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Abstract

In a former note, it was shown that a Lagrangian based on a Clifford
algebra introduces naturally the Einstein-Hilbert Lagrangian and
allows to take into account the intrinsic spin of gravitational sources.
Here it is shown that, in weak field limit, the angular momentum
parameter in the Lense-Thirring and Kerr metrics is the sum of the
source rotation angular momentum and intrinsic spin as expected. In
this second part the algebra used to build the equations of motion is

extended, introducing new fields.
Introduction

In [1], it has been shown that the Einstein-Hilbert Lagrangian for

gravity plus a term quadratic in the curvature tensor can result from a
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gauge theory based on a Clifford algebra represented by the Dirac
matrices. This naturally introduces torsion and allows to take into
account source intrinsic spin density. For zero torsion and in weak field
situations it was shown that there is no contradiction with the Einstein-

Hilbert Lagrangian only.

[2] was an attempt to take into account sources with spin but it had
some weaknesses due to unjustified approximations. Here we reconsider

the problem.

As for any non abelian gauge theory the field equations are non linear
and this note does not pretend to solve them exactly. This study is
restricted to the case of small enough spin density allowing perturbation
development. Massive relativistic objects with high spin density are
outside the scope of this note. In the limit of weak fields, it will be shown
that the angular momentum parameter in the Lense-Thirring and Kerr
metrics is the sum of the source rotation angular momentum plus its total
intrinsic spin. This supports the idea that a Lagrangian based on Clifford
algebra is a possible Lagrangian to consider. The algebra used in [1] and
[2] is minimal. Section 5 considers an extension of this algebra. This
introduces additional fields, which can provide some ground and

justification for the so-called Scalar-tensor-vector gravity theories [3].

Section 1 sets the notations and Section 2 recalls the equations of
motion used in [2]. The contorsion equations are discussed in Section 3
and Section 4 looks at the Einstein equations and how they are modified

by the source spin.

1. Notations and basic Geometrical Equations

The notations used in this note are the same as those used in [1], [2],

[4]. The space-time coordinates {x®} of a point x are labelled with Greek

letters o, B, v, ..., 0< 0, B, v, ... < n. The time coordinate is x° and,
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when it is necessary to distinguish spatial coordinates from the time

coordinate, the letters W, v, p, M ... are used. The vectors of the local

natural frame are written e_oz, e_[;, ... . When tensors are expressed with
respect to local orthonormal frames they are labelled with Latin letters

a, b, ¢, ... . The orthonormal local frame basis vectors are called Z, and

we set h, = hje,. The metric tensor is 8ap,> and gO‘B is its inverse. The

signature of the metric is (+ — — =). In the case of local orthonormal
frames, the metric tensor is written m,, and its diagonal terms are

Nea = (+1, =1, =1, -1).

In the neighborhood of a given point, the local coordinates, with

respect to the local orthonormal frame attached to this point, are given by

the 1-forms ©% = hddx®, which satisfy the structure equations:
do® + o) A o’ =Y (1.1)

where 0%, = o° byalxY are the connexion 1-forms and Y% is the torsion 2-

. a _ ,.a c a _ ,.a Y
form. We shall also write o7 =0, ® Hm.bc_m.byhc" The

connexion 1-forms are related to the connexion coefficients by:
o = DoyhGhp + hEa kY (1.2)
The connexion coefficients are the sum of two terms:
I%, = %, + S%, (1.3)

where the first term is the Christoffel symbol and the second is the

contorsion tensor. The contorsion is anti symmetric with respect to the

two first indices §043Y + §BOW = 0. The torsion tensor is:
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Sy = 5 (T%y ~T%) = 2 (5%, —S%) (L4a)
and inversely:
S%y = 8%y =Sty = S/ Spty = &8 Spy  (14D)
The torsion 2-form is:
¥4 =39 o Ao = -hiS%,dxP A dx? (1.5)
Using (1.2), we set:
%, = T%hGh, +h§oyh) (1.6)

The curvature 2-form is defined by:
Q% = do% + % c _lRa c d_lRa dy dS
b TGOy O AD G =5 B peg® AB = 5 0K A G
a _ a a a e a e
© Ry = 0yl s =96y + Tyl s = Tlesl g (1.7

