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Abstract

In this paper, we consider the asymptotic behavior of the solution of the
new class of the nonlinear rational difference equations. We consider the
local, global stability and boundedness of the solution. Moreover, we
investigate the new periodic character of periodic two of solutions of these
equations, which is not familiar. We do not know a similar approach of
periodic for other class of the nonlinear rational difference equations.
Moreover, we give some interesting counter examples in order to verify

our strong results.
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1. Introduction

The difference equations describe real life situations in probability theory,
statistical problems, queuing theory, electrical network, combinatorial analysis,
sociology, psychology, genetics in biology, economics, etc., see, e.g., [13, 14]. There
are many works about the global asymptotic of solutions of rational difference
equations, [15-19] and references therein. It is very important to investigate the
asymptotic behavior of solutions of a system of nonlinear difference equations and to
discuss the boundedness, periodicity and stability (local and global) of their

equilibrium points.

El-Owaidy et al. [8] studied the asymptotic behavior of the difference equation

p
-1

Xp41 = O+ o7 .
n

Elabbasy et al. [6] studied the behavior of solutions of a class of nonlinear rational

difference equation

)
an—l

VXn—s

Xptl = QX +

For more investigation of the asymptotic behaviour of solutions of rational difference

equations, one can refer to [1-12] and references therein.

In this paper, we consider analytical investigation of the solution of the following

recursive sequence

o — Dnet * (1.1)
Xpyl = AX,_ — .
n+l1 n—k xy_p +dx,_

where the initial conditions x_,, X_,,, ..., X_1, Xo, r = max{/, k} are arbitrary

real numbers and a, b, ¢, d, o0 are constant real numbers.

In this section, we present the basic definitions and theorems of our model,
namely equilibrium points, local and global stability, boundedness, periodicity and

the oscillation of the solution.



INVESTIGATION OF THE NEW CLASS OF THE NONLINEAR ... 61
Definition 1.1 (Equilibrium point). Consider a difference equation in the form
Xpe1 = F(x_ys i), n=0,1,2, .., (1.2)

where F' is a continuous function, while / and k are positive integers. A point x is
said to be an equilibrium point of the equation (1.1) if it is a fixed point of F, i.e.,
X = F(x, x).

Definition 1.2 [16] (stability). Let x € (0, ) be an equilibrium point of
equation (1.2). Then we have

(a) Local stability

An equilibrium point x of equation (1.2) is said to be locally stable if for every

€ > 0 there exists 8 > 0 such that, if x_, € (0, ) for v =0, 1, ..., r with

.
PUEFES{ES
i=0

then |x_, — x| < € forall n > —r.

(b) Global stability

An equilibrium point x of equation (1.2) is said to be a global attractor if for

every x_, € (0, «) for v =0, 1, ..., r, we have
lim x, = Xx.
n—soco

(c) Global asymptotic stability

An equilibrium point x of equation (1.2) is said to be globally asymptotically
stable if it is locally stable and a global attractor.

(d) Unstability

An equilibrium point x of equation (1.2) is said to be unstable if it is not locally
stable.

Definition 1.3 [16] (Periodicity). A sequence {x,},__, is said to be periodic

with period 7 if x,,, = x, for all n>-r. A sequence {x,} is said to be

(e}
n=-r
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periodic with prime period ¢ if ¢ is the smallest positive integer having this property.

Definition 1.4 [16] (Boundedness). Equation (1.2) is called permanent and
bounded if there exist numbers m and M with 0 < m < M < o such that for any
initial conditions x_,, € (0, ) for v =0, 1, ..., r there exists a positive integer N

which depends on these initial conditions such that 0 < m < M < o forall n > N.

Definition 1.5 [16]. The linearized equation of equation (1.2) about the

equilibrium point X is defined by the linear difference equation

Yn4l = €oYn-1 + C1Yn> (1.3)
where
¢ = —ag)(cx’ ¥) o1,

n—i
Theorem 1.1 [14]. Assume that hy, hy € R. Then
|col +er| <1,
is a sufficient condition for the asymptotic stability of equation (1.2).

