddg
t

gd
t

+∆=
∂

∂
µ−=µ








∂

∂
=µ

∂

∂
 

( ) .2 ji
ijtg R

t
∇∇⋅=∆

∂

∂
 

(see [4, 6]). 

The rest of the paper follows; in Section 2, we discuss some classical energy 

functionals and lay emphasis on Perelman entropy. In Section 3, we construct a new 

family of entropy functionals which proves to be monotonically non-decreasing. We 

also discuss the monotonic properties of eigenvalues under the Ricci flow, while the 

results are extended to the case of normalized flow in the last section. 

2. Classical Energy Functionals 

2.1. Total scalar curvature 

We define the total scalar curvature on a closed manifold ( ( ))tgM n ,  as 

 ( ) µ





 −=µ

∂

∂
∫∫ dRhRhtrRd

t M
ij

ij
g

M 2

1
 (2.1) 

which coincides with the first variation of the classical Einstein Hilbert functional H  

 ( ) ∫ µ=
M

ij RdgH  (2.2) 

considering the following variation formuals 

( ) ,Ric,2 hhhtr
t

R
h

t

g
gij

ij
−δ+∆−=

∂

∂
=

∂

∂
 

where ipqj
pqij

hggh ∇∇=δ2
 and .Ric, jlik

klij
Rhggh =  Specifically, 

( ) ( ) µ




 +−δ+∆−=

∂

∂
∫ dtrh

R
hhhtrg

t M
gij 2

Ric,2
H  

µ




 −= ∫ dhhg

R

M
Ric,,

2
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,
2

µ





 −= ∫ dRg

R
h ijij

M

ij  

where ijijij g
R

RG
2

−=  is the Einstein tensor. Then, we have 

( ) ( )∫ ∫ µ∇=µ−=
∂

∂

M M
ij

ij
ij dghdGhg

t
HH ,  

and then obtain 

 ( )gg
t

H∇=
∂

∂
 (2.3) 

as the gradient flow of ( ).gH  

And for the gradient flow of the Einstein-Hilbert functional we have 

 ijijijij GRgRg
t

22 −=+−=
∂

∂
 (2.4) 

which is not parabolic, even weakly, thus, we can not readily establish its solution, 

even for a short time. We note that the weakly part of (3.4) coincides with the Ricci 

flow, while the remaining term arises from the presence of the volume element µd  

which itself is time evolving and we shall however deal with this in Section 3. 

Remark 2. We call g stationery of ( )gH  if ( ) 0=δ gH  for all ( ).82 MTSh Γ∈  

Since ,jiij GG =  then 0=ijG  on M. Taking the trace, we have 

 .
2

2
0 R

n
G

−
=≡  (2.5) 

So in dimension ,2≠n  this implies 0≡R  on M and therefore 0Ric ≡  on M (Ricci 

flat manifold), then the functional becomes invariant under deformations. 

It is now clear that the Ricci flow is not a gradient flow of a functional over the 

space of smooth metric but can be formulated as a gradient-like flow. The key to 

achieving this is to look for functionals whose critical points are Ricci solitons, this is 

contained in the work of Perelman [15] as we briefly survey in the next section. 

2.2. The Perelman’s energy functional 

Let ( ( ))tgM ij
n

,  be a closed manifold for a Riemannian metric ( )tgij  and a 
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smooth function f on ,
n

M  Perelman’s Energy functional [15] on pairs ( )fgij ,  is 

defined by 

 ( ( ) ) ( ) .,
2 µ∇+= −∫ defRftg f

M
ij n

F  (2.6) 

The introduction of function f has embedded the space of Riemmanian metric in a 

larger space (see also [9, 3]). Taking the smooth variations of metric g and f as 

ijij hg =δ  and ,Kf =δ  where ,
2

1
ijg htrH =  we have the following variation 

formula 

( ( ) ) [∫ ∇∇−∇∇+−∇∇+∆−=δ
M

jiijijijijjiij ffhKfRhhHftg ,2,F  

( ) .
2

2 µ








 −∇++ − deK

H
fR f  (2.7) 