In this note, we shall assume axial symmetry and use cylindrical
coordinates [4]. These coordinates are defined with respect to a geodesic
called the symmetry axis and named the Oz axis. The distance of a point

P to its orthogonal projection on Oz is the radius called p. The abscissa
of this projection is called z and the azimuthal angle is ¢. We assume

that:
0 _ 1 _ 2 _ 3 _
® = fdn + xdo o = gdp o” = hdo o’ =lIldz (1.8)

where m is the conformal time, and f, g, h, [ are functions of 1, p, ©,

z. This choice corresponds to:
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1 X
= 0 X 9
f 0 x 0 flfh
0 0o o o = 0 0
hg:oiho’hg=g1’
0o 0 = 0
o 0 0 h1
o 0 0

one.
[ 2 0 xf 0
ep=| 0 & 0 0
op xf 0 h? + x2 o
) 0 0 e
1 {1 . ﬁ] 0 X ]
0 - Lz 0 0
g(XB = g
iz 0 _ Lz 0
fh h
1
_ 0 0 0 -

The square root of the metric tensor determinant is | g | = fghl

A solution to the equations (1.1) without torsion 1is:

0 fp 1 fp
o d + g + +x— |d
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0 Legny L L lgp+ I
W g = ldn+2l(xz+xf)d(p+fdz

f;
o'y :ﬁ(xp —xTP)dnJr%(g(p —ngn)dp

1 f;
_E(hp +%(x7p— xde(p

2 _ f fz 1 X Iz
oo = ofg< e (i< -

1 ln
+ " (x 7 - lq,sz

Hypothesis 1. From now on we shall study the equations of motion

in the static case (d,; = 0) and assuming azimuthal symmetry (9, = 0).

The Christoffel symbols belong to 3 groups. The first group, named
G1, contains the elements which are null, the second group, named G2,

contains the elements which are independent on x at first order (up to
O(x2) terms) and the third one, G3, the elements of which depend on x
at order 1.

The groups G2 and G3 correspond, respectively, to the columns 1 and
2 of Table 1.

Note. x 1s not a parameter. It is a function which is directly linked to
the angular momentum < of the source: x ~ J. By misuse x will be

often used as if it were a parameter.

Table 1 applies also to the Christoffel symbols in the form

fa

% = h{T%, because if T%, is odd (even) in x then T'%  is also odd
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(even). For instance lN"?b 0 = hgzol:‘f‘by = lf“a

Ta _ 1Y 1@
fbr=0 and I = hczzr.by

.bc=2

_lfe X
T h F.byzz fh r.by:O‘

Table 1. Non zero Christoffel symbols (static case and azimuthal

symmetry)
f‘_zba independent on x at first order IN"%OL dependent on x at lowest order
10 =%p P 28 (xp %)
%, = sz % = %(x;p —xp]

2. The Equations of Motion

The equations of motion are obtained from the gauge invariant
Lagrangian (2.10) of [1]:

~ o T 0% A% (@ A0+ 0% v Qg +AIV AT A T, (2)

with the constraint X% = do” + @?, A ®?, and where dV = [OPNER

and A is the cosmological constant. B is a free gauge coupling parameter
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and here N = 4.

In [1], the parameters M, A, U have been set free, but they should be
linked by:

n =1/(8p%) A = 282 =1 2.2)
In the following p = -1.
The first term of (2.1) is the Einstein-Hilbert Lagrangian Lgy =
RAV. The second term is NQ% A * Q; = nR‘.‘.bcdR - cd

ab..

