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Abstract 

In the first part, we investigate the tiling of the plane by convex 

polygons, and we introduce many terms. We will not calculate them. At 

the end of this paper, we provide an example, where we cover the plane 

with convex 8-gons. The polygons overlap. In the second part, we take 

special curves and further convex polygons. We define two new 

constants. 

1. Introduction 

It is well-known that we can tile the plane 2
R  with n -gons, where n  

is a natural number larger than 2, (see [1], p. 11). If we restrict our efforts 

to convex polygons, in most cases it is impossible to cover the plane 

completely without overlappings. It is known that we can tile the plane 

with squares and regular 6-gons. We can also tile the plane with convex 

5-gons, see the ‘Cairo Tiling’ in [2]. For natural numbers larger than 6 we 

believe that it is impossible to tile the plane completely with convex n -
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gons. Either we have to leave gaps or some polygons overlap to cover 2
R  

completely. 

For additional information, see [3]. 

2. Convex Polygons and Curves 

We believe that it is useful to repeat the definition of a simple 

polygon. 

A simple polygon with n  vertices consists of n  different points of the 

plane ( ) ( ) ( ) ( ),,,,...,,,,, 112211 nnnn yxyxyxyx −−  called vertices, and 

the straight lines between ( )ii yx ,  and ( )11 , ++ ii yx  for ,11 −≤≤ ni  

called edges. Also the straight line between ( )nn yx ,  and ( )11 , yx  belongs 

to the polygon. We demand that it is homeomorphic to a circle, and that 

there are no three consecutive collinear points ( ),, ii yx  ( ),, 11 ++ ii yx  

( )22 , ++ ii yx  for .21 −≤≤ ni  Also the three points ( ),, nn yx  ( ),, 11 yx  

( )22 , yx  and ( ),, 11 −− nn yx  ( ),, nn yx  ( )11 , yx  are not collinear. 

We call this just described simple polygon an n -gon. 

Theorem 2.1. There is a covering of the plane with k -gons for every 

natural number k  larger than 2. 

Proof. Well-known. See, for instance, ([1] page 11). 

Note that we work from now on exclusively with convex curves. With 

‘Polygon’ we always mean a convex simple polygon. With ‘ k -gon’ we 

always mean a convex k -gon. 

Let r  be any real number larger than or equal to 1, and let k  be a 

natural number larger than 2. 

We define a set of polygons. 
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Definition 2.2. We define k -Polygons as the class of k -gons. 

Remark 2.3. In the next definition, we define some constants. They 

are actually percentages, but we prefer numbers from 0 to 1. 

The area of 2
R  is regarded as 1. 

We try to tile 2
R  with simple polygons. For ,6>k  either we fix tiles 

without any overlapping and we do not cover 2
R  completely, or we cover 

2
R  completely, where there may be overlappings. 

Definition 2.4. Let ( )rk gap  be the supremum of the covered part of 

.2
R  The polygons do not overlap. We use elements from the class k -

Polygons, where the quotient of two edges of one or two used k -gons is in 

the interval .,
1







r

r
 

Let ( )rk overlap  be the infimum of the part of 2
R  which is covered 

by polygons from the class k -Polygons at least twice, where 2
R  is 

covered completely, and the quotient of two edges of one or two used k -

gons is in the interval .,
1







r

r
 

Conjecture 2.5. ( ) 1gap =rk  and ( ) 0overlap =rk  holds for all k  

for suitable numbers .r  

For polygons with 8 vertices, see Proposition 3.3. 

Let n  be a natural number larger than 2. 

Definition 2.6. We define a cyclic polygon as a simple polygon such 

that all vertices are on a circle. 

We define an elliptical polygon as a simple polygon such that all 
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vertices are on an ellipse. 

We define a convex Cassini polygon as a simple polygon such that all 

vertices are on a convex Cassini curve. 

We call a regular n -gon a regular polygon which has precisely n  

vertices. 

We call a cyclic n -gon a cyclic polygon which has precisely n  

vertices. 

We call an elliptical n -gon an elliptical polygon which has precisely 

n  vertices. 

We call a convex Cassini n -gon a convex Cassini polygon which has 

precisely n  vertices. 

We define a set of shapes. 

Definition 2.7. { }.curveCassiniconvexellipse,circle,:Shapes =  

Definition 2.8. Let Curves be the set of curves of a shape from the 

set Shapes. Let ( )rXXXgap  be the supremum of the covered part of ,2
R  

where we use curves from the set Curves of shape of a XXX,  where XXX  

is an element of Shapes. The curves do not overlap. The quotient of the 

arc lengths of two curves is in the interval .,
1







r

r
 Let ( )rXXXoverlap  be 

the infimum of the part of 2
R  which is covered at least twice where we 

use curves from the set Curves of shape XXX,  where XXX  is an element 

of Shapes and 2
R  is covered completely. The quotient of the arc lengths 

of two curves is in the interval .,
1







r

r
 

Definition 2.9. We define ( )rk reg  as the supremum of the covered 
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part of the plane, where we use regular k -gons. The polygons do not 