Applying integration by parts to some terms in (3.7), we obtain 

( ( ) )ftgij ,Fδ  

( ) ( ) .
2

2
2 µ













 −+∇−∆+∇∇+−= −∫ deK

H
RfffRh f

M
jiijij  (2.8) 

Keeping the volume measure static, i.e., letting ,: dmde f =µ−  we have ,2KH =  

and we can then consider the 2L  -gradient flow 

( )fR
t

g
h jiij

ij
ij ∇∇+−=

∂

∂
= 2  

of the functional 

 ( ) ,
2∫ ∇+=

M

m dmfRF  (2.9) 

whenever this flow exists, it is the Ricci flow modified by diffeomorphism generated 

by the gradient of f and it is equivalent to the Ricci flow. 

Perelman proved that the F -energy functional is monotonically non-decreasing 

under the following coupled system of modified Ricci flow and backward heat 

equation 
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( )









−∆−=
∂

∂

∇∇+−=
∂

∂

.

,2

Rf
t

f

fR
t

g
jiij

ij

 (2.10) 

Precisely 

 .02
2∫ ≥µ∇∇+= −

n
M

f
jiij defR

dt

dF
 (2.11) 

Now modulo out the action of diffeomorphism invariance from the system (2.10), the 

monotonicity formulae (2.11) still holds for the following couple system 

 .

.

,2

2







−∇+∆−=
∂

∂

−=
∂

∂

Rff
t

f

R
t

g
ij

ij

 (2.12) 

In application, we usually solve the Ricci flow forward in time and solve the 

conjugate heat equation backward in time to obtain the solution of the coupled 

system. To develop a controlled quantity for the Ricci flow, define 

 ( ) ( ) ( ) ,1,:,inf






 =µ∈=λ ∫ −∞

M

f
cijij deMCffgg F  (2.13) 

where the infimum is taken over all smooth functions f. Setting ,: ue
f =−

 then the 

functional F  is written as 

 ( ,4
22∫ µ∇+=

n
M

duRuF  with .12∫ =µ
M

du  (2.14) 

Then ( )gλ  is the first nonzero (least) eigenvalue of the self adjoint modified operator 

.4 R+∆−  and the non-decreasing monotonicity of F  implies that of .�λ  As an 

application, Perelman was able to rule out the existence of nontrivial steady or 

expanding Ricci breathers on closed manifolds. 

Proposotion 3 ([9, 15]). Let ( )tgij  be a solution of the Ricci flow and 

MMt →ϕ :  is any diffeomorphism on M, then 

( ) ( )ijijt gg λ=ϕλ *  

and ( )ijgλ  is monotonically non-decreasing. However, a steady breather is 

necessarily a steady gradient soliton. 
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3. A New Family of Entropy Functionals 

3.1. B -energy functional 

To circumvent the difficulty encounter under Einstein-Hilbert functional, we can 

replace the evolving measure µd  by some static measure dm and define a new 

functional 

.∫=
M

RdmB  

Now 

 ( )∫ 





∂

∂
++∆=

M
ij dm

t
RdmRR

dt

d 2
2

B
 (3.1) 

since dm  is static, we cannot apply divergence theorem which applies to evolving 

measure, we then set µ= − dedm f:  for scalar function R→Mf :  and therefore 

obtain 

( )∫ µ−
∂

∂
−+∆= −

M

f
ij deRf

t
RRR

dt

d 22
2

B
 

( ( )[ ]∫ µ−−∇+∆−−+∆= −

M

f
ij deRRffRRR 22

2  

( µ∇−∆+µ∆+µ= −−− ∫∫∫ deffRddeR f

MM

f

M

f
ij

22
Re2  

,2
2∫ µ= −

M

f
ij deR  

where ( )∫∫∫ µ∆+∆−=µ∆=µ∆ −−−

M

f

M

f

M

f deffRdeRd
2

Re  by using 

integration by parts. 