The rest of the paper is organized as follows: In Section 2, we study the
asymptotic behavior of the solution of the new class of the nonlinear rational
difference equations. We present the local and global stability of the solution for
equation (1.1) and give an interesting counter example to support our analysis. We
also prove that the positive solution of equation (1.1) is bounded. In Section 3, we
study the periodic behaviour of the solution for the equation (1.1). We also give two

counter examples to show how our model is so rich.
2. Dynamics of Equation (1.1)

This section is concerned with the asymptotic behavior of the solution of the new
class of the nonlinear rational difference equations, namely the local, global stability

and boundedness of the solution.
2.1. The stability of solutions

Here we study the local stability of the equilibrium point of equation (1.1). The
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positive equilibrium point of equation (1.1) is given by

R ( b )0‘
T l-—al\c+d)

Now, we define a continuous function # : (0, «)> — (0, =) such that

cu + dv

f(u,v)zau+5( by )a. Q2.1

Therefore, it follows that

o—1
a—f(u,v)=a+5(x( bv ) —cby
u

cu +dv (cu + dv)2
c by o
=a-d cu+dv(cu+dv) (2.2)

and

a—1
g_j; (. v) = 80(( by ) b(cu + dv) — dbv

cu +dv (cu + dv)2
cu bv o
= % v(cu + dv) (cu + dv) ' (2:3)

2.1.1. Local stability of equilibrium point

Theorem 2.1. The positive equilibrium point of equation (1.1) is locally
asymptotically stable if

la(c +d) - coll — a)| +|ca(l —a) < ¢ +d. 2.4)

Proof. From equations (2.2) and (2.3), we see that

ai =a—c(x1_a=p
aM(E’E) c+d u
and
of _ l-a _
v (%,%) = c+d = Py
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Thus, the linearized equation of (1.1) about the equilibrium point x is the linear

difference equation
Yn+1 = PuYn-k + PvYn-1-

It is follows by Theorem 1.1 that, equation (1.1) is locally stable if

|<1

col

_a|+
+d|

1
[Pl +|py] =|a - co=

and so
la(c + d) — call = a) +|coll — a)| < ¢ +d.
Hence, the proof is complete.

Remark 2.2. If a <1 and a(c+d) > ca(l — a), then condition (2.4) holds.
Also, if a <1 and a(c +d) < ca(l — a), then condition (2.4) becomes 2co(l — a)
< (c+d)(1+ a). On the other hand, if a > 1, then condition (2.4) is not satisfied

and hence the equilibrium point of equation (1.1) is unstable.

Example 2.1. Consider the equation

1 X 1 1/2
= _ —n=l
An+l = 2 Xp—gq + (xn—4 T xn—lj . 2.5)

We note that o =0.5,k=4,1=1 and & =1. By Theorem 2.1, the positive
equilibrium point x = 1.4142 is locally asymptotically stable. Also, let the equation

3
1 Xn—1
=—Xx,—|— - 2.6
s 5 xn (xn + an—lj 20

We note that o =3,k=0,1=1 and & =-1. By Theorem 2.1, the positive

equilibrium point x = —0.0058 is locally asymptotically stable. On the other hand,

consider

Xn—1
Xp+1 = llxn +#. 2.7
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We note that the positive equilibrium point of those equations is unstable.
2.1.2. Global attractivity of equilibrium point

In this section, we investigate the global asymptotic stability of equation (1.1)

when o =1 or 2.

Theorem 2.3. If 0 = —1 and a > 1, then the equilibrium point X is a global

attractor of equation (1.1).

Proof. By equations (2.2) and (2.3), we see that a function f defined as (1.2) is

increasing in u and decreasing in v. Next, suppose that (m, M) is a solution of the

system
m= f(m,M) and M = f(M, m).
Assume that o = 1. Thus, by equation (1.1), we find

__bM
cm + dM

bm

d l-aM =———.
and (1 - a) cM + dm

1-a)m=

¥4y =05 w(n-d)Hnfe {4+l 1)
3 T T T T T

e L
——-Equlibrurn points
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=02 x(n)+(x(n-1)J(x(n)+x(n-1)))3‘
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Figure 1. The stable and unstable solutions corresponding to differences equations
(2.5), (2.6) and (2.7), respectively.

