Fundamental Journal of Mathematics and Mathematical Sciences Vol. 7, Issue 1, 2017, Pages 1-13 This paper is available online at http://www.frdint.com/ Published online December 24, 2016

INFINITELY MANY NEW CHARACTERIZATIONS OF T_i ; i = 0, 1, 2, **METRIZABLE, PSEUDOMETRIZABLE,** R_i ; i = 0, 1, **AND** T_0 -**IDENTIFICATION** *P* **PROPERTIES**

CHARLES DORSETT

Department of Mathematics Texas A&M University-Commerce Commerce, Texas 75429 USA e-mail: charles.dorsett@tamuc.edu

Abstract

Within this paper, T_0 -identification spaces are used to give infinitely many new characterizations of T_0 , T_1 , T_2 , metrizable, R_0 , R_1 , pseudometrizable, and T_0 -identification *P* properties.

1. Introduction and Preliminaries

In 1936 [7], T_0 -identification spaces were introduced and used to further characterize the metric property.

Definition 1.1. Let (X, T) be a space, let *R* be the equivalence relation on *X* defined by xRy iff $Cl(\{x\}) = Cl(\{y\})$, let X_0 be the set of *R* equivalence classes of *X*, let $N : X \to X_0$ be the natural map, and let Q(X, T) be the decomposition topology on X_0 determined by (X, T) and the natural map *N*. Then

© 2017 Fundamental Research and Development International

Keywords and phrases: lower separation axioms, metrizable, T_0 -identification properties.

²⁰¹⁰ Mathematics Subject Classification: 54D10, 54D15, 54C05.

Received December 2, 2016; Accepted December 17, 2016

 $(X_0, Q(X, T))$ is the T_0 -identification space of (X, T).

Theorem 1.1. A space is pseudometrizable iff its T_0 -identification space is metrizable.

Within the 1936 paper [7], it was shown that for a space, its T_0 -identification space is T_0 . Further investigation of T_0 -identification spaces [2] established that a space is T_0 iff it is homeomorphic to its T_0 -identification space.

In 1975 [5], T_0 -identification spaces and the R_1 separation axiom were used to further characterize T_2 .

Theorem 1.2. A space is R_1 iff its T_0 -identification space is T_2 .

The R_1 separation axiom was introduced in 1961 [1] and used to further characterize T_2 ; and the R_0 separation axiom was revisited and used to further characterize T_1 .

Definition 1.2. A space (X, T) is R_1 iff for x and y in X such that $Cl(\{x\}) \neq Cl(\{y\})$, there exist disjoint open sets U and V such that $x \in U$ and $y \in V$.

Definition 1.3. A space (X, T) is R_0 iff for each closed set C and each $x \notin C$, $C \cap Cl(\{x\}) = \phi$ [6].

Theorem 1.3. A space is T_i iff it is $(T_{i-1} \text{ and } R_{i-1})$; i = 1, 2, respectively.

The use of T_0 -identification spaces in the characterizations of metrizable and T_2 raised the question of whether other topological properties could, in similar manner, be characterized using T_0 -identification spaces, leading to the introduction and investigation of weakly *P*o spaces and properties [3].

Definition 1.4. Let *P* be a topological property for which $Po = (P \text{ and } T_0)$ exists. Then (X, T) is weakly *Po* iff its T_0 -identification space $(X_0, Q(X, T))$ has property *P*. A topological property *Qo* for which weakly *Qo* exists is called a weakly *Po* property.

The two models motivating the definition of weakly *P*o spaces and properties are, in fact, weakly *P*o spaces and properties with weakly metrizable = weakly (pseudometrizable)o = pseudometrizable and weakly T_2 = weakly (R_1)o = R_1 [3]. Thus metrizable was the first known weakly *P*o property and T_2 was the second known weakly *P*o property.

