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Abstract 

In this paper, we consider the asymptotic behavior of the solution of the 

new class of the nonlinear rational difference equations. We consider the 

local, global stability and boundedness of the solution. Moreover, we 

investigate the new periodic character of periodic two of solutions of these 

equations, which is not familiar. We do not know a similar approach of 

periodic for other class of the nonlinear rational difference equations. 

Moreover, we give some interesting counter examples in order to verify 

our strong results. 
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1. Introduction 

The difference equations describe real life situations in probability theory, 

statistical problems, queuing theory, electrical network, combinatorial analysis, 

sociology, psychology, genetics in biology, economics, etc., see, e.g., [13, 14]. There 

are many works about the global asymptotic of solutions of rational difference 

equations, [15-19] and references therein. It is very important to investigate the 

asymptotic behavior of solutions of a system of nonlinear difference equations and to 

discuss the boundedness, periodicity and stability (local and global) of their 

equilibrium points. 

El-Owaidy et al. [8] studied the asymptotic behavior of the difference equation 
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Elabbasy et al. [6] studied the behavior of solutions of a class of nonlinear rational 

difference equation 
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For more investigation of the asymptotic behaviour of solutions of rational difference 

equations, one can refer to [1-12] and references therein. 

In this paper, we consider analytical investigation of the solution of the following 

recursive sequence 
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where the initial conditions ,,,,, 011 xxxx rr −+−− …  { }klr ,max=  are arbitrary 

real numbers and α,,,, dcba  are constant real numbers. 

In this section, we present the basic definitions and theorems of our model, 

namely equilibrium points, local and global stability, boundedness, periodicity and 

the oscillation of the solution. 
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Definition 1.1 (Equilibrium point). Consider a difference equation in the form 

 ( ) ...,,2,1,0,,1 == −−+ nxxFx knlnn  (1.2) 

where F is a continuous function, while l and k are positive integers. A point x  is 

said to be an equilibrium point of the equation (1.1) if it is a fixed point of F, i.e., 

( )., xxFx =  

Definition 1.2 [16] (stability). Let ( )∞∈ ,0x  be an equilibrium point of 

equation (1.2). Then we have 

(a) Local stability 

An equilibrium point x  of equation (1.2) is said to be locally stable if for every 

0>ε  there exists 0>δ  such that, if ( )∞∈ν− ,0x  for r...,,1,0=ν  with 

,
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δ<−∑
=

−
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i xx  

then ε<−− xx n  for all .rn −≥  

(b) Global stability 

An equilibrium point x  of equation (1.2) is said to be a global attractor if for 

every ( )∞∈ν− ,0x  for ,...,,1,0 r=ν  we have 

.lim xxn
n

=
∞→

 

(c) Global asymptotic stability 

An equilibrium point x  of equation (1.2) is said to be globally asymptotically 

stable if it is locally stable and a global attractor. 

(d) Unstability 

An equilibrium point x  of equation (1.2) is said to be unstable if it is not locally 

stable. 

Definition 1.3 [16] (Periodicity). A sequence { }∞
−= rnnx  is said to be periodic 

with period t if ntn xx =+  for all .rn −≥  A sequence { }∞
−= rnnx  is said to be 
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periodic with prime period t if t is the smallest positive integer having this property. 

Definition 1.4 [16] (Boundedness). Equation (1.2) is called permanent and 

bounded if there exist numbers m and M with ∞<<< Mm0  such that for any 

initial conditions ( )∞∈ν− ,0x  for r...,,1,0=ν  there exists a positive integer N 

which depends on these initial conditions such that ∞<<< Mm0  for all .Nn ≥  

Definition 1.5 [16]. The linearized equation of equation (1.2) about the 

equilibrium point x  is defined by the linear difference equation 

 ,1101 nnn ycycy += −+  (1.3) 

where 

( )
.1,0,

,
=

∂

∂
=

−
i

x

xxF
c

in
i  

Theorem 1.1 [14]. Assume that ., 10 Rhh ∈  Then 

,110 <+ cc  

is a sufficient condition for the asymptotic stability of equation (1.2). 

The rest of the paper is organized as follows: In Section 2, we study the 

asymptotic behavior of the solution of the new class of the nonlinear rational 

difference equations. We present the local and global stability of the solution for 

equation (1.1) and give an interesting counter example to support our analysis. We 

also prove that the positive solution of equation (1.1) is bounded. In Section 3, we 

study the periodic behaviour of the solution for the equation (1.1). We also give two 

counter examples to show how our model is so rich. 

2. Dynamics of Equation (1.1) 

This section is concerned with the asymptotic behavior of the solution of the new 

class of the nonlinear rational difference equations, namely the local, global stability 

and boundedness of the solution. 

2.1. The stability of solutions 

Here we study the local stability of the equilibrium point of equation (1.1). The 
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positive equilibrium point of equation (1.1) is given by 
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Now, we define a continuous function ( ) ( )∞→∞ ,0,0:
2

h  such that 
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Therefore, it follows that 
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2.1.1. Local stability of equilibrium point 

Theorem 2.1. The positive equilibrium point of equation (1.1) is locally 

asymptotically stable if 

 ( ) ( ) ( ) .11 dcacacdca +<−α+−α−+  (2.4) 

Proof. From equations (2.2) and (2.3), we see that 

( )
,

1

,
u

xx

p
dc

a
ca

u

f
=

+

−
α−=

∂

∂
 

and 

( )
.