Hence

(M—m)((l—a)— 5 bg(Mer)z 2j=0.
M “cd + Mc“m + Md“m + cdm

Then, we get M = m. It follows by [14, Theorem 1.4.5] that x is a global attractor

of equation (1.1). In the case where o = 2, from equation (1.1), we find

M 2 bm )2
(I=aym = ‘(mj and (1 - a)M = ‘(mj :

Hence
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(M _m)((l_a)_bzc(M + m) eM? + 2dMm + cm? \J =0

(M%cd + Mc*m + Md*m + cdm® )?

Then, we have M = m. It follows by [14, Theorem 1.4.5] that x is a global attractor

of equation (1.1) and then the proof is completed.
2.2. Boundedness of the solutions

In this section, we investigate the boundedness of the positive solutions of

equation (1.1).

Theorem 2.4. Assume that 8 =1 and {x,},__, be a solution of equation (1.1)

where t = maxik, l}. Then {x,},__. is bounded if a <1 and unbounded if a > 1.

n=—t

Proof. Let {x, }:::—max{k,l} be a solution of equation (1.1). It follows from

equation (1.1) that

o

+ bxn—l
X =dax,_ e ——
n+l n—k X +dxn—l

o
<ax,_j + (g) .

By using a comparison, we can write the right hand side as follows

b\
Y+l = WAp—k +(E) .

Then, we obtain

1
" 1 (b\*
— S k+1 =
Yn a y—k+(1_a)(dj

and this equation is locally stable because a <1 and converges to the equilibrium

-rali)

point
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Therefore, we have

. 1 (b)*
hmsup Xy, Sm(gj .

n—oo

Hence {x,},__, is bounded. On the other hand, from (1.1), we see that

-
L,
Xy41 > ax,_g. If we set z,., = az,_i, then z, =ak*! z_; and z, is unstable

because a > 1. Therefore, limsup,,_,., X, = o and hence the proof is complete.
3. Periodic Solution of Period Two
The following theorem states the necessary and sufficient conditions that this

equation has periodic solutions of prime period two.

Theorem 3.1. Assume that k and | odd, a # —1. Then equation (1.1) has no a

prime period two solution.
Proof. Suppose that there exists a prime period two solution of equation (1.1)
s Dy G5 D5 G ..

Thus, from (1.1), we get that

(1—a)p:5(L)a and (1—a)q=5( b )a.

c+d c+d

Let p = ng and n # 0, + 1, then, we get

1-a)p-na) = (1-md 2|

c+d
=0
which is a contradiction, and hence the proof is complete.

Example 3.1. Consider the difference equation

3

P

Xpat = —2%,_4 + (—x 4”+i 2) 3.1
n— n—



INVESTIGATION OF THE NEW CLASS OF THE NONLINEAR ... 69
with initial condition x; = 2.0979, x, = -1.9729, x3 = 2.0979, x4 = —1.9729.

«10" xn+1:—2x(n73)+(n(n—1)f(x(n73)+x(n—1)))3
5 T T T T T T T
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Figure 2. No prime and prime solutions corresponding to differences equations (3.1)

and (3.2), respectively.

Theorem 3.2. Assume that k and | are even. If a = —1, then equation (1.1) has

a prime period two solution.
Proof. Suppose that there exists a prime period two solution of equation (1.1)
s Dy G5 Ps G e

Thus, from (1.1), we get that

b \* b \*
p=aq+5(m) and q=ap+5(c+dj.
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Thus, we obtain

p=a2p+(a+1)5( b )Ot
c+d)”’

q=a2q+(a+1)5( b )0‘
c+d)

Let p = ng and n # 0, + 1, then, we get

P—nq=az(p—nq)+(1—n)(a+1)8(cfd)u.

By using the fact p — ng = 0, we obtain

(1= n)a + 1)5(L)u 0.

c+d
Since n # 1 and b # 0, we have that a = —1. The proof is complete.

Example 3.2. Consider the difference equation

3
Xppl = —Xp_3 + (L)
n+l — n—
Xp—3 + Xp—1

with initial condition x; = 2.0979, x, = —1.9729, x3 = 2.0979.

3.2)

Remark 3.3. Note that, our results in this paper is extended and generalized

results of Elabbasy et al. [6].

Remark 3.4. We can consider many of special cases (not been studied

previously) for equation (1.1) as

bxn—l
Xpql = ,
ntl CXpy_g +dx,_;

bxn—l

X =ax,_j + 8—
n+l n—k Xy s +dxn—l
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