Within the paper [3], it was shown that for a weakly P_0 property Q_0 , a space is weakly Q_0 iff its T_0 -identification space is Q_0 ; a space is weakly Q_0 iff its T_0 identification space is weakly Q_0 ; and that T_1 is a weakly P_0 property with weakly T_1 = weakly (R_0) $_0 = R_0$. The fact that there are topological properties simultaneously shared by both a space and its T_0 -identification space, as in the case of weakly P_0 , motivated the introduction and investigation of T_0 -identification Pproperties [4].

Definition 1.5. Let *S* be a topological property. Then *S* is a T_0 -identification *P* property iff both a space and its T_0 -identification space simultaneously share property *S*.

Within the introductory T_0 -identification P property paper [4], it was established that a topological property W is a T_0 -identification P property iff W = weakly Wo.

Below established properties of T_0 -identification spaces and T_0 -identification *P* properties are used to give infinitely many new characterizations of T_0 , T_1 , T_2 , metrizable, pseudometrizable, R_0 , R_1 , and T_0 -identification *P* properties.

2. Infinitely Many New Characterizations of T₀

Definition 2.1. Let (X, T) be a topological space, let $(X_1, Q_1(X, T))$ be the T_0 -identification space of (X, T), for each natural number $n \ge 2$, let $(X_n, Q_n(X, T))$ be the T_0 -identification space of the space $(X_{n-1}, Q_{n-1}(X, T))$, and let $(\mathcal{X}, \mathcal{T}) = \{(X, T)\} \cup \{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}.$

CHARLES DORSETT

Within this paper, the notation given in Definition 2.1 will be repeatedly used.

Theorem 2.1. Let (X, T) be a space. Then the following are equivalent: (a) (X, T) is T_0 , (b) for each natural number n, $(X_n, Q_n(X, T))$ is homeomorphic to (X, T), (c) for some natural number p, (X, T) is homeomorphic to $(X_p, Q_p(X, T))$, (d) each element in (\mathcal{X}, T) is T_0 and all elements of (\mathcal{X}, T) are topologically equivalent, (e) each element of (\mathcal{X}, T) is T_0 , (f) all the elements of (\mathcal{X}, T) are homeomorphic and, thus, all the elements of (\mathcal{X}, T) are topologically equivalent, and (g) for a fixed natural number p, $(X_p, Q_p(X, T))$ is homeomorphic to (X, T).

Proof. (a) implies (b): Since (X, T) is T_0 , then, by the result above, (X, T)and $(X_1, Q_1(X, T))$ are homeomorphic. Thus the statement is true for n = 1. Assume the statement is true for n = k; k a natural number, $k \ge 1$. Since (X, T) is T_0 and (X, T) is homeomorphic to $(X_k, Q_k(X, T))$, then $(X_k, Q_k(X, T))$ is T_0 , and by the result above, $(X_k, Q_k(X, T))$ is homeomorphic to its T_0 identification space $(X_{k+1}, Q_{k+1}(X, T))$. Hence (X, T) is homeomorphic to $(X_{k+1}, Q_{k+1}(X, T))$. Thus, if the statement is true for n = k, it is true for n = k + 1. Therefore, by mathematical induction, the statement is true for each natural number n.

Clearly, (b) implies (c).

(c) implies (d): Let p be a natural number such that (X, T) is homeomorphic to $(X_p, Q_p(X, T))$. If p = 1, then, by the result above, (X, T) is T_0 . Thus consider the case that p > 1. Then $(X_{p-1}, Q_{p-1}(X, T))$ is a space and $(X_p, Q_p(X, T))$ is the T_0 -identification space of $(X_{p-1}, Q_{p-1}(X, T))$, which implies $(X_p, Q_p(X, T))$ is T_0 . Since T_0 is a topological property, (X, T) is T_0 . Let m and n be natural numbers. Since (X, T) is T_0 , then, by the argument above, $(X_m, Q_m(X, T))$ is homeomorphic to (X, T) and, since T_0 is a topological property, $(X_m, Q_m(X, T))$ is T_0 . Thus each element of $(\mathcal{X}, \mathcal{T})$ is T_0 and is

homeomorphic to (X, T). Hence, for the natural number n, $(X_n, Q_n(X, T))$ is homeomorphic to (X, T). Thus $(X_m, Q_m(X, T))$ is homeomorphic to (X, T) and (X, T) is homeomorphic to $(X_n, Q_n(X, T))$, which implies $(X_m, Q_m(X, T))$ and $(X_n, Q_n(X, T))$ are homeomorphic and hence topologically equivalent.

