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Abstract 

In this paper, we first propose two simple lattice-based station to station 

(STS) protocols on small integer solution (SIS). The basic lattice-based 

STS on SIS utilizes signature to provide resisting key compromise 

impersonation and perfect secrecy as well as preventing unknown key-

share attacks with encryption. The modified lattice-based STS provides 

implicit key confirmation. We analyze their securities under the DBi-ISIS 

assumption and indicate that they enjoy better efficient implementations 

and great simplicity in addition to resisting quantum attack. 
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1. Introduction 

Diffie-Hellman key exchange (DH-KE) protocol was only secure against a 

passive adversary and subjected to many attacks, e.g., man-in-the-middle attack, 

active attack, et al. To meet this case, one variant of DH-KE was authenticated key 

exchange (AKE) [1] which guaranteed that nobody can establish the shared session 

except for the participants involved in AKE. 

Now, we step into the era of quantum computer. Most of the AKEs are broken 

by quantum computers because quantum computers can solve almost all traditional 

mathematical problems which AKEs depended on. Thus, it is necessary to find 

mathematical problems which cannot be solved by quantum computers and can be 

used to design cryptographic systems. Recently, lattice as a technique to resist 

quantum attack has attracted much attention to establish cryptographic primitives. 

Lattice problem includes two big basic average-case hard problems: the learning with 

error problem (LWE) [2, 6, 7] and the small integer solution problem (SIS) [4] which 

guarantees worst-case harness for cryptosystems to resist quantum attack. Regev et 

al. first proposed the LWE problem [2, 7] and demonstrated that solving the average-

case LWE problem was at least as hard as solving quantum some worst-case hard 

lattice problem. In 2008, Gentry et al. [4] first defined the general Inhomogeneous 

Small Solution (ISIS) problem and showed that solving the average-case ISIS 

problem was at least as hard as to quantumly solve the worst-case hard 

approximation SIVP problems. As a direction application, there exists several public 

key cryptosystems [4, 16] based on the SIS problem. 

Recently, a number of lattice-based public key cryptosystems [2, 4, 5, 12-16] 

appeared. However, until 2012, Ding et al. [8] first proposed a key exchange protocol 

whose security solely relied on the hardness of the LWE problem. In 2013, Li et al. 

proposed first two KEs [11] based on the new variant of LWE and SIS problem. In 

2014, Wang et al. first proposed Bilateral Inhomogeneous Small Integer Solution 

(Bi-ISIS) problem [9] and a KE relied on the Bi-ISIS problem. These lattice-based 

KEs [8, 11, 9] showed that cryptography have made a big step on the relation 

between lattice and KE. Thus, it makes perfect sense to design AKE based on lattice. 

There are several papers focusing on designing AKEs from lattices [17-21]. In 2009, 
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Katz et al. [17] proposed the first password-based AKE based on the LWE problem. 

In 2014, Zhang et al. [10] proposed an AKE protocol based on the Ring Learning 

With Errors (Ring-LWE) [10]. Zhang’s AKE relied directly and solely on the 

hardness of Ring-LWE and was simple without using other cryptographic primitives, 

e.g., signature/MAC et al. to reduce additional overhead including computing and 

space storage. 

Motivated by [8-11] and [17-21] as mentioned above, we try to build lattice-

based AKEs. Especially, based on Wang’s work [9], we first propose two simple 

lattice-based station-to-station (STS) AKEs which solely rely on the SIS problem. 

The basic lattice-based STS on SIS utilizes signatures to provide resisting key 

compromise impersonation [1], perfect secrecy [1] and avoid unknown key-share 

attacks [22] with encryption. To modify the basic lattice-based STS to get another 

lattice-based STS which provides implicit key confirmation. Since the main 

calculation operation of the two lattice-based STS are only usual matrix-vector 

multiplication (not exponential operation) that they enjoy small calculation, better 

efficient implementations and great simplicity. 

2. Preliminaries 

Notations. Assume that n is the main security parameter in this paper. Bold 

lower-case letters denote vectors in the column form, e.g., x. Bold capital letters 

denote matrices, e.g., A and the transposition of A is .tA  The Euclidean ( )2l  norm 

for vectors, denoted by ,2
2 ∑=

i ixx  is used. That choosing elements from the 

set X uniformly at random are denoted by .,,1 Xxx Rk ←L  

2.1. Hard random integer lattice 

The definition of lattice can be seen in [2, 7]. 