Then, even by inspection, if the modified Ricci flow fR
t

g
jiij

ij
∇∇−−=

∂

∂
22  is 

considered as an 2L -gradient flow of Perelman’s energy functional ,F  we can easily 

conclude that the Ricci flow ij
ij

R
t

g
2−=

∂

∂
 is also an 2L -gradient flow of our 

functional .B  
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Theorem 4. Let ( ( )) [ )TttgM ij
n

,0,, ∈  be a solution of the Ricci flow, then 

 ( ) ,2,
2 µ= ∫ −

M

f
ijij deRfg

dt

d
B  (3.2) 

where 





 µ

=
dm

d
f log  and satisfies 

 .
2

Rfff
t

−∇+∆−=
∂

∂
 (3.3) 

In particular ( )fgij ,B  is monotonically non-decreasing in time without sign 

assumption on he curvature operator and the monotonicity is strict unless .0≡ijR  

Moreover, there is no nontrivial Ricci breather except gradient steady Ricci soliton, 

which is necessarily flat. 

Proof. 

( )[ ] fRfRgg
t

trf
t jiij

ij
ij ∆−−=∇∇+−=







∂

∂
=

∂

∂
2

2

1

2

1
 

modulo the diffeomorphism out of ( ),2 fRg
t jiijij ∇∇+−=

∂

∂
 

.
2

Rfff
t

−∇+∆−=
∂

∂
 

Then, 

( ) ,02,
2 ≥µ= ∫ −

M

f
ijij deRfg

dt

d
B  

where equality holds if and on if 0≡ijR  which implies that ( ( ))tgM ij
n

,  is Ricci 

flat ( steady gradient Ricci soliton). 

3.2. The entropy formula and its monotonicity 

In this section, we construct a new entropy formula for the Ricci flow, the 

motivations for this are the behaviours of our functional B  (Theorem 8) under the 

Ricci flow modulo diffeomorphism invariance and the classical results for Dirichlet 

energy functional for heat flow on Riemannian manifolds. It is well known that a 

typical heat equation for a function [ ) R→∞× ,0: nMf  on an n-compact 
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manifold M (possibly without boundary) is a gradient flow for the classical Dirichlet 

energy functional 

 ( ) .
2

1
:

2∫ µ∇=
n

M
dffE  (3.4) 

Since there is natural 2L -inner product on .2T*MS  An application of this is that any 

periodic (breather) solutions to the heat equation are harmonic function which in fact 

must be constant in M. The Li-Yau gradient estimate for the heat equation on 

complete Riemannian manifold suggests an entropy formula which was derived in 

[14] but proved to be monotone decreasing with non-negativity condition on Ricci 

curvature. 

Definition 5. Let ( )gM n ,  be a closed n-dimensional Riemannian Manifold, 

R→nMf :  be a smooth function on ,
n

M  define a functional on pairs ( )fgij ,  

by 

 ,
2

1 2∫ 





 +∇=

M
dmRfBF  (3.5) 

where .: µ= − dedm f  

This is a variant of Perelman’s energy functional ,F  though expected to behave 

in similar manner, it differs from the later by the introduction of constant .
2

1
 

Let ijij hg =δ  and ,Kf =δ  where ,
2

1
ijg htrH =  we have the first variation of 

BF  as 

 ( ).2
ffRh jiij

M
ij ∇+∇∇+−=δ ∫BF  (3.6) 

The coupled modified Ricci flow equation with a backward heat equation 

 
( )









∇+∆−−=
∂

∂

∇+∇∇+−=
∂

∂

ij

jiij
ij

gffR
t

f

ffR
t

g

2

2
,2
 (3.7) 

is a gradient flow. Conjugating away the infinitesimal diffeomorphism converts (3.7) 

to (2.12). 
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Theorem 6. Let ( ))tgij  and f solves the system (2.12) in the interval [ )T,0  

then, 

 ( ) .,
22∫ ∫+∇∇+=

M M
ijjiijij dmRdmfRfg

dt

d
BF  (3.8) 

Showing that ( )fgij ,BF  is monotonically non-decreasing in time, however, the 

monotonicity is strict, unless 0≡ijR  and f is a constant. 