Clearly (d) implies (e).

(e) implies (f): Since $(X, T) \in (\mathcal{X}, \mathcal{T})$, then (X, T) is T_0 and, by the arguments above, all elements of $(\mathcal{X}, \mathcal{T})$ are topologically equivalent.

(f) implies (g): Since $(X_1, Q_1(X, T))$ is T_0 and in $(\mathcal{X}, \mathcal{T})$, $(X, T) \in (\mathcal{X}, \mathcal{T})$, and all elements of $(\mathcal{X}, \mathcal{T})$ are topologically equivalent, then (X, T) is T_0 . Let pbe a fixed natural number. Then, by the argument above, $(X_p, Q_p(X, T))$ is homeomorphic to (X, T).

(g) implies (a): Let p be a natural number such that $(X_p, Q_p(X, T))$ is homeomorphic to (X, T). Then for some natural number n, $(X_n, Q_n(X, T))$ is homeomorphic to (X, T) and, by the arguments above, (X, T) is T_0 .

Theorem 2.2. Let (X, T) be a space. Then each element of $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}$ is T_0 and all elements of $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}$ are topologically equivalent.

Proof. Let $Y = X_1$ and let $S = Q_1(X, T)$ and for all $n \ge 1$, let $(Y_n, Q_n(Y, S)) = (X_{n+1}, Q_{n+1}(X, T))$. Then $(Y_1, Q_1(Y, S)) = (X_2, Q_2(X, T))$ is the T_0 -identification space of $(X_1, Q_1(X, T)) = (Y, S)$, which is T_0 , and for $n \ge 2$, $(Y_n, Q_n(Y, S)) = (X_{n+1}, Q_{n+1}(X, T))$ is the T_0 -identification space of $(X_n, Q_n(X, T)) = (Y_{n-1}, Q_{n-1}(Y, S))$. Thus $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\} = (\mathcal{Y}, S)$ and, by Theorem 2.1, for each $n \ge 1$, $(X_n, Q_n(X, T))$ is T_0 and all elements of $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}$ are topologically equivalent.

CHARLES DORSETT

3. Infinitely Many Characterizations of the Remaining Properties

Theorem 3.1. Let (X, T) be a space and let Q be a T_0 -identification P property. Then the following are equivalent: (a) (X, T) has property Q, (b) for each natural number n, $(X_n, Q_n(X, T))$ has property Q and all elements of $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}$ are topologically equivalent, (c) for each natural number n, $(X_n, Q_n(X, T))$ has property Q, (d) for a fixed natural number p, $(X_p, Q_p(X, T))$ has property Q, (e) there exists a natural number p such that $(X_p, Q_p(X, T))$ has property Q, (f) all elements of (\mathcal{X}, T) have property Q, (g) there is an element of $(\mathcal{X}, \mathcal{T})$ with property Q, (h) there exists a natural number p such that $(X_p, Q_p(X, T))$ has property Qo, (i) there exists a natural number p such that $(X_p, Q_p(X, T))$ has property Qo and all elements of $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}\$ are topologically equivalent, (j) for a fixed natural number p, $(X_p, Q_p(X, T))$ has property Qo, (k) for each natural number n, $(X_n, Q_n(X, T))$ has property weakly Qo and all elements of $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}\$ are topologically equivalent, (1) there exists a natural number p such that $(X_p, Q_p(X, T))$ is weakly Qo and all elements in $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}$ are topologically equivalent, (m) there exists a natural number p such that $(X_p, Q_p(X, T))$ is weakly Qo, (n) for a fixed natural number p, $(X_p, Q_p(X, T))$ has property weakly Qo, and (o) all elements of $(\mathcal{X}, \mathcal{T})$ have property weakly Qo.