1

,
v

xx

p
dc

a
c

v

f
=

+

−
α=

∂

∂
 



MAHMOUD A. E. ABDELRAHMAN and O. MOAAZ 

 

64 

Thus, the linearized equation of (1.1) about the equilibrium point x  is the linear 

difference equation 

.1 lnvknun ypypy −−+ +=  

It is follows by Theorem 1.1 that, equation (1.1) is locally stable if 

1
11
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dc
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dc

a
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and so 

( ) ( ) ( ) .11 dcacacdca +<−α+−α−+  

Hence, the proof is complete. 

Remark 2.2. If 1<a  and ( ) ( ),1 acdca −α>+  then condition (2.4) holds. 

Also, if 1<a  and ( ) ( ),1 acdca −α<+  then condition (2.4) becomes ( )ac −α 12  

( )( ).1 adc ++<  On the other hand, if ,1>a  then condition (2.4) is not satisfied 

and hence the equilibrium point of equation (1.1) is unstable. 

Example 2.1. Consider the equation 
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We note that 1,4,5.0 ===α lk  and .1=δ  By Theorem 2.1, the positive 

equilibrium point 4142.1=x  is locally asymptotically stable. Also, let the equation 

 .
55

1
3

1

1
1 








+

−=
−

−
+

nn

n
nn xx

x
xx  (2.6) 

We note that 1,0,3 ===α lk  and .1−=δ  By Theorem 2.1, the positive 

equilibrium point 0058.0−=x  is locally asymptotically stable. On the other hand, 

consider 
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We note that the positive equilibrium point of those equations is unstable. 

2.1.2. Global attractivity of equilibrium point 

In this section, we investigate the global asymptotic stability of equation (1.1) 

when 1=α  or 2. 

Theorem 2.3. If 1−=δ  and ,1>a  then the equilibrium point x  is a global 

attractor of equation (1.1). 

Proof. By equations (2.2) and (2.3), we see that a function f defined as (1.2) is 

increasing in u and decreasing in v. Next, suppose that ( )Mm,  is a solution of the 

system 

( )Mmfm ,=    and   ( )., mMfM =  

Assume that .1=α  Thus, by equation (1.1), we find 
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(II) 

 

(III) 

Figure 1. The stable and unstable solutions corresponding to differences equations 

(2.5), (2.6) and (2.7), respectively. 

Hence 
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Then, we get .mM =  It follows by [14, Theorem 1.4.5] that x  is a global attractor 

of equation (1.1). In the case where ,2=α  from equation (1.1), we find 
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( ) ( ) ( )
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Then, we have .mM =  It follows by [14, Theorem 1.4.5] that x  is a global attractor 

of equation (1.1) and then the proof is completed. 

2.2. Boundedness of the solutions 

In this section, we investigate the boundedness of the positive solutions of 

equation (1.1). 

Theorem 2.4. Assume that 1=δ  and { }∞
−= tnnx  be a solution of equation (1.1) 

where { }.,max lkt =  Then { }∞
−= tnnx  is bounded if 1<a  and unbounded if .1>a  

Proof. Let { } { }
∞

−= lknnx ,max  be a solution of equation (1.1). It follows from 

equation (1.1) that 
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By using a comparison, we can write the right hand side as follows 
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and this equation is locally stable because 1<a  and converges to the equilibrium 

point 
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Therefore, we have 
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Hence { }∞
−= tnnx  is bounded. On the other hand, from (1.1), we see that 

.1 knn axx −+ >  If we set ,1 knn azz −+ =  then k

n
k

n zaz −
+= 1

1

 and nz  is unstable 

because .1>a  Therefore, ∞=∞→ nn xsuplim  and hence the proof is complete. 

3. Periodic Solution of Period Two 

The following theorem states the necessary and sufficient conditions that this 

equation has periodic solutions of prime period two. 

Theorem 3.1. Assume that k and l odd, .1−≠a  Then equation (1.1) has no a 

prime period two solution. 

Proof. Suppose that there exists a prime period two solution of equation (1.1) 

....,,,,..., qpqp  

Thus, from (1.1), we get that 
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which is a contradiction, and hence the proof is complete. 

Example 3.1. Consider the difference equation 
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with initial condition .9729.1,0979.2,9729.1,0979.2 4321 −==−== xxxx  

 

 

Figure 2. No prime and prime solutions corresponding to differences equations (3.1) 

and (3.2), respectively. 

Theorem 3.2. Assume that k and l are even. If ,1−=a  then equation (1.1) has 

a prime period two solution. 

Proof. Suppose that there exists a prime period two solution of equation (1.1) 

....,,,,..., qpqp  

Thus, from (1.1), we get that 
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Thus, we obtain 

( ) ,12
α









+
δ++=

dc

b
apap  

( ) .12
α









+
δ++=

dc

b
aqaq  

Let nqp =  and ,1,0 ±≠n  then, we get 

( ) ( ) ( ) .112
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dc
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By using the fact ,0=− nqp  we obtain 

( )( ) .011 =
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b
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Since 1≠n  and ,0≠b  we have that .1−=a  The proof is complete. 

Example 3.2. Consider the difference equation 
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with initial condition .0979.2,9729.1,0979.2 321 =−== xxx  

Remark 3.3. Note that, our results in this paper is extended and generalized 

results of Elabbasy et al. [6]. 

Remark 3.4. We can consider many of special cases (not been studied 

previously) for equation (1.1) as 
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