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Abstract

Very recently, we introduced a concept of Cone Heptagonal Metric Space
and obtained the Chatterjea Mapping Theorem in this setting [1]. In the
present paper, we obtain the expanding counterpart of the Hardy-Rogers
Mapping Theorem [2, Theorem 1(a)].

1. Introduction

Let (X, d) be a metric space. Recall Hardy and Rogers [2] that a map
T : X — X iscalled a Hardy-Rogers