Proof. 

( )∫ ∫ ∫ µ+µ+∇=µ





 +∇= −−−

M M M

fff ddeRfdeRf Re
2

1

2

1

2

1 22
BF  

therefore 

( ) .
2

1

2

1
, B�FFB dt

d

dt

d
fg

dt

d
ij +=  

The result then follows. 

Definition 7. Let ( )gM n ,  be a closed n-dimensional Riemannian Manifold, 

define a family of functional CBF  as 

 ( ) ,2
2∫ +∇=

M
C dmCRfBF  (3.9) 

where .,0 R�∈> CC  When ,
2

1
=C  this is Perelman’s F  functional [15], 1=C  

is a specific case we consider and ,1,
2

1
≥= kkC  we have kLi F-  family [11]. 

Remark 8. Our functional CBF  is a variant of Perelman functional which uses 

certain multiple of Dirichlet energy. Their monotonicities are consistent with each 

other. Ricci flow cannot be viewed as 2L -gradient flow of a certain family of kF  

constructed in [10]. 

Theorem 9. Let ( ( )) [ )TttgM ij
n

,0,, ∈  be a solution of the Ricci flow and f 

evolves by a conjugate heat equation or satisfies ,
µ

=−

d

dm
e f  then, under the 

coupled system (3.12), CBF  is monotonically non-decreasing. In particular, we 
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have 

 ( ) .01222
22 ≥−+∇∇+= ∫∫ M

ij
M

jiijC dmRCdmfR
dt

d
BF  (3.10) 

Moreover, the monotonicity is strict unless ,0≡∇∇+ fR jiij  i.e., there is no 

nontrivial breathers except steady gradient Ricci soliton and the gradient function f 

is constant. 

This shows that all steady breathers are gradient steady Ricci soliton with 

.0=f  An example of this is Hamilton cigar soliton (2- dimensional )2
R�  with 

conformal metric 
22

22
2

1 yx

dydx
ds

+

+
=  and the gradient function =f  

.1log 22 yx ++  

Proof. The proof follows a direct computation based on the previous results. 

( )dmCRf
dt

d

dt

d

M
C ∫ +∇= 2

2
BF  

( ) ( )

 −++∇= ∫ ∫M M

ij dmRCdmRf
dt

d 22
12  

( ) .12 B�F
dt

d
C

dt

d
−+=  

Equation (3.10) follows at once. 

( ) 0, ≡fg
dt

d
ijCBF  

if and only if 0≡ijR  and f is a constant. 

3.3. Eigenvalues and their monotonicity 

In this section, we discuss the monotonicity properties of the least eigenvalue of 

a self adjoint modified operator CR+∆−2  that occurs in our functional. This is 

important as it enables us gain controlled geometric quantity for the Ricci flow. 

 ( ) ( ) ( ) ,1,:,inf






 =µ∈=µ ∫ −∞

M

f
cijCijC deMCffgg BF  (3.11) 

where the infimum is taken over all smooth functions f. The normalization 



ABIMBOLA ABOLARINWA 

 

14 

1=µ∫ − de f
M  makes dm  a probability measure and ensures a meaningful infimum. 

Setting ,:
2

ue
f =−

 then, the functional CBF  can be written in terms of u as 

 ( ) ,2 22∫ µ+∇=
M

C dCRuuBF  with .12∫ =µ
M

du  (3.12) 

Then ( ) ( )CRgijC +∆−λ=µ 21  is the least eigenvalue of the self-adjoint modified 

operator ( ).2 CR+∆−  Let v be the corresponding eigenfuction, then, we have 

( )vgCRvv ijCµ=+∆−2  

and vfC log2−=  is a minimiser of 

( ) ( )., CijCijC fgg BF=µ  

By standard existence and regularity theories, the minimising sequence always exists. 

