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Abstract

The concept of n-cone metric space appeared in [1]. In the present paper,
we prove the higher-order Banach contraction mapping theorem [2] in this

setting.

1. Introduction and Preliminaries

Definition 1.1 (Huang and Zhang [3]). Let E be a real Banach space with norm
||l and P be a subset of E. P is called a cone if and only if

(a) P is closed, nonempty, and P # {0}, where 0 is the zero vector in E;

(b) For any nonnegative real numbers a and b, and x, y € P, we have ax + by

€ P;
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(c) for xe P, if —x € P, then x = 6.

Definition 1.2 (Huang and Zhang [3]). Given a cone P in a Banach space E, we

define on E a partial order < with respect to P by
x<y & y-xeint(P).

We shall write x < y whenever x <y and x # y, while x < y will stand for

y — x € Int(P), where Int(P) designates the interior of P.

Definition 1.3 (Huang and Zhang [3]). The cone P is said to be normal if there is

areal number C > 0, such that for all x, y € E, we have
b<x=xy= | <y

The least positive number satisfying the above inequality is called the normal
constant of P. In particular, we will say that P is a K-normal cone to indicate the fact

that the normal constant is K.

Definition 1.4 (Huang and Zhang [3]). The cone P is said to be regular if every

increasing sequence which is bounded from above is convergent, that is, if {x,} is a

sequence such that

X Lxg L XX, ey

for some y € E, then there exists x* € E such that lim,,_,,[x, — x| = 0.

Definition 1.5 (Deimling [4]). The cone P is said to be minihedral if sup {x, y}
exists for all x, ye E, and strongly minihedral if every subset of E which is

bounded from above has a supremum and hence any subset which is bounded from

below has an infimum.

Remark 1.6. In this paper, we assume that the cone P is normal with constant K
and P is such that int(P) # 0, and < is a partial ordering with respect to P. Hence

the Banach space E and the cone P will be omitted, and the Banach space E will be

assumed to be ordered with the order induced by the cone P.
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Definition 1.7 (Gaba [1]). Let X be a nonempty set and M : X X X > [l, ) be

amap. A function dyy : X X X > E will be called a m-cone metric space on X if
(2) 8 < dy(x, y) forall xe X and dy(x, y) =0 iff x = y;
(b) dn(x, y) = dn(y, x) forall x, y e X;
(c) dn(x, 7) < n(x, z)[dn(x, y) + dn(y, z)] forall x, y, z € X.

Moreover, the pair (X, dy ) is called an T-cone metric space.

Remark 1.8 (Gaba [1]). If forall x, ye X

(a) n(x, y) =1, then we obtain the definition of cone metric space (Huang and

Zhang [3]).

(b) n(x, y) = L, where L > 1, then we obtain the definition of cone metric type

space (Cvetkovic et al. [6]).

() n(x, y)=C, where C>1, E=R and P =]0, «), then we obtain the

definition of metric type space (Khamsi [7]).

Example 1.9 (Gaba [1]). Let X = C([a, b], R) be the space of all continuous

real valued functions defined on the interval [a, b], E=R and P = R+, then

(X, dﬂ) is an m-cone metric space with
dn(x, y) = sup |x(r) - y(t)|*
tela,b]

and
N(x, y) = |x(0)] + [y(0)| + 2.

Definition 1.10 (Gaba [1]). We say the following in an m-cone metric space

(X, dn):
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(@) {x,} is convergent to x€ X if for every ce E with 0 < ¢, there exists

ny € N such that dy (x,, x) < ¢

(b) {x,} is Cauchy if for every c € E with 8 < ¢, there exists ny € N such
that dy(x,, x,,) < ¢
(c) X is complete if every Cauchy sequence in X converges to an element of X.

Remark 1.11. Note that an m-cone metric is not always continuous (Example

4.1 of [Gaba [1]).