2.2. The ISIS/SIS problem and Bi-ISIS/Bi-SIS problem 

One of the average-case problems on lattice is the SIS (ISIS) problem [4]. The 

parameters of Bi-SIS (Bi-ISIS) problem [9] are the same as that of SIS (ISIS) 

problem. 
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Definition 1.1 ( )β,,ISIS mq  [4]. Given an integer ,q  a random matrix 

,
mn×∈ ZA  a random vector ,

n
Z∈u  a real ,β  find a nonzero integer vector 

,
m
Z∈z  s.t., qmoduAz =  and .

2
β≤z  If ,mod0 qu =  then the β,,ISIS mq  

problem is the β,,SIS mq  problem. 

Definition 1.2 (Bi-ISIS) [9]. Given a prime ,q  a matrix mmZ ×∈A  chosen 

randomly with rank ( ) ,n=A  two vectors 
m
qZ∈21, uu  and a real ,β  the goal is to 

find nonzero integer vectors { }0\, m
Z∈yx  such that 







β≤=

β≤=

.,mod

,,mod

2

1

yuAy

xuAx

q

q

tt
 

If ,mod01 q=u  ,mod02 qt =u  then Bi-ISIS is the Bi-SIS. β,,SIS-Bi mq  

β,,ISIS-Bi mq  denotes the probability ensembles over ISIS-BiSIS-Bi  instance. 

Lemma 1.3 and Proposition 1.4 gave the hardness of β,,SIS-Bi mq  and 

.ISIS-Bi ,, βmq  

Lemma 1.3 [9]. The problems ββ ,,,, -- mqmq ISISBiSISBi  are as hard as the 

problems ,,,,, ββ mqmq ISISSIS  respectively. 

Proposition 1.4 [9]. Given any poly-bounded ( ) ω⋅β≥=β qnpolym ,,  

( ),log nn  the β,,- mqSISBi  and β,, mqISIS  problems in average case are as hard 

as approximating the problem SIV γP  and GapSVP, in the worst case within certain 

( ).
~

nO⋅β=γ  

Definition 1.5 ( )*ISIS-Bi  [9]. Let qmn ,,  and β  be the parameters as that of 

ISIS problem. Set 
mm

qZ
×∈A  with rank ( ) 1, eA n=  is linearly independent with 

column vectors of  2, eA  is linearly independent with row vectors of A. For vectors 
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{ },mod0,: 211 qtm =⋅∈+∈ zezeAzb Z  

{ },mod0,: 122 qtmttt =⋅∈+∈ ezzeAzb Z  

the goal is to find vectors ,, m
Z∈yx  s.t., 







β≤=+

β≤=+

.,mod

,,mod

22

11

ybeAy

xbeAx

q

q

ttt
 

If 21, ee  are unknown, *ISIS-Bi  may be harder than ISIS-Bi  problem. CBi-

ISIS DBi-ISIS problem can be reduced to *ISIS-Bi  problem [9]. 

Definition 1.6 [9]. Given security parameters ,,,, βmqn  a random matrix 

mm
q

×∈ ZA  with rank ( ) .n=A  Set { } ,,,:
2

DyxzZzD m ∈∀β≤∈=  there 

exists two vectors sets { },,,1 nuuU L=  which is linearly independent with the 

column vectors of A, and { }nvvV ,,1 L=  which is linearly independent with the 

row vectors of A, s.t., { } .mod0,mod0,,,1 qxvquyni t
ii

t =⋅=⋅∈∀ L  Assume 

,mod:*,mod:* qvAyAyquAxxA

Si

t
i

tt

Si

i ∑∑
′∈∈

+=+  

where S and S ′  are two random subsets of { }.,,1 nL  

CBi-ISIS problem. Given ( ),*,*, AyxAA t  where ,, Dyx ∈  the goal is to 

compute .Axy t  

DBi-ISIS problem. Given ( ),,*,*, AxyAyxAA tt  the goal is to distinguish 

( )AxyAyxAA tt ,*,*,  and ( ),,*,*, zAyxAA t  where Dyx ∈,  and qz Z∈  

are chosen uniformly at random. 

Let ( ) ( )nqqnpolymn == ,,  be integers and ( )npoly=β  be a real, s.t., 

( ) .log nnq ω⋅β≥  Set { },:
2

β≤∈= zZzD m  random matrix 
mm

qZA
×∈  with 
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rank ( ) .nA =  For any probabilistic polynomial time (PPT) adversary ,A  

1. if 

[ ( ) ] ( )nneglDyxAxyAyxAA R
tt <←=β ,:*,*,,Pr A  

holds, then call it CBi-ISIS assumption; 