Theorem 10. Let ( ( )) [ )TttgM ij
n

,0,, ∈  be a solution of the Ricci flow, then, 

the least eigenvalue ( )ijC gµ  of ( )CR+∆−  is diffeomorphism invariance and non-

decreasing. The monotonicity is strict unless the metric is a steady gradient soliton. 

Proof. Let MM →φ :  be a one parameter family of diffeomorphism. For any 

diffeomorphism ( )tφ  we have 

( ) ( )fgfg ijCijtC ,,
*

BB FF =φφ o  

then 

( ( )) ( ) ( ( ) )CijCtCijtCijtC ftgfgtg ,, ***
BB FF φ=φ=φµ  

( ( ) ) ( ( ))., tgftg ijCCijC µ== BF  

Solving the backward heat equation at any time [ )Tt ,0∈  with initial condition 

( ) ,00 ftf =  we know that 0f  is a minimizer with .1=µ∫ − de f
M  So our solution 

( ) 0, tttf <  which satisfies µ− de f  is also a minimizer. By Theorem 9, 

( )cijC fg ,BF  is non-decreasing, then we have 

( ( )) ( ( ) ( )) ( ( ) ( )) ( ( )).,inf,inf 000 tgtftgtftgtg ijCijCijCijC µ=≤=µ BB FF  
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Thus, Cµ  is non-decreasing under the coupled Ricci flow. 

Suppose the monotonicity is not strict, then, for any times ,,, 2121 tttt <  the 

solution ( )tgij  of the Ricci flow satisfies 

( ( )) ( ( )).21 tgtg ijCijC µ=µ  

If ( )1tf  is a minimizer of ( ( ) cijC ftg ,BF  at time ,1t  so that 

( ( )) ( ( ) ( ))., 111 tftgtg ijCijC BF=µ  

But by the monotonicity of CBF  

( ( )) ( )) ( ( ) ( )).,, 2211 tftgtftg ijCijC BB FF ≤  

( ( )).2tgijCµ=  

This contradiction implies that 

( ( )) .0≥µ tg
dt

d
ijC  

Hence, the last part of the theorem follows clearly. 

We conclude this section with the fact that there is no compact steady Ricci 

breather other than Ricci flat metric, this is due to the diffeomorphism invariance of 

the eigenvalues ([1, Theorem 3], [6], [8], [10, Theorem 55] [15]). 

4. Monotonicity Formula under the Normalized Ricci Flow 

The normalized Ricci flow is given [6] as 

 ,~2~
2

~

ijijij
ij

gr
n

Rg
t

g
+−=

∂

∂
 (4.1) 

where ( ) ∫ µ= −

M
g dRVolr ~~1
~  is a constant, the average of the scalar curvature of M, 

and ∫ µ=
M

g dVol .~~  The factor r appearing in (4.1) keeps the volume of the manifold 

constant. Here, we extend the results from previous sections (Theorems 4, 6, 9 and 

10) to the case of the normalized Ricci flow. We recall that there is a bijection 

between the Ricci flow (1.1) and the NRF (4.1), if we choose a normalization factor 
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( )tφ=φ :  with ( ) 10 =φ  such that ( ) ( ) ( )tgttg φ=~  and define a time scale 

( )∫ ττφ=
t

dt
0

,
~

 then ( )tg~  solves (4.1) whenever ( )tg  solves (1.1) 

Remark 11. If ,0=r  all the properties of the Ricci flow (1.1) including the 

monotonicity of the eigenvalues of Laplacian hold without further alteration. 