2. Main Result

Definition 2.1. Let X be a nonempty set. By the r-orbit of 7 : X — X at xg,

we mean for any r € N, the set
I(.XO, Tr) = {XO, Trxo, T2r)C0, }
Definition 2.2. Let (X, dy,) be an m-cone metric space. Amap 7 : X = X
will be called an rth-order Banach contraction mapping if it satisfies
r—1
dn(Trx, T"y) < Zchn(qu, T?y)

q=0

forall x, ye X, where 0<c¢, <1 forall 0<g<r—1, andall re N.

q

Proposition 2.3. Let (X, dyy) be an M-cone metric space,and T : X + X be

an rth-order Banach contraction mapping. For every pair x # y, define

d(TVx, T"
Z=2Z(x, y)= max BV u
0<v<r-1 dn(x, y)

Then
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_p An(T"x, T"y)
max _,
ne NU{0} dy (x, y)

where B e [0, 1).

Remark 2.4. If in addition to Remark 1.8(a), £ =R and P =0, ), then it
follows that every metric space is an m-cone metric space. Thus Proposition 4.1 of

[5] implies the Proposition immediately above.
Now by [2], we have the following alternate characterization of Definition 2.2.

Definition 2.5. Let (X, dﬂ) be an m-cone metric space, amap T : X > X

will be called an rth-order Banach contraction mapping if for all x, y e X and all

r € N, the following inequality holds:
dn(T"x, T"y) < ZB"dy (x, y),
where Be [0,1) and Z > 1 is given by Proposition 2.3.

Our main result is as follows.

Theorem 2.6. Ler (X, dy ) be a complete M-cone metric space such that dy is

continuous. Suppose T : X > X satisfies Definition 2.5. Moreover, for any

xg € X, suppose that lim,, , . N(x,, x,) < %, where x,, x,, € I(xy, T").

Then there is a unique w* € X such that T"w* = w" for any r € N. Moreover, for

. *
each xe X andany re N, lim,_, , T"x=w".

Proof. Let x, be arbitrary and define the sequence {x,} by x, = T"x,_; for

any r € N. Observe

dn(xrn Xpp1) = dn(men—l’ Tr(n+l)xn) = ZBrdn (Xp-1> %),
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dn(epsrs Xpya) = d (T, T2y ) <(ZB7 )P diy (301, 3,),

dn(xrn Xup1) < (ZB" )ndn(xov x1)

for all n=1,2,3,---. Since ZB" <1, consequently, the sequence {T'"x,_;} is
Cauchy. By the completeness of X, there exists w* € X such that lim,_,., 7""x,_;

= w". Now we show existence of the r-fixed point, that is, T"w* = w". Observe

that

dn(Trw*, wh ) <n(T'w", w* )[dn(Trw*, Xy )+ dyy (x5 w)]
(T W, w' )[dn(Trw*, T"x,_;)+ dn(xn, w)]

<n(T"w", w*)[ZBrdn(w*, X1 ) + dy (x5 w)l.

Now taking norm to inequality in the above, and then taking limits as n — oo, we

deduce that
||dn(Trw*, w N =0

which implies 7"w" = w". For uniqueness, suppose T'u =u", but u” #w",

then we have

dn(u*, w') = dn(Tru*, T'w") < ZBrdn(u*, w")
which implies
(1-2ZB" )dy(u”, w") <0
but dp, 20 and ZB" # 1, thus dn(u*, w") =0, that is, «* = w" and uniqueness

follows, and the proof is complete.
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Now we have the following in support of the main result.

Example 2.7. Let X =[0, ), E=R, and P = [0, ). Let us define for all
x,ye X,dp: XXX >R and N: X X X > [1, ) as:
dy(x, y) = (x=)%me y) = x+y+2.
Then dn is an m-cone metric on X. Moreover, (X, dﬂ) is complete. Define

T 'x = % for any r € N, and set % =Be [0, 1). Observe from the conclusion of

Proposition 2.3, we have

(o -=-)
7 = max l _”u
neNU{o} 3 (x—y)?
n 1 (x_)’)z

max 3" ——
neNU{O} 227 (x — y)?

n

max ——
ne NU{0} »2n

(1322
747167 647

-}
=1.

Thus for any r € N, we have

1 1
dy(T"x, T"y) = o (x-y)* < 3—r(x— y)? = ZB"dy (x, ).

Note that for each x € X, andany re N, T"™x = % Thus we obtain
2

lim n(x,, x,)= lim (x + +2j<3’.

n,m—oo n, m—»oo 2"71 2rm
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It follows all the conditions of the previous theorem hold, and the unique r-fixed

point is given by 0 € X.
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