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Abstract

In the first part, we investigate the tiling of the plane by convex
polygons, and we introduce many terms. We will not calculate them. At
the end of this paper, we provide an example, where we cover the plane
with convex 8-gons. The polygons overlap. In the second part, we take
special curves and further convex polygons. We define two new

constants.

1. Introduction

It is well-known that we can tile the plane R? with n -gons, where n
is a natural number larger than 2, (see [1], p. 11). If we restrict our efforts
to convex polygons, in most cases it 1s impossible to cover the plane
completely without overlappings. It is known that we can tile the plane
with squares and regular 6-gons. We can also tile the plane with convex
5-gons, see the ‘Cairo Tiling’ in [2]. For natural numbers larger than 6 we

believe that it is impossible to tile the plane completely with convex n -
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gons. Either we have to leave gaps or some polygons overlap to cover R2

completely.

For additional information, see [3].

2. Convex Polygons and Curves

We believe that it is useful to repeat the definition of a simple

polygon.

A simple polygon with n vertices consists of n different points of the
plane (xl, yl), (x9, ¥9 ), ons (xn_l, Yoot ), (%, yn), called wvertices, and
the straight lines between (x;, y;) and (x;,q, y41) for 1<i<n-1,
called edges. Also the straight line between (xn, yn) and (xl, yl) belongs

to the polygon. We demand that it is homeomorphic to a circle, and that

there are no three consecutive collinear points (xi, y,-), (xi 1 i +1),
(xj49, ¥iso) for 1 <i<n-—2. Also the three points (x,, ¥,), (x1, y1),

(xz, yz) and (xn_l, yn_l), (xn, yn), (xl, yl) are not collinear.
We call this just described simple polygon an n -gon.

Theorem 2.1. There is a covering of the plane with k-gons for every

natural number k larger than 2.
Proof. Well-known. See, for instance, ([1] page 11).

Note that we work from now on exclusively with convex curves. With
‘Polygon’ we always mean a convex simple polygon. With ‘k-gon’ we

always mean a convex k-gon.

Let r be any real number larger than or equal to 1, and let & be a

natural number larger than 2.

We define a set of polygons.
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Definition 2.2. We define k-Polygons as the class of & -gons.

Remark 2.3. In the next definition, we define some constants. They

are actually percentages, but we prefer numbers from 0 to 1.
The area of R? is regarded as 1.

We try to tile R? with simple polygons. For k& > 6, either we fix tiles

without any overlapping and we do not cover R2 completely, or we cover

R2 completely, where there may be overlappings.

Definition 2.4. Let & gap (r) be the supremum of the covered part of

R2. The polygons do not overlap. We use elements from the class k-

Polygons, where the quotient of two edges of one or two used k-gons is in

the interval [%, r]

Let % overlap (r) be the infimum of the part of R? which is covered

by polygons from the class k-Polygons at least twice, where R? is

covered completely, and the quotient of two edges of one or two used k-

gons is in the interval [% , r]

Conjecture 2.5. k gap(r) =1 and % overlap (r) = 0 holds for all %

for suitable numbers r.
For polygons with 8 vertices, see Proposition 3.3.
Let n be a natural number larger than 2.

Definition 2.6. We define a cyclic polygon as a simple polygon such

that all vertices are on a circle.

We define an elliptical polygon as a simple polygon such that all
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vertices are on an ellipse.

We define a convex Cassini polygon as a simple polygon such that all

vertices are on a convex Cassini curve.

We call a regular n-gon a regular polygon which has precisely n

vertices.

We call a cyclic n-gon a cyclic polygon which has precisely n

vertices.

We call an elliptical n -gon an elliptical polygon which has precisely

n vertices.

We call a convex Cassini n-gon a convex Cassini polygon which has

precisely n vertices.
We define a set of shapes.
Definition 2.7. Shapes := {circle, ellipse, convex Cassini curve}.
Definition 2.8. Let Curves be the set of curves of a shape from the

set Shapes. Let gapxxx (r) be the supremum of the covered part of R2,

where we use curves from the set Curves of shape of a XXX, where XXX

is an element of Shapes. The curves do not overlap. The quotient of the

arc lengths of two curves is in the interval [%, r}. Let overlapxxx (r) be

the infimum of the part of R? which is covered at least twice where we

use curves from the set Curves of shape XXX, where XXX is an element

of Shapes and R? is covered completely. The quotient of the arc lengths

of two curves is in the interval [l , r}.
r

Definition 2.9. We define k reg (r) as the supremum of the covered
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part of the plane, where we use regular k-gons. The polygons do not

overlap. The quotient of two edges of the used polygons is in B, r}.