The terms involving the Christoffel symbols only are separated from
those involving the contorsion. Please note that, the variable used is the

contorsion tensor, not the torsion. The curvature tensor becomes:

a _ pa N Qe _ N.Qa Qa Qe _ Qa_qe
Ry = B s + DyS s = DsS Ty + S 7eyS Tp5 =S 7esS Ty

where D is the covariant derivative involving the Christoffel symbols

only.
We write:
R = E(.lbyﬁ + K% (2.3)
where
K = D,S%; - ﬁsg.aby + 8 %S %5 — S %S “by (2.4)

which satisfies the same symmetry relations as the curvature tensor:
Kpays = —Kabys Kabys = ~Kapsy (2.5)

The variation of the Lagrangian with respect to the connexion ([1],

equation (3.11)) leads to:
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T]ac§b _nbc§a T 2Gabc _ %(D%bc _ 4S$b0) (2.62)
where
§a — §d0:7l Gabc — §abc + §cab + §bca (2.6b)

S{f,bc is the spin tensor of the matter fields.
b bed N pabed n bed | Q pebed bed
Dgre = DyR%ed = PyRebed . pygebed G (Rebed . gebed
+ 8P (Red 4 gaecd) (2.60)

This tensor satisfies the anti-symmetry relation D#° = -DY* as

C

expected. 6% is totally anti-symmetric, and Hg = 1/B2 ~ 8nG/c4 .

The equation (2.6c) can be transformed into:
D§© = DgR™? + h[ - g™ DD, S + RS
+ §f’ed(2}~?eb0d + Kebed) 4 §f’ed(2}~?aec‘i + Kaecd)
+ hS[g™D,DsS *® + DS, YS® + 5%,V DsS P
- D555 - 59,0 Ds5 ] (2.6d)

In the second square brackets the first, third and fourth terms can be
eliminated by using the gauge condition (A.4), but the Lorenz condition
can not be imposed for all ab pairs (see Appendix A). The other terms are
quadratic in the contorsion. The second term of (2.6d) looks like the

Laplacian of a vector field.

The variation of the Lagrangian with respect to the fields {hJ} ([1],

equation (3.12)) gives the Einstein equations:
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~ K ~ — —
Gy + (K% =5 85) =48] + D (S, = 5,“)
+ Spea(Se4* — Sy = op T 2.7)

where GY = R% —gsg is the Einstein tensor obtained with the

Christoffel symbol only, and K.q = K° ;.

The left member of (2.7) is rewritten:

~

Gf‘b + Uf‘b + Q‘f‘b (2.8)

where U(.lb represents the terms linear in the contorsion and Q(.lb the

terms quadratic in the contorsion:
U% =-DpS® - DS + DyS9s¢ + W(D,S;" - D.S;*) (2.9

If a =56 in U(.lb (without sum) the first term inside the brackets is null,
and the second and last term cancel (u=-1). It remains
U% =Dy;S%-D,S* without sum over a. If a =0, we get the
divergence term of [2] (3.2).

The quadratic term is:

-Q% =S5°8%, + 8% 87, + 8y ST + Sy S*

(S°S, + Sgerc® )58 (2.10)

Do |

D = h;ﬁﬁﬁaby& is computed for all a, b, ¢ with Hypothesis 1. The

calculation details are not given but the result is:
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For abc belonging to G1, f)%bc =0.

abc

For abc belonging to G2, ZNDR is even with respect to x.

abce

For abc belonging to G 3, ZNDR is odd with respect to x.

In [1], we obtained, in the case of the Schwarzchild metric and the
Lense-Thirring metric: ﬁdﬁabc‘l = 0. There is no contradiction with the

above result if we make the additional assumption that the gravitational
field is described by these metrics. The above classification motivates the

following working hypothesis [2]:

Hypothesis 2. The contorsion tensor §'.:sz are grouped like the
Christoffel symbols IN"%Y or, equivalently, the connexion coefficients are
grouped like the Christoffel symbols.

As suggested in [2], we shall assume that the components (abc)
belonging to the first column of Table 1 are even in x, and those

belonging to the second one are odd in x. For instance, this means that

SF)lO is even in x.

It is easy but long to check that all the equations are consistent with
this hypothesis, that is to say that all the non zero terms in a given

equation have all the same parity.

The direct consequence is that:

ZNDIa{bC = ﬁdK abed £911s in the same groups as ﬁﬁbc (2.11)
The same result holds also for (SR)%¢ = §f’ed}~?eb0d + §%’ed}~?ae0d.