overlap. The quotient of two edges of the used polygons is in .,
1







r

r
 

We define ( )rk regoverlap  as the infimum of the part of the plane 

which is covered at least twice, where we use regular k -gons. 2
R  is 

covered completely. The quotient of two edges of the used polygons is in 

the interval .,
1







r

r
 

We define ( )rk cyclic  as the supremum of the covered part of the 

plane, where we use cyclic k -gons. The polygons do not overlap. The 

quotient of two edges of one or two used polygons is in the interval 

.,
1







r

r
 

We define ( )rk cyclicoverlap  as the infimum of the part of the plane 

which is covered at least twice. We use cyclic k -gons. The quotient of two 

edges of one or two used k -gons is in the interval ,,
1







r

r
 and 2

R  is 

covered completely. 

We define ( )rk elliptical  as the supremum of the covered part of the 

plane, where we use elliptical k -gons. The polygons do not overlap. The 

quotient of two edges of one or two used k -gons is in the interval .,
1







r

r
 

We define ( )rk ellipticaloverlap  as the infimum of the part of the 

plane which is covered at least twice. We use elliptical k -gons. The 

quotient of two edges of one or two used k -gons is in the interval ,,
1







r

r
 

and 2
R  is covered completely. 
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We define ( )rk Cassini  as the supremum of the covered part of the 

plane, where we use convex Casssini k -gons. The polygons do not 

overlap. The quotient of two edges of one or two used k -gons is in the 

interval .,
1







r

r
 

We define ( )rk Cassinioverlap  as the infimum of the part of the 

plane which is covered at least twice. We use convex Cassini k -gons. The 

quotient of two edges of one or two used k -gons is in the interval ,,
1







r

r
 

and 2
R  is covered completely. 

Remark 2.10. Note that 1=r  means that all edges of the polygons 

or the arc lengths of all curves, respectively, are equal. 

Remark 2.11. The used polygons or curves, respectively, can not be 

arbitrarily small since 
r

1
 is a positive number. 

We suggest the name ‘The first Thuerey constant’ for ( ),1reg5  and 

for ( ),1regoverlap5  we suggest ‘The second Thuerey constant’. Both are 

real numbers between 0 and 1. They are interesting new constants. 

3. Propositions 

Proposition 3.1. The following equations hold for all .r  

( ) ( ) ( ) ( ) ( ) ( ) 1643643 ====== rgaprgaprgaprregrregrreg  

as well as 

( ) ( ) ( )rregoverlaprregoverlaprregoverlap 643 ==  

( ) ( ) ( ) .0643 ==== roverlaproverlaproverlap  
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Proof. Well-known. 

Proposition 3.2. The following equations hold for all .r  

( ) 15 =rgap        and        ( ) .05 =rregoverlap  

Hint. See the ‘Cairo Tiling’ in [2]. 

Proposition 3.3. It holds 

( ) 08 =rregoverlap  

for all r  equal to or larger than 2. 

Proof. At first, we tile the plane with squares of sidelength 1. Into 

every square we inscribe a regular octagon of sidelength .12 −  These 

octagons cover a part of .2
R  We call them ‘old’ octagons. 

Please see Figure 1. There the right square has vertices ,A  ,B  C  and 

.D  Two vertices of the right octagon are E  and .F  G  is a vertex of the 

left octagon. We add another point W  on one diagonal of the right 

square. We connect E  and W  and also F  and .W  We add a point called 

X  on one diagonal of the left square. We connect E  and X  and also G  

and .X  We define two more points Y  and Z  on the diagonals of other 

squares, and in this way, we generate a ‘new’ 8-gon. Seven of its vertices 

are ,W  ,X  ,Y  ,Z  ,E  F  and .G  The tuples ,X  ,A  Z  and ,Y  ,A  ,W  C  

are collinear. By this way, we generate infinite many ‘new’ 8-gons 

between the ‘old’ 8-gons. 

The ‘new’ 8-gons cover the area which is not yet covered. With the 

‘new’ 8-gons together with the ‘old’ 8-gons, 2
R  is covered completely, 

where parts of 2
R  are covered twice. The number of ‘new’ 8-gons is 

countable. We can choose W  such that the area of the triangle with 

vertices ,E  ,F  and W  is arbitrarily small. Hence, we can choose ,W  ,X  
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,Y  and Z  such that the area of 2
R  which is covered twice is less than 

.
2
1

 In the next ‘new’ 8-gon we can choose four vertices of the 8-gon such 

that the area which is covered twice is less than ,
4
1

 et cetera. 

Therefore, the part of 2
R  which is covered twice can be made 

arbitrarily small. □ 

In Figure 1, we show two ‘old’ octagons, and we indicate two ‘new’ 

octagons by its vertices. 

 

Figure 1. 

We see two squares which are partially covered by regular 8-gons. We 

set ( )00,=A  and ( ).01,=B  It holds ( )12
2
1

,0 −⋅=E  and 

( ).0,2
2
1

1 ⋅−=F  ,W  ,X  ,Y  and Z  are not fixed. 
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