2. if 

[ ( ) ]DyxAxyAyxAA R
tt ←=β ,:1,*,*,,Pr A  

[ ( ) ] ( )nneglDyxzAyxAA R
t <←=β− ,:1,*,*,,Pr A  

holds, then call it DBi-ISIS assumption, where the probabilities are all taken over the 

random choice of Dyx R←,  and the random bits used by .A  

2.3. Select parameters 

Here the parameters are chosen the same as that in [9]: a prime ( ),2nOq =  

( ),log nnOm =  ( ) mnnqm ≥β>ω≥β log,  and ,log2 nnm ≥  e.g., for 

the typical parameters ,log2,12 2 qnmnq =+=  and .log2 nnm ==β  

3. Lattice-based STS Protocols on SIS 

Based on Wang’s work [9], we first propose lattice-based STS AKE protocols 

on SIS problem. The basic lattice-based STS is the combination of lattiec-based KE 

[9] and a secure interactive identification scheme, in which BA ss ,  act as random 

challenges. The signatures on random challenges provides mutual authentication. 

3.1. The basic lattice-based STS 

First, the system selects a public matrix 
mm

qR
×← ZA  and a real .β  Assume that 

two participants, Alice and Bob, run the protocol honestly. 

1. Assume that Alice selects a secret key vector ,m
RAs Z←  s.t., β≤As  and 
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generates { }t
n

t vvV ,,1 L=  which are linearly independent with rows vectors of A 

such that .mod0, qsv Ai >=<  Alice keeps As  secret, computes 

,mod* qsAp AA =  sends ( ( ) )ApAlicecert ,  to Bob and makes V public. 

2. Bob selects a secret vector ,m
RBs Z←  s.t., ,β≤Bs  generates =U  

{ }n
t uu ,,1 L  which are linearly independent with column vectors of A, such that 

,mod0, qsu Bi >=<  computes 

,mod*,mod qAspqpsK t
BBA

t
B =⋅=  

( ) ( )BKBABBB tenccppsigt == ,  

and sends ( ( ) )BB cpBobcert ,,  to Alice. 

3. Alice computes ,mod qspK AB ⋅=  decrypts Bc  with K to get .Bt  Then she 

utilizes Bver  to verify .Bt  If Bt  is invalid, Alice refuses it and stops; otherwise, she 

accepts it and computes 

( ) ( )AKABAAA tenccppsigt == ,  

sends Ac  to Bob. 

4. Bob utilizes K to decrypt Ac  to get .At  If At  is invalid, he refuses it and 

stops; otherwise, he accepts it. 

The basic lattice-based STS achieves forward secrecy [22] since the shared 

secret qAssK B
t
B mod=  is the ephemeral key. Signatures guarantee resisting key 

compromise impersonation [22] (since the adversary cannot know privates key of 

),, BA sigsig  thus revealing long-term key Ap  or Bp  does nothing for an adversary 

to forge a signature ( ).,not BA sigsig  

Encryption is necessary to prevent unknown key-share attacks [22]. Assume that 

there is no encryption involved in signatures. Since BA pp ,  are public keys and 

anyone can sign them with their own private signature keys. For an example, one 
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adversary Eve can replace ( )BAAA ppsigt =  with ( )BAEE ppsigt =  because 

Eve knows ., BA pp  As a result, Alice and Bob complete the basic lattice-based 

STS. However, Bob ensures that he shares qAssK B
t
B mod=  with Eve, but Alice 

believes that she shares qAssK B
t
B mod=  with Bob. (If Alice and Bob exchange 

BA pp ,  using their own certificates, Eve can still replace Alice’s certificate with 

Eve’s certificate). Although Eve can operate the attack, he can not know 

.mod qAssK B
t
B=  Therefore, without encryption involved with exchanged key 

,mod qAssK B
t
B=  our basic lattice-based STS suffers from unknown key-share 

attacks. 

If add Alice’s (Bob’s) identity ID (Alice) (ID (Bob)) to Bob’s (Alice’s) signature 

( ),AB sigsig  unknown key-share attacks can be avoided. Such protocol can achieve 

stronger entity authentication because ID (Alice) and ID (Bob) which are involved in 

signatures guarantee parties’ explicit indication. Obviously, it is not necessary for 

encryption involved in the protocol. Thus we get a modified lattice-based STS shown 

in Section 4.1. 

4. A Modified Lattice-Based STS (ML-STS) 

This is an AKE with certificate that is signatured by a Trust Authoritie (TA). 

Every user has a certificate, e.g., ( ) ( ( ) TAA sigverAliceIDAliceCert ,,=  

( )),, AverAlice where Aver  is Alice’s verification algorithm and her signature 

algorithm is denoted by ;Asig  ID(Alice) denotes Alice’s identification; TAsig  is 

TA’s signature algorithm. 