Hypothesis 2 brings important simplifications to the equation system

(2.6), (2.7). First we have: S0 =8%2=0 and if: (abc) e G1 then



12 J. P. PANSART

¢ = 0. If (abc) e G1: ﬁﬁbc =0 and ﬁl%bc = 0, then the 12 equations
(2.6a) are identically satisfied provided that the source terms §\|, for
these indices are null. Therefore it remains 12 equations of type (2.6) and
12 unknown contorsion terms for (abc) e G2, G3 which are studied in

Sections 3 and 4.

Despite Hypotheses 1 and 2 the equations of motion remain very
complicated. They depend on two main parameters, the mass of the
source and an angular momentum for the function x like for the Kerr
metric [5], [6]. There are other parameters like those describing the shape
of the source but they will be ignored. In the following, although the
function x (and its derivatives) is not a parameter, we shall separate the
terms according to their degree: terms independent on x, depending on
x at first degree etc. x will be assumed to be small enough to allow
developments with respect to it. When the term “lowest order” will be
used it means that p, times the mass of the source is small and that x is

small enough too. In the following the parameter lLg times the mass of

the source is called a.

The expressions of ég given in Appendix B show that if b = a, the

explicit dependence on x is even and that 62’:20 depends explicitly on x

only “linearly”. We can get consistent equations if f, g, h, [ depend on

x by even degree terms, like for the Kerr metric.

In [4], we have shown that isotropic coordinates are very convenient
and we have used them in [2] although this is wrong, because, due to the
source rotation the problem is no longer isotropic. However, at lowest

order (as defined previously), it is possible to assume [ ~ g, h ~ pg,

which simplifies the equations.

In the rest of this text and in order to avoid any confusion when the
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indices are numbers instead of letters we write: §abc =h! §aby-

3. The Contorsion Equations

When the indices of the triplet abc are all different, equations (2.6)

are written

SGabc/ug _ ﬁdﬁabcd " Bngbcd " f)ng)bcd
i §fzed(ﬁebcd i Eede)+ E{)ed(ﬁaecd i Izaecd)_ 4S$bc (3.1)
For abc € G3, these equations are at lowest order.

~ 1 ~ o
86120g2/ug = dppSizo + 5898120 +9228190 —48°Sy”"

2,2 3 153 ]
8c%1%¢ /ng = dppSo12 J"EapSOlZ +0,.8012 +%L02

2 ~ ~ ~
- p_z (So12 +So21) + (1 —§ )9.S023 — 4g2S\?,12

201 2 3 1. 3 ~
8678 /“g = dppS201 +Eap8201 +0,.5201
The sum of these three equations is:

24(5120/pg = (app +%ap + 822)6120 - 46#,20

T (ap n %)LOZ + 0(a) + O(x®) (3.2)

where (appendix A) at lowest order:

Loz = 8p§021 + (§012 + §021 ) + 82§O23.

1
p
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The other components are:

230/ 2 3 1.3 S 13 2 230
8o /g Hg = 0dppSa30 + Eaps230 +02.5230 —p—23230 - 4878y

302 1 S 1 S S 1 3 2 302
86" fug = ?(appSSOZ +BapS302 + 0225302 —p—23302 - 4g”8y")

1 S 1 ~ ~ 1 ~
86023/ug - a2 (9ppSozs + BBPSOZS +0,5023 — p7 Sooz — 9. (gLo2) — 48°Sy*)

and the sum of these three equations is:

230 1 230 230
240 /pg = (dpp +Bap +0,,)0"" — 4oy

+9,Lyy + O(ar) + O(x3) (3.3)
Note that the contribution ﬁdﬁabc‘l in (3.2) and (3.3) is:

D, (R%¢d 4 Reabd | Rbeady  which is null, thanks to the Bianchi

identities of the first kind.

The equations (3.2) and (3.3) are not decoupled because of the term
Lgs. If the source terms S\{V‘M’C}GGS =0, then at lowest order:

g{abc}eGS - 0.
Equations (2.6) for a = ¢ give:
12§b/pg = DyR% + lN)ngd + lNDngd + §7ed1~??.bdd

+8° R +S9 K4+ 80 K -48,%, (34

The first term on the right is lN)dIN%bd = ﬁd(ébd + g nde = lN)dZN% nbd/Z .
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The calculations show that the quadratic terms in x come from terms
of the type: §{abc}eG2 §{abc}eG3 ® §{abc}eG3 and g{abc}EG3 ® x.