The following shows how geometric quantities evolve under the normalized 

Ricci flow; 

Lemma 12. Suppose ( )tg~  solves (4.1), we have 

,
~2~

2
~~~

,~~
2~ 2

R
n

r
RRR

t
g

n

r
Rg

t ij
ijijij −+∆=

∂

∂






 −=

∂

∂
 

( ) .
~2~~~

2
~

,~~~ ~~ gji
ij

g n

r
R

t
dRrd

t
∆−∇∇⋅=∆

∂

∂
µ−=µ

∂

∂
 

4.1. Monotonicity of the entropy formula 

In this section, we extend some results in Section 3 to the case of NRF. Define a 

modified Normalized Ricci flow by 

fgr
n

R
t

g
jiijij

ij ~~~
2~2~

2

~

∇∇−+−=
∂

∂
 

and ,~log
~









µ
=−

d

dm
f  i.e., 







 ∇∇−+−=

∂

∂
=

∂

∂
frg

n
Rgg

t
tr

t

f
jiijij

ij
ijg

~~~
2

2~
2~

2

1~
2

1
~

 

.
~~~
frR ∆−+−=  

It is however clear that the coupled system 

 










+−∆−=
∂

∂







 ∇∇+−−=

∂

∂

rRf
t

f

fg
n

r
R

t

g
jiijij

ij

~~~
~

,
~~~~~

2

~

 (4.2) 

is equivalent to 

 








+−∇+∆−=
∂

∂

+−=
∂

∂

.
~~~

~

,~2~
2

~

2
rRff

t

f

gr
n

R
t

g
ijij

ij

 (4.3) 
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Now using Perelman’s energy functional ,
~

F��F φ=  i.e., =�F
~

 

( )∫ µ+∇ −

M

f deRf ,~~~~ ~
2

 we have 

( ) µ+∇∇−µ∇∇+= −− ∫∫ ~~~~~~2~~~~~
2

~ ~~
2

deRfg
n

r
defR

dt

d f
ijji

M

ijf

M
jiij

F
 

.
~2~~~~~

2
~

2
�F

n

r
defR f

M
jiij −µ∇∇+= −∫  

So, 0

~

≥
dt

dF
 whenever .0≤r  Thus we have proved the following; 

Theorem 13. Let ( )fgij

~
,~  solves (4.3) in the interval [ ),,0 T  then 

 ,0
~2~~~~~

2

~ ~
2 ≥−µ∇∇+= −∫ F

F

n

r
defR

dt

d f

M
jiij  (4.4) 

when .0≤r  

Theorem 14. Suppose ( )tgij
~  is a solution of (4.1) and we define energy 

functional 

 ( ) ∫ µ== −

M

f
ij dfgB ~eR

~~
,~~ ~

�B  (4.5) 

then, 

 .
~2~~

2

~ ~
2

�B
B

n

r
deR

dt

d

M

f
ij −µ= ∫ −  (4.6) 

And B
~

 is non-decreasing whenever ,0≤r  where .~log:
~









µ
=−

d

dm
f  The 

monotonicity is strict unless we are on Ricci flat metric. 

Proof. 

( )∫ µ−−
∂

∂
−

∂

∂
= −

M

f deRrR
t

f
R

t

R

dt

d ~~~
~

~
~

2

~ ~
B

 

( ) ( )∫ µ




 −−+−∇+∆−−−+∆= −

M

f
ij deRrRrRffRR

n

r
RR ~~~~~~~~~~2~

2
~~

2
~

22
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.~eR
~2~~

2
~~

2 ∫∫ µ−µ= −−

M

f

M

f
ij d

n

r
deR  

Therefore our new entropy functional (3.9) implies 

 ( ) ( ) ( ) .
~

12
~~~

2
~~~

,~~ ~
2

�BFFF B −+=µ+∇== −∫ CdeRCffg f

M
ijCBC  (4.7) 

Hence 

( )122~~~~~
2

~ ~
2 −+µ∇∇+= −∫ CdefR

dt

d f

M
jiijBCF  

( ) BF
~

122
~2~~ ~

2

n

r
C

n

r
deR f

M
ij −−−µ× −∫  

( ) BC
f

M
ij

f

M
jiij n

r
deRCdefR F

~2~~
122~~~~~

2
~

2
~

2 −µ−+µ∇∇+= −− ∫∫  (4.8) 

0≥  (where ).0≤r  

Theorem 15. Let ( ) [ )Tttgij ,0,~ ∈  solves the normalized Ricci flow and f
~

 the 

conjugate heat equation under the coupled system (4.3). Then, BCF
~

 is 

monotonically non-decreasing when .0≤r  Moreso, if ,0=r  then the monotonicity 

is strict, unless the metric ( )tgij
~  is Ricci flat and f

~
 is a constant function. 