Proof. (a) implies (b): Since Q is a T_0 -identification P property and (X, T) has property Q, then $(X_1, Q_1(X, T))$ has property Q. By Theorem 2.2, all elements of $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}$ are topologically equivalent and, since $(X_1, Q_1(X, T))$ has topological property Q, then all elements of $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}$ have property Q.

Clearly (b) implies (c), (c) implies (d), and (d) implies (e).

(e) implies (f): Let p be a natural number such that $(X_p, Q_p(X, T))$ has

property Q. By Theorem 2.2, all elements of $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}$ are topologically equivalent and, since Q is a topological property, all elements of $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}$ have property Q. Thus $(X_1, Q_1(X, T))$ has property Q and, since Q is a T_0 -identification P property, (X, T) has property Q. Hence all elements of $(\mathcal{X}, \mathcal{T})$ have property Q.

Clearly (f) implies (g).

(g) implies (h): If (X, T) has property Q, then, since Q is a T_0 -identification P property, $(X_1, Q_1(X, T))$ has property Q. Thus, in either case, there exists a natural number p such that $(X_p, Q_p(X, T))$ has property Q. Since $(X_p, Q_p(X, T))$ is T_0 and has property Q, then $(X_p, Q_p(X, T))$ has property Q_0 .

Clearly, by use of Theorem 2.2, (h) implies (i).

(i) implies (j): By Theorem 2.2, all elements of $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}$ has property Q_0 . Thus, for a fixed natural number p, $(X_p, Q_p(X, T))$ has property Q_0 .

(j) implies (k): Let p be a fixed natural number such that $(X_p, Q_p(X, T))$ has property Qo. Since all the elements of $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}$ are homeomorphic and Qo is a topological property, then $(X_1, Q_1(X, T))$ is Qo and, thus equivalently, Q. Since Q is a T_0 -identification P property, then Q =weakly Qo and $(X_1, Q_1(X, T))$ is weakly Qo, and, since weakly Qo is a topological property [3], for each natural number n, $(X_n, Q_n(X, T))$ has property weakly Qo.

Clearly (k) implies (l) and (l) implies (m).

(m) implies (n): Let p be a natural number such that $(X_p, Q_p(X, T))$ has property weakly Qo. Since, by Theorem 2.2, all elements of $\{(X_n, Q_n(X, T)) | n \text{ is a}$ a natural number} are homeomorphic, then all elements of $\{(X_n, Q_n(X, T)) | n \text{ is a}$ natural number} are weakly Qo. Thus, for a fixed natural number q, $(X_q, Q_q(X, T))$ has property weakly Qo.

(n) implies (o): Let p be a fixed natural number such that $(X_p, Q_p(X, T))$ has property weakly Qo. Since all elements of $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}$ are homeomorphic, then all elements of $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}$ have property weakly Qo. Hence $(X_1, Q_1(X, T))$ is weakly Qo and, since Q is a T_0 -identification property, then Q = weakly Qo and $(X_1, Q_1(X, T))$ has property Q, which implies (X, T) has property Q = weakly Qo and thus, all elements of (X, T) have property weakly Qo.

Clearly, since Q = weakly Qo, (a) follows immediately from (o).

Combining Theorem 3.1 with the facts that R_0 = weakly (R_0)o = weakly T_1 , R_1 = weakly (R_1)o = weakly T_2 , and pseudometrizable = weakly (pseudometrizable)o = weakly (metrizable) are T_0 -identification P properties gives the following infinite new characterizations for each of R_0 , R_1 , and pseudometrizable.