If we take as an example a spinor field, then S$ba = 0 and the source
terms for S® come from the other terms. All the terms are even in x.

It was shown in [1], for the Schwarzchild and Lense-Thirring metrics

which are solutions of the equations without torsion, that: DyR¢ = 0.

Therefore, if Sff,bc =0, then SlabcleG3 _ o i5 a solution of equations

(3.1), (3.2), (3.3). As a consequence, SlabekeG2 _ o ¢ order x2 included,
and, in the limit of weak fields, if Sff,bc = 0, the contorsion is null.
4. The Einstein Equations

As said at the end of Section 2, égzzzo provides an equation for x.

With (2.9) we have:
U0, = —D,S° + Dyo™ (4.1)
where: D,S° = 9,8% +T9,,5°.
From Section 2: S® = S2 =0 and: S', S® ~ O(x?), therefore:
-9 =

U0, = Do + 0(x%) UGy = % Dac™™ + 0(x")

where, without any hypothesis about the value of o:

N l
Do = —é(ap +ij<;°21 (a - gj 029 (4.2)

Neglecting the contorsion quadratic terms (2.10) and keeping only the
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terms of order 0 in a and order 1 in x the Einstein equation for G(?LE:OZ
is:

1

1 h
2g2

{xpp _%xp + xzz} + 7 BdGOd2 = HgT%zzog (4.3)

The term in the brackets looks like the Euclidean Laplacian except for the
sign of the second term. Setting: x = papY we get:

1
{xpp - Exp + xzz} = pd,AgY
where Ay means the Euclidean Laplacian.

The Energy-Momentum tensor component TTIB::OZ is associated to the

=0

local matter momentum p, or equivalently: T-OCB=2 = —hpczz.

Let us assume that the source is a classical non relativistic matter
body uniformly rotating around the Oz axis and that: pc:2 = dpw where
d 1s the matter density and @ is the angular rotation speed. In weak
field situation (parameter o small) f, g, h ~ 1, we then have: 8PAEY =
2ugdpw. Far from the source we obtain: Y = —u, L/r where L is the

angular momentum of the source and r is the Euclidean distance from

the origin of the coordinates. Then:
x = pg Lp?/r® (4.4)

This term looks like the cross term of the Kerr metric but the comparison
requires to be careful with the meaning of the coordinates. It is valid only

in the limit o« — 0 and x small.

Now we look at the other source term in equation (4.3), and consider

the equation:
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1
2g2

h
f

papAEY = - Ed60d2

From (4.2), neglecting the term of order o we have:

= _0d2 1 021 1
Dyo :—Eapc 1—7826

023

abc 02

c is totally antisymmetric then © Lcan be replaced by — 20, If we

can neglect the contribution of o023 (at least far from the source) then:
AgY = 26120 therefore: Y ~ %WJ.ZGIQOdV

Equation (3.2) is an equation of the form: tc = Ac—-b where:

b= 40%‘,20 - (8[) +%)L02 and where T = 24/u, >> 1.

When 1t 1is very large the solution of such an equation is

approximately a contact term, and the solution is 716 ~ — b then:

W 1
GI ¢'20dV ~ —p, J' oy dV + (ap + Ejbode

where dV = (fghl)pdpdzde ~ dVy when a — 0 and dVy is the

Euclidean volume element. Integrating by part, the last part of this

equation becomes [pLgy] which is assumed to be negligible far from the

source. Then:
120 717 - 120
sjc dV_—ugIc\V av

We assume now that the matter field is a superimposition of spinor fields,

then Sff,bc is cyclic and we have:

J‘Glzodv ~ _l“ ngIQOdV
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1 S 120
~ e[ SV

Adding the angular momentum (4.4) and spin contributions gives:

2

~_ 1P g 120
x —4—mr—2ug(L+JSW dV)

which shows that in the limit o« - 0 and x small, the angular
momentum in the crossed term of the Lense-Thirring and Ker metrics is
the sum of the rotation angular momentum and the spin of the source, as

expected.