4.1. ML-STS Protocol 

First, the system selects a public matrix 
mm

qA
×← ZA  and a real .β  Assume that 

two participants, Alice and Bob, run the protocol honestly. 

1. Assume that Alice selects a secret key vector β≤← A
m

RA ss s.t.,,Z  and 
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generates { }t
n

t vvV ,,1 L=  which are linearly independent with rows vectors of A 

such that .mod0, qsv Ai >=<  Alice keeps As  secret and makes V public. She 

computes qsAp AA mod*=  and sends ( ( ) )ApAliceCert ,  to Bob. 

2. Bob selects a secret vector ,s.t.,, β≤← B
m

RB ss Z  generates =U  

{ }n
t uu ,,1 L  which are linearly independent with column vectors of A, such that 

,mod0, qsu Bi >=<  computes 

,mod,mod* qpsKqAsp A
t
B

t
BB ⋅==  

( ( ) )ABBB ppAliceIDsigt =  

and sends ( ( ) )BB tpBobCert ,,  to Alice. 

3. Alice utilizes Bver  to verify .Bt  If Bt  is invalid, Alice refuses and stops; 

otherwise, she accepts it and computes 

( ( ) )BAAAAB ppBobIDsigtqspK ,,,mod =⋅=  

sends At  to Bob. 

4. Bob utilizes Aver  to verify .At  If At  is invalid, he refuses and stops; 

otherwise, he accepts it. 

4.2. Security analysis 

ML-STS protocol can resist active attacks and passive attacks because signatures 

are involved in this protocol. 

Theorem 4.2.1. Our ML-STS protocol is secure against one passive adversary 

and one active adversary under the DBi-ISIS assumption. 

Proof. Assume that the adversary, Eve, intercepts Ap  and replaces it with .Ap′  

Then Eve gets Bp  and ( ( ) )ABBB ppAliceIDsigt ′=  and wants to replace Bp  

with ,Bp′  which implies that Eve must also replace ( ( ) )ABB ppAliceIDsig ′  with 
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( ( ) ).ABBB ppAliceIDsigt ′=  Unfortunately, Eve does not know Bob’ Bsig  so 

that he could not calculate the signature on ( ) .AB ppAliceID ′  Similarly, Eve does 

not know Alice’s Asig  so that he can not replace ( ( ) )BAA ppBobIDsig ′  with 

( ( ) ).BAA ppBobIDsig ′  In summary, the signature can prevent man-in the-middle 

attack. 

If one adversary is passive, the session will stop when Alice and Bob accept each 

other. Namely, the two parties successfully recognize each other and compute the 

session key K. Under the hardness of DBi-ISIS problem, one active adversary can get 

no information on key K. In short, an active adversary is detected and a passive 

adversary does nothing under the hardness of DBi-ISIS problem. 

Theorem 4.2.2. ML-STS protocol achieves implicit key authentication under the 

hardness of DBi-ISIS problem. 

Proof. Assume that Alice has accepted the protocol and the adversary is passive. 

Since ML-STS protocol is securely interactive, Alice can ensure that she really 

communicates with her intended participant: Bob. If Bob and Alice execute the 

protocol honestly, Alice can ensure that Bob computes a key K and no one can work 

out K except for Bob. 

Why Alice thought that Bob can work out K? Because Alice receives Bob’s 

signature on Ap  and ,Bp  thus Alice can infer that Bob knows ., BA pp  Assume 

that Bob executes honestly, then Alice can deduce that Bob knows .Bs  Thus if Bob 

knows ,, BA sp  then he can calculate K. 

Similarly, if Bob has already accepted it, then Bob can ensure that he 

communicates with his intended party: Alice, who can work out K and no one can 

work out K except for Alice. When Bob accepts it, he can ensure that honest Alice 

has already accepted it. But when Alice accepts it, she does not know whether honest 

Bob would accept it subsequently since Alice does not know whether Bob has 

received information from the last step of the session. 

In short, Alice and Bob cannot confirm whether the other party has worked out 

the session key K. 
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5. Conclusion 

In this paper, we first propose two simple lattice-based STS protocols which 

solely rely on the DBi-ISIS problem. The basic lattice-based STS utilizes signatures 

to achieve resistance to key compromise impersonation, perfect secrecy and prevent 

unknown key-share attacks with encryption. But the basic lattice-based STS cannot 

enjoy mutual key identification. ML-STS with signatures provides implicit key 

confirmation. Since all the calculation operations of the two lattice-based STS only 

depend on usual matrix-vector multiplication that they capture small calculation, 

better efficient implementations and great simplicity. 
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