Our monotonicity formula does not classify the metric if r is negative, though 

this is not difficult to achieve, we need a little modification (This case is done by J. 

Li [ Theorem 1.4 11]) 

4.2. Monotonicity of the least eigenvalue under the NRF 

Let ( )tg  be an evolving solution of (4.1) on a compact Riemannian manifold, let 

λ
~

 be the least nonzero eigenvalue of the modified operator 
2

1
,

~~
2 ≥+∆− CRC  at 

time. i.e., 

BCF
~

inf
~

=λ  with µ− ~
~

de f  

then, we have 
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 ( ) λ−µ−+µ∇∇+=
λ −− ∫∫

~2~~
122~~~~~

2

~ ~
2

~
2

n

r
deRCdefR

dt

d f

M
ij

f

M
jiij  (4.9) 

when r is nonpositive. If r is strictly negative, we have the following version of 

Theorem 10. 

Theorem 16. The least eigenvalue of RC
~~

2 +∆−  is diffeomorphism invariance 

and non-decreasing under the normalized Ricci flow. The monotonicity is strict 

unless we are on the Einstein metric. 

Proof. (a) The first part of the Theorem is modelled after the first part of the 

proof of Theorem 10. 

(b) The second part can be seen using equation (4.9) 

,0
~

≥λ
dt

d
 where .0≤r  

(c) Examining (4.9), it is clear that it fails to classify the steady state of the least 

eigenvalue (as remarked in [11]), so we need a modified form of (4.9) to tell the class 

of Einstein metric involved, we however have 

( )
n

r
deg

n

r
RCdeg

n

r
fR

dt

d f

M
ij

f

M
jiij

λ
−µ−−+µ−∇∇+=

λ −− ∫∫
~

2~~~
122~~~~~~

2

~ ~2~2

 

( ) ∫∫ µ−µ+∇∇+ −−

M

ff

M
ijji

ij deg
n

r
deRfg

n

r ~~2~~~~~~4 ~2~

 

( ) ( )∫∫ µ−−µ−+ −−

M

ff

M
ij

ij deg
n

r
CdeRg

n

r
C ~~122~~~124

~2~

 

( )
n

r
deg

n

r
RCdeg

n

r
fR f

M
ij

f

M
jiij

λ
−µ−−+µ−∇∇+= −− ∫∫

~
2~~~

122~~~~~~
2

~2~2

 

n

Cr

n

r
C

24~4
−+ BF  

( ) ( )Cr
n

r
deg

n

r
RCdeg

n

r
fR

f

M
ij

f

M
jiij 2

~2~~~
122~~~~~~

2
~2~2

−λ+µ−−+µ−∇∇+= −− ∫∫  

0≥  

since by definition .
~

Cr≤λ  
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Corollary 17. Under the normalized Ricci flow, the following monotonicity 

formula holds 

=
λ

dt

d
~

 

( ) .0~~~
122~~~~~~

2
~2~2

≥µ−−+µ−∇∇+ −− ∫∫ deg
n

r
RCdeg

n

r
fR f

M
ij

f

M
jiij  (4.10) 

Equality is attained if and only if ( )tg~  is Einstein and f
~

 is a constant gradient 

function. 

Thus, we can rule out the existence of nontrivial expanding gradient Ricci 

breathers excepts those that are gradient solitons. If 
2

1
=C  and ,0≤r  we have the 

monotonicity formula 

 ( ) 02
~2~~~~~~

2

~ ~2

≥−λ+µ−∇∇+=
λ −∫ Cr

n

r
deg

n

r
fR

dt

d f

M
jiij  (4.11) 

which simply implies that expanding breathers are necessarily expanding soliton. 
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