As said at the end of Section 2, the correction to the metric

coefficients f, g, h, [ are of order x2 and possibly more.

In the Einstein equations, the terms UJ contributes to the metric
coefficients at order x? since S is even in x. For instance: U8 = ﬁi§i
where i # 0, involves S' and S? which are given by equation (3.4). It
results that, because Hg 1s small, that Ug is of order Opg or less, and

will be neglected.

Conclusion. For weak fields and far from the source, the solution of
the equations is given by the Kerr metric whose angular momentum
parameter is the sum of the rotation angular momentum plus intrinsic

spin, as expected.
5. Extending the Algebra

In [1], we used the algebra formed by the Dirac matrices Y* and the

rotation operators R = %[ya, v*] to build the gauge theory

Lagrangian (2.1). This allowed to introduce the Einstein-Hilbert gravity
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Lagrangian naturally. In this section, this algebra is enlarged,

introducing new fields.

We define: y" = y%y%2 . y% where: a; < ay <..<a,. If the

space-time dimension n is even Tr(yh) = 0 whatever A, and yh plus the

unit matrix form a basis. We call yD = yoyl yn_l. In the case n = 4,

YD is usually called 75.

In the rest of this note, the space-time dimension n is assumed to be

even, and we have: Y%y + y?y® = 0 and: (yY?)? = —(- 1)n/21.
Now we consider the set: y¢, R, yD, RD (a, b < n) where:
1 1 1
R® = 2[y",v"] and: R = Z[y" yP]= Sy
The new elements satisfy the following relations:
[, R = neby? ", Re] =0
[Yab RCD] _ nchaD _ T.IcotRbD
[YD’ RaD] _ _nDD,Ya [RaD, RbD] _ Rab 5.1

This is an extension of the algebra (2.1) of [1] where we define:

n®? =0 if a < n and nPP = —(- 12,
The trace formulae (2.9) of [1] can be extended to YD and R*. The

following properties are used to construct a Lagrangian as in [1]:

Tr(yy?)=0  Tr(yPyP) = MPP 1r(R*Py¢) = 0

(1" (5:2)

THRPRP) =0 THRPRYP) =&
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where N is the dimension of the Dirac matrix representation.

From now on we shall consider only the case n = 4. We can proceed

like in [1] and define the gauge field:
W = aw, R + Bo,y? + 200,5RY + sy’
As usual, gauge transformations will be of the form:
W’ = ST'WS + S7'dS where for infinitesimal transformations:
S = I +ie,y" + e, R +iesy® + 2e,5R®

The gauge field transforms as:

W = W) + (Bosy® + 200.5R®) + 2[[3£C5mc - ioew,5 +éd£5}y5
+ 4[i[3(850)c - 8cm5) + (x(me. 5€ec ~ (De. c€eb ) + %d8c5:|RCD

+ 2[[30358f5 - Zimf585]yf + 4ow)e58f5Ref (5.3)
where W} is given by (A.1).

o = hgdxo‘ appears as a pseudo coordinate, and we would like to get
rid of it, which means cancelling the factor of 75 in (5.3) by using

successive infinitesimal gauge transformations. ® =0 represents 4
constraints hg = 0. We require also that there is no contribution from
the last bracket whatever the index f, which can be achieved if €5 = 0.
We then have 5 constraints and five parameters (g.5 and €5). There is no

degree of freedom left.

The Lagrangian is obtained as usual by defining: G = dW + W A W
and L = Tr(G A * G).
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In order to lighten the notations we write: B, = .5 = 05,0

= B,,®" (note the place of indices), and:
L=Ly+L +Ly+Lg+ Ly (5.4)

where L is the Lagrangien (2.1) and the other components are:
L/dV = L F ,F*® { oo PR . 40*B./B_S¢
1 9 xop u ' xop u “xg™ | fe

+ 00", (BY B 0 — BYIBY)

where Fx(XB = aanB _ aBonc
Ly/dV = —Rp BB
Ly/dV = -ap?Bp,(B™ - BN
L,/dV = —%BekBﬂ(BekBﬂ _ BB

The Lagrangian (2.1) has been extended to 4 more vector fields: B, .

