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Abstract 

In this theoretical study, we have approximated particle behaviour at 

radius of the Planck Length, ,pℓ  such as, position, momentum and energy 

has different interpretation with the Heisenberg uncertainty. Heisenberg 

uncertainty principle said that we can not get the fixed measurement of 

both position and momentum simultaneously. On the other hand, this 

theoretical study found that we can measure position and momentum, or 

position and time simultaneously even when .0=∆y  But the problem 

then emerges from the last equation of this theory. Thus, we can not 

measure them if ,0=∆y  because this measurement is bounded by 

.0≥≥∆ py ℓ  

1. Introduction 

From many years ago, micro particle like electron is considered to have wave 

properties ([5-6]). The theoretical study also tries to prove why particle is considered 

to have wave properties. This is the last trilogy of my two previous papers for 

approximating particle behaviour at radius of the Planck Length. 
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2. Mathematical Approximation 

From [1] and we set ,,00 prv ℓ==  we can rewrite one-dimensional equation 

for the particle that depends on time as follows: 
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If we set 0=θ  for all time t, then the coefficient of 2
t  in (1) is an acceleration of 

gravity ( )g  of free fall on earth surface. But, it is not on earth surface, we are talking 

about a microscopic system. 

From equation (1), we are trying to analyse particle behaviour at .pr ℓ=  By 

using the same equation, we can analyse for err <<  in which er  is earth radius ([2]). 

Since (1) is derived from semicircular motion in [1], then we get the relation 

between r and θ  as follows: 
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In which x is a projection length of r toward horizontal axis. Since x is a projection 

length of r, thus .0 prx ℓ=<<  Here, our problem is difficult to determine the exact 

value of x because it is smaller than Planck length ( ).pℓ  It is known that pℓ  is 

measurable minimum length (see [4]). Thus, the interval value of (2) is 

.1cos0 2 <θ<  Now, we will investigate the cases around minimum or maximum of 

.cos2 θ  

1. If we set 1~cos2 θ  (around the maximum), then equation (1) become free 

fall on earth surface, because ( ) ,0~sin90cos θ=θ−  therefore, we can approximate 

(1) with 

.5.0 2
gty −=  

But, it is impossible because it is not on earth surface. 



MATHEMATICAL FOUNDATIONS FOR APPROXIMATING … 

 

57 

2. If we set 0~cos2 θ  (around the minimum), then (2) can be approximated 

by 

 ( ) .0~cos90sin
2

22






=θ=θ−

r

x
 (3) 

From (3), we rewrite (1) 
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Equation (4) means that particle equation in (1) is a wave equation at very small 

radius. 

By using trigonometry properties, we get from (3) 

 .1~sin 2 θ  (5) 

Equation (5) means 

 1~sin θ  (6) 

or 

 .1~sin −θ  (7) 

Since (6) and (7) are only approximation values, around 1 and –1, so we can rewrite 

(6) and (7) in the following interval: 

 .1sin1 ≤θ≤−  (8) 

Multiplying (8) with ( )tA  in (4), we have 
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From (9), we interpret that the position of particle is in this interval. But, the most 
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possible of finding particle from (9) is around the maximum or minimum of y. 

Now, we will derive from (9) at ,maxyy =  but we do not consider at minyy =  

because at this point, kinetic energy will be negative. 
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From (10) and (11) we have 
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From (15), Partial derivative with respect to momentum 
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Substituting (12) into (19) 
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We can approximate (22) 
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By using the same process, we have partial derivative for position with respect to 

time t  
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From (23) and (24), we reduce (9) into smaller interval as follows 

 .0,0 maxmaxminmin yyyyyyyyyy ∆+≤≤∆−<<∆+≤≤∆−  (25) 

From (8) and (9), the probability of finding particle in the interval yy ∆+max  or 

yy ∆−min  is zero. From (11) we will calculate kinetic energy 
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We knew that the Planck length defined by 
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Here h is Planck constant, G is the constant of universal gravitation, and c is the 

speed of light. Substituting (31) into (30), we have 

 .
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Substituting (23) to (32), we have 
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The boundary condition is py ℓ≥∆  [4], thus 
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Now, we will compare equations (23), (24), (25), (32), (33) and (34) with the 

Heisenberg uncertainty 

Heisenberg Uncertainty (see [6]) Arisetyawan 

For Position and momentum 
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Probability interval of finding 

particle 
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3. Results and Discussion 

If the position of particle can be measured exactly, .0=∆y  From Heisenberg 

uncertainty, the momentum will be unknown exactly, .~ ∞∆ yp  It means, we can not 

measure position and momentum simultaneously, and vice versa. 

On the other hand, from (25), if ,,0 maxmax yyyy ≤≤=∆  it means the 

position is certain .maxyy =  By using (23) or (24), if ,0=∆y  it means the 

momentum of particle or time are certain ( )0=∆ yp  or ( ).0=∆t  

Unfortunately, the condition where momentum or position can be known exactly 

in the previous discussion is limited by equation (33) and (34) so that minimum y∆  

should be greater or equals than ( ).0≥≥∆ pp y ℓℓ  It causes the position, time and 

momentum of particle become a probability. 

Equation (33) means, if we want to make y∆  smaller than pℓ  or equals to zero, 

we need very big (or infinite) kinetic energy. Equation (33) also means if we want to 

make y∆  smaller than pℓ  or equals to zero, the mass of particle should be very big 

(or infinite) too. 
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