We define % overlap reg () as the infimum of the part of the plane

which is covered at least twice, where we use regular k-gons. R? is

covered completely. The quotient of two edges of the used polygons is in

the interval [%, r]

We define % cyclic(r) as the supremum of the covered part of the

plane, where we use cyclic k-gons. The polygons do not overlap. The

quotient of two edges of one or two used polygons is in the interval

We define %k overlap cyclic (r) as the infimum of the part of the plane

which is covered at least twice. We use cyclic k-gons. The quotient of two
edges of one or two used k-gons is in the interval [%, r}, and R? is
covered completely.

We define k elliptical (r) as the supremum of the covered part of the

plane, where we use elliptical %-gons. The polygons do not overlap. The

quotient of two edges of one or two used k-gons is in the interval [% , r]

We define k overlap elliptical (r) as the infimum of the part of the

plane which is covered at least twice. We use elliptical k-gons. The

quotient of two edges of one or two used % -gons is in the interval [%, r},

and R? is covered completely.
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We define k Cassini (r) as the supremum of the covered part of the

plane, where we use convex Casssini k-gons. The polygons do not

overlap. The quotient of two edges of one or two used k-gons is in the
. 1
interval |—, r|.
r
We define k overlap Cassini (r) as the infimum of the part of the

plane which is covered at least twice. We use convex Cassini k-gons. The

quotient of two edges of one or two used % -gons is in the interval [%, r},

and R? is covered completely.

Remark 2.10. Note that r =1 means that all edges of the polygons

or the arc lengths of all curves, respectively, are equal.

Remark 2.11. The used polygons or curves, respectively, can not be

. . . 1. ..
arbitrarily small since = is a positive number.
r

We suggest the name ‘The first Thuerey constant’ for 5 reg (1), and
for 5 overlap reg (1), we suggest ‘The second Thuerey constant’. Both are

real numbers between 0 and 1. They are interesting new constants.

3. Propositions
Proposition 3.1. The following equations hold for all r.
3 reg (r) =4 reg (r) =6 reg (r) =3 gap (r) =4 gap (r) =6 gap (r) =1
as well as

3 overlap reg (r) = 4 overlap reg (r) = 6 overlap reg (r)

= 3 overlap (r) = 4 overlap (r) = 6 overlap (r) = 0.
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Proof. Well-known.

Proposition 3.2. The following equations hold for all r.
5 gap (r) =1 and 5 overlap reg (r) = 0.

Hint. See the ‘Cairo Tiling’ in [2].

Proposition 3.3. It holds

8 overlap reg (r) = 0

for all r equal to or larger than 2.

Proof. At first, we tile the plane with squares of sidelength 1. Into

every square we inscribe a regular octagon of sidelength V2 —1. These

octagons cover a part of R2. We call them ‘old’ octagons.

Please see Figure 1. There the right square has vertices A, B, C and
D. Two vertices of the right octagon are E and F. G is a vertex of the
left octagon. We add another point W on one diagonal of the right
square. We connect E and W and also F and W. We add a point called
X on one diagonal of the left square. We connect E and X and also G
and X. We define two more points Y and Z on the diagonals of other
squares, and in this way, we generate a ‘new’ 8-gon. Seven of its vertices
are W, X, Y, Z, E, F and G. The tuples X, A, Zand Y, A, W, C
are collinear. By this way, we generate infinite many ‘new’ 8-gons

between the ‘old’ 8-gons.
The ‘new’ 8-gons cover the area which is not yet covered. With the

‘new’ 8-gons together with the ‘old’ 8-gons, R? is covered completely,

where parts of R? are covered twice. The number of ‘new’ 8-gons is
countable. We can choose W such that the area of the triangle with

vertices E, F, and W 1is arbitrarily small. Hence, we can choose W, X,
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Y, and Z such that the area of R? which is covered twice is less than
%. In the next ‘new’ 8-gon we can choose four vertices of the 8-gon such

that the area which is covered twice is less than % , et cetera.

Therefore, the part of R? which is covered twice can be made

arbitrarily small. o

In Figure 1, we show two ‘old’ octagons, and we indicate two ‘new’

octagons by its vertices.

X
Y x X 7
G A F B
XX X W
E
X X
D C
,0). « «
X
Figure 1.

We see two squares which are partially covered by regular 8-gons. We

set A=(0,0) and B=(,0). It holds E:(O,%-\E—l) and

F - (1—%-\/5, 0). W, X, Y, and Z are not fixed.
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