The only gauge freedom left is the mobile frame rotation invariance. The

field B,, can be seen alternatively as a symmetric field with 10

components plus an antisymmetric field with 6 components.

The quadratic terms which are supposed to represent the mass terms
show that there are no fixed mass terms, and as in [3], one could consider

masses as effective fields. The potential term L, is quartic.

We can separate the trace: D = B, and write:

B,y = Dngg +Cyq (5.5a)

Feab = 11ebdaD - 11eadbD + daceb - dbcea (5.5b)
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with F,,, = d,C,, — dyC,, we obtain:

F,,F° = 6D,D* + 41, D, F*® + F,,, F’*%

where D, = d,D. The first term on the right being the Lagrangian of a
scalar field.

How are these new fields coupled to matter fields? Here we consider
only spinor fields (quark stars?) but other fields like strong
electromagnetic fields should also be considered. Coupling terms must

respect mobile frame rotation invariance and parity conservation. A first

set of minimal coupling invariants (with respect to mobile frame rotation)
is Le ~ BeaWYeYa\l!-

With v°y® = n°* + v*® where y*¢ = %[ye, Y*] we have two possible
coupling terms: Loy = W B WN°“V, Loy = WoB WYy .

The Lagrangian is required to be real. This implies that p; is real
and g 1s imaginary. We could also have considered:

Leg = ugBe W™y y Loy = 0B WYy

These coupling terms are real if pg is real and p, is imaginary.

With the introduction of 75 arises the problem of parity conservation.
Here we define Parity locally as an operation which keep the time

direction defined by Zo and reverse the direction of the wvectors
orthogonal to it. The parity operator acting on a spinor is, as in the

Minkowski case, P = yo.
If we impose Parity conservation only Ly and Lpg remain.

It is possible to introduce other coupling terms. Let us consider the
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Lagrangian of a spinor field: L, = hdY*(YiDyy + h.c.), where

Doy = dyuv + chaycyd/4; and h.c. means hermitic conjugate.

From it we deduce the Energy-Momentum tensor: T\ffa =
%(WyaiDa\p +hc) and the spin tensor: S\‘l’,bo‘ = %hg(vycyayb\p
+ VYY),

Now we can read the Lagrangian, a posteriori, as: Ly = hgT\"}a and

the coupling to the connexion as: l"cdan'}do‘. By analogy we could consider

couplings like: FédaS\‘;,da where F,,, is given by (5.5). Using the
symmetry properties of the spin tensor of a spinor field, one can show
that the symmetric part of C,, is not coupled to S\f,d“. Other minimal
couplings are possible. For instance, coupling to the matter current:
d,Dyy*y or coupling to the Energy-Momentum tensor. Which part of

the field B,, plays a role depends on the matter coupling.

Appendix A. Gauge Freedom

In [1], we introduced the gauge field: W = aw,, R + Bo,y® where

¢ represents the Dirac matrices and R represents the generators of

Y

the rotation group (not the Ricci tensor in this appendix).

The gauge field W transforms as: W’ = S~IWS + S'dS where, for
infinitesimal transformations: S = I +ig,Y* + €,5R%, €4 = —€py »

| € |, | €45 | << 1. One has at first order:
W =W+ ioc(oabee[Rab, Yel+ oc(oabeef[Rab, R 1+ Bogse.[v%, ¥¢]

+ Bogeer v, R |+ ide,y + deos R (A1)



24 J. P. PANSART

then, with the algebra ([1], (2.1)):

i

B

’

O, = Oy + €,,0° — €,,0° + = (de, + aw, ‘e, — aw® &, )

and with o = %:

;o e e l
Wy = Oy + €,q0° — €,,0° +— De, (A.2)

p
0*)216 = Wy + [dgab - me. »€ae ~ (’)e. aaeb] + 2I:B(ab(’)ot - 8o‘t(’)b) (A-3)