Corollary 3.1. Let (X, T) be a space. Then the following are equivalent: (a) (X, T) has property R_0 , (b) for each natural number n, $(X_n, Q_n(X, T))$ has property R_0 and all elements of $\{(X_n, Q_n(X, T))|n$ is a natural number $\}$ are topologically equivalent, (c) for each natural number n, $(X_n, Q_n(X, T))$ has property R_0 , (d) for a fixed natural number p, $(X_p, Q_p(X, T))$ has property R_0 , (e) there exists a natural number p such that $(X_p, Q_p(X, T))$ has property R_0 , (f) all elements of (X, T) have property R_0 , (g) there is an element of (X, T) with property R_0 , (h) there exists a natural number p such that $(X_p, Q_p(X, T))$ has property $(R_0)o = T_1$, (i) there exists a natural number p such that $(X_p, Q_p(X, T))$ has property $(R_0)o = T_1$ and all elements of $\{(X_n, Q_n(X, T))|n$ is a natural number $\}$ are topologically equivalent, (j) for a fixed natural number p, $(X_p, Q_p(X, T))$ has property $(R_0)o = T_1$, (k) for each natural number p, $(X_p, Q_p(X, T))$ has property $(R_0)o = T_1$, (k) for each natural number p, $(X_p, Q_p(X, T))$ has property $(R_0)o = T_1$, (k) for each natural number p, $(X_p, Q_p(X, T))$ has property $(R_0)o = T_1$, (k) for each natural number p, $(X_p, Q_p(X, T))$ has property $(R_0)o = T_1$, (k) for each natural number p, $(X_p, Q_p(X, T))$ has property $(R_0)o = T_1$, (k) for each natural number p, $(X_p, Q_p(X, T))$ has property $(R_0)o = T_1$, (k) for each natural number p, $(X_p, Q_p(X, T))$ has property $(R_0)o = T_1$, (k) for each natural number p, $(X_p, Q_p(X, T))$ has property $(R_0)o = T_1$, (k) for each natural number p, $(X_p, Q_p(X, T))$ has property $(R_0)o = T_1$, (k) for each natural number p, $(X_p, Q_p(X, T))$ has property $(R_0)o = T_1$, (k) for each natural number p, $(X_p, Q_p(X, T))$ has property $(R_0)o = T_1$.

natural number n, $(X_n, Q_n(X, T))$ has property weakly (R_0) o and all elements of $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}$ are topologically equivalent, (1) there exists a natural number p such that $(X_p, Q_p(X, T))$ is weakly Qo and all elements in $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}$ are topologically equivalent, (m) there exists a natural number p such that $(X_p, Q_p(X, T))$ is weakly (R_0) o, (n) for a fixed natural number p, $(X_p, Q_p(X, T))$ has property weakly (R_0) o, and (o) all elements of $(\mathcal{X}, \mathcal{T})$ have property weakly (R_0) o.

In like manner, replacing R_0 by R_1 , T_1 by T_2 , and weakly (R_0) o by weakly (R_1) o in Corollary 3.1 gives infinitely many new characterizations of R_1 and replacing R_0 by pseudometrizable, T_1 by metrizable, and weakly (R_0) o by weakly (pseudometrizable) o in Corollary 3.1 gives infinitely many new characterizations of pseudometrizable.

Theorem 3.2. Let (X, T) be a space and let Q be a T_0 -identification Pproperty. Then the following are equivalent: (a) (X, T) has property Q_0 , (b) all the elements in (X, T) have property Q_0 , (c) (X, T) is T_0 and all elements in $\{(X_n, Q_n(X, T))|n$ is a natural number $\}$ have property Q_0 , (d) (X, T) is T_0 and for each natural number n, $(X_n, Q_n(X, T))$) has property Q, (e) (X, T) is T_0 and for each natural number n, $(X_n, Q_n(X, T))$) has property weakly Q_0 , (f) (X, T) is T_0 and there exists a natural number p such that $(X_p, Q_p(X, T))$ has property weakly Q_0 , (g) (X, T) is T_0 and for a fixed natural number p, $(X_p, Q_p(X, T))$ has property weakly Q_0 , (h) (X, T) is T_0 and for a fixed natural number p, $(X_p, Q_p(X, T))$ has property Q_0 , (i) (X, T) has property Q_0 , (j) (X, T) is T_0 and there exists a natural number p such that $(X_p, Q_p(X, T))$ has property Q_0 , (k) (X, T) has property T_0 and for a fixed natural number p, $(X_p, Q_p(X, T))$ has property Q_0 , (l) (X, T) has property Q, (i) (X, T) is T_0 and there exists a natural number p such that $(X_p, Q_p(X, T))$ has property Q_0 , (k) (X, T) has property T_0 and for a fixed natural number p, $(X_p, Q_p(X, T))$ has property Q_0 , (l) (X, T) has property Q and is homeomorphic to all elements of $\{(X_n, Q_n(X, T))|n$ is a natural number $\}$, (m) (X, T) has property Q and for a fixed natural number p, (X, T) is homeomorphic to $(X_p, Q_p(X, T))$, (n) (X, T) has property Q and there exists a natural number p such that (X, T) is homepmorphic to $(X_p, Q_p(X, T))$, (o) (X, T) has property weakly Qo and there exists a natural number p such that (X, T) is homeomorphic to $(X_p, Q_p(X, T))$, (p) (X, T) has property weakly Qo and for a fixed natural number p, (X, T) is homeomorphic to $(X_p, Q_p(X, T))$, and (q) (X, T) is weakly Qo and is topologically equivalent to all the elements of $\{(X_n, Q_n(X, T))| n \text{ is a natural number}\}.$