In 4 dimensions the total number of parameters is 4 + 6, but the 1-
form ®® are fixed by the choice (1.8). Requiring, that after an

infinitesimal gauge transformation, o°

and ® keep their form, which
means that @’ does not depend on dn and @® does not depend on dp

nor dz leads to the conditions:
€y = €y = €91 = €93 =0

i 0 1 3
and: 2feg9 +E(dn82 + 0y o€ + Wy o€ + 0y (€3) = 0
Then, after a infinitesimal transformation one wants that the spatial o
keep their form, that is: @1 ~ dp, w? ~ do, o3 ~ dz. This is possible

if: €19 = €93 = 0 and €5 is linked to e! and €3 by the two constraints:

i i
2013 = _E(azgl + o' 33€3) 2g€13 = E(9p83 +0’118)

The infinitesimal gauge transformations satisfying the 9 above
constraints keeps the form of (1.8) and the classification of Table 1.
Therefore it remains only one degree of freedom out of 10. By analogy

with the Lorenz condition for electromagnetism (the pair (ab) represents
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the rotation group indices), we would like to have:
DsS = 0 (A.4)

With Hypothesis 2 in Section 2 and Table 1, one obtains: D5S*? =0
for (a, b)=(0,1), (0, 3), @, 2), (2,3). With h =ph, the two other

components are:

gDs5 02 - ap§021 +%§021 +pr(§oz1 + §120)

+ th+[—p S021 4 h:p+l §Olz+582§023
o1 h P l

(gz " EZ\J§O23 +§f72(§023 + §320)

+§hz 032 +L[xp _xfTPJ(gm _ §ow,

+ i%(xz —x %)(5322 - §030) (A.5)

l

D588 :éa g1 +§(fp e, p]§131 ~15,5m8

P foh L l
+ﬁ(xp _xprJ(§032 +§230)_§h7p§232 _%fTZ‘gom
+ﬁ(xz _xfTZj(gmz +§120)+%%§212 (A6)

The remaining degree of freedom can be used to set:
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DsS13 = 0 (A7)
As a consequence, the components Lyy = l~)5§026 can not be set to 0
except in particular cases.

The above expressions are internally consistent as far as the parity of

the components S8 with respect to x is concerned.

Appendix B. Einstein Tensor

Assuming time independence and axial symmetry, the Einstein

tensor components used in this note are, without any approximation:

Ga=0 1 { hop  Lop + hy (&_ lpJJr lpgp}

g lg

G P 8 he (L g:), Le:
h lg

~a1 1 [Mply Moly folp
G = {hf Tm T

L_hﬁ_fz_z thZ lez fzhz
’ [ nof TTh T T

2
_i[fzgz+fzhz+hzgz:|+ 1 xp_xf_p
2L fg  fh hg | 4p?g?



(1]

(2]

(3]
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1 (. EY
4h212(x2 xfj

2 2 fe

References

J. P. Pansart, A Clifford algebra gauge invariant Lagrangian for gravity. Part 2.
Compatibility with General Relativity tests, HAL Id: hal-01261539, version 2; Arxiv:
1602.02131.

J. P. Pansart, A Clifford algebra gauge invariant Lagrangian for gravity. Part 1.
Higher dimensions and reduction to four dimensional space-time, HAL Id: hal-
01261519 (https://hal.archives-ouvertes.fr/hal-01261519).

J. P. Pansart, Gravitational field of sources with spin, Fundamental J. Modern
Physics 17(2) (2022), 71-106.

J. W. Moffat, Scalar-tensor-vector gravity theory, Journal of Cosmology and
Astroparticle Physics 03 (2006), 004.

Xue-Mei Deng, Yi Xie and Tian-Yi Huang, A modified scalar-tensor-vector gravity
theory and the constraint on its parameters, Phys. Rev. D 79 (2009), 044014.

J. W. Moffat and V. T. Toth, Scalar-tensor-vector-gravity and NGC-1277, Monthly



28 J. P. PANSART

Notices of the Royal Astronomical Society 527(2) (2024), 2687-2690.

[4] J. P. Pansart, Gravitational mass in isotropic universes, Fundamental J. Modern
Physics 13(2) (2020), 97-120.

[56] R. Adler, M. Bazin and M. Schifier, Introduction to General Relativity, McGraw-
Hill, 1965.

[6] V.P. Frolov and I. D. Novikov, Black Hole Physics.