Proof. (a) implies (b): Since (X, T) is T_0 , then all elements of $(\mathcal{X}, \mathcal{T})$ are topologically equivalent and, since (X, T) has property Q_0 , then all elements of $(\mathcal{X}, \mathcal{T})$ have property Q_0 .

(b) implies (c): Since $(X, T) \in (\mathcal{X}, \mathcal{T})$, then (X, T) is T_0 and, since $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\} \subseteq (\mathcal{X}, \mathcal{T})$, then the remainder of the statement is true.

Since Qo implies Q, then (d) follows immediately from (c), since Q is a T_0 -identification P property, Q = weakly Qo and (e) follows immediately from (d), and clearly, (f) follows immediately from (e).

(f) implies (g): Let p be a fixed natural number. Since all elements of $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}$ are topologically equivalent and there exists a natural number q such that $(X_q, Q_q(X, T))$ has property weakly Qo, then $(X_p, Q_p(X, T))$ has property weakly Qo.

Since Q = weakly Qo, then (h) follows immediately from (g) and, clearly, (i) follows immediately from (h).

(i) implies (j): Let p be a natural number such that $(X_p, Q_p(X, T))$ has property Q. Since $(X_p, Q_p(X, T))$ is T_0 , then $(X_p, Q_p(X, T))$ has property Qo.

(j) implies (k): Since all elements of $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}$

are topologically equivalent and there exists a natural number q such that $(X_q, Q_q(X, T))$ is Q_0 , then for a fixed natural number p, $(X_p, Q_p(X, T))$ has property Q_0 .

(k) implies (l): Since (X, T) is T_0 , then all elements of $(\mathcal{X}, \mathcal{T})$ are topologically equivalent and since for a fixed natural number p, $(X_p, Q_p(X, T))$ has property Q_0 , then (X, T) has property Q_0 , which implies (X, T) has property Q_0 .

Clearly, (l) implies (m) and (m) implies (n).

Since Q is a T_0 -identification P property, Q = weakly Q_0 and (o) follows immediately from (n).

(o) implies (p): Let q be a natural number such that (X, T) is homeomorphic to $(X_q, Q_q(X, T))$. Let p be a fixed natural number. Since all element of $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}$ are topologically equivalent, then $(X_q, Q_q(X, T))$ and $(X_p, Q_p(X, T))$ are homeomorphic. Hence, (X, T) is homeomorphic to $(X_p, Q_p(X, T))$.

(p) implies (q): Since 1 is a fixed natural number, (X, T) is homeomorphic to $(X_1, Q_1(X, T))$. Let p be a natural number. Since all elements of $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}$ are topologically equivalent, then $(X_1, Q_1(X, T))$ is homeomorphic to $(X_p, Q_p(X, T))$ and, thus, (X, T) and $(X_p, Q_p(X, T))$ are topologically equivalent.

(q) implies (a): Since Q = weakly Qo, then (X, T) has property Q and since (X, T) is homeomorphic to $(X_1, Q_1(X, T))$, which is T_0 , then (X, T) has property Qo.

Since R_0 is a T_0 -identification *P* property and $(R_0)o = T_1$, the next result follows immediately from Theorem 3.2.

Corollary 3.2. Let (X, T) be a space. Then the following are equivalent: (a)

(X, T) is T_1 , (b) all elements of $(\mathcal{X}, \mathcal{T})$ are T_1 , (c) (X, T) is T_0 and all elements of $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}$ has property T_1 , (d) (X, T) is T_0 and for each natural number n, $(X_n, Q_n(X, T))$ has property R_0 , (e) (X, T) is T_0 and for each natural number n, $(X_n, Q_n(X, T))$ has property weakly (R_0) o, (f) (X, T) is T_0 and there exists a natural number p such that $(X_p, Q_p(X, T))$ has property weakly $(R_0)o$, (g)(X, T) is T_0 and for a fixed natural number p, $(X_p, Q_p(X, T))$ has property weakly (R_0) o, (h) (X, T) is T_0 and for a fixed natural number p, $(X_p, Q_p(X, T))$ has property R_0 , (i) (X, T) is T_0 and there exists a natural number p such that $(X_p, Q_p(X, T))$ has property R_0 , (j) (X, T)is T_0 and there exists a natural number p such that $(X_p, Q_p(X, T))$ has property T_1 , (k) (X, T) is T_0 and for a fixed natural number p, $(X_p, Q_p(X, T))$ has property T_1 , (1) (X, T) is R_0 and is homeomorphic to all elements of $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}, (m) (X, T) \text{ has property } R_0 \text{ and for a }$ fixed natural number p, (X, T) is homeomorphic to $(X_p, Q_p(X, T))$, (n) (X, T)has property R_0 and there exists a natural number p such that (X, T) is homeomorphic to $(X_p, Q_p(X, T))$, (o) (X, T) has property weakly (R_0) o and there exists a natural number p such that (X, T) is homeomorphic to $(X_p, Q_p(X, T))$, (p) (X, T) has property weakly (R_0) o and for a fixed natural number p, (X, T) is homeomorphic to $(X_p, Q_p(X, T))$, and (q) (X, T) has property weakly (R_0) o and is topologically equivalent to all the elements of $\{(X_n, Q_n(X, T)) | n \text{ is a natural number}\}.$

In a similar manner, using the fact that R_1 is a T_0 -identification P property and R_1 = weakly (R_1) o = weakly T_2 , Theorem 3.2 can be used to give infinitely many new characterizations of T_2 . Additionally, infinitely many more new characterizations of T_2 can be given by replacing each statement "(X, T) is T_0 " by "(X, T) is T_1 ".

Likewise, the fact that pseudometrizable is a T_0 -identification P property and

pseudometrizable = weakly (pseudometrizable)o = weakly (metrizable) can be used to give infinitely many more characterizations of metrizable. Infinitely many more characterizations of metrizable can be obtained by replacing each statement "(X, T)is T_0 " by "(X, T) is T_1 ", then by "(X, T) is T_2 ", and any statement "(X, T) has property P", where P is any other property stronger than T_0 and weaker than metrizable.

References

- A. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly 68 (1961), 886-893.
- [2] C. Dorsett, New characterizations of separation axioms, Bull. Cal. Math. Soc. 99(1) (2007), 37-44.
- [3] C. Dorsett, Weakly P properties, Fundamental J. Math. Math. Sci. 3(1) (2015), 83-90.
- [4] C. Dorsett, T_0 -identification P and weakly P properties, Pioneer J. Math. Math. Sci. 15(1) (2015), 1-8.
- [5] W. Dunham, Weakly Hausdorff spaces, Kyungpook Math. J. 15(1) (1975), 41-50.
- [6] N. Shanin, On separations in topological spaces, Akademiia Nauk SSSR Comptes Rendus (Doklady) 38 (1943), 110-113.
- [7] M. Stone, Application of Boolean algebras to topology, Mat. Sb. 1 (1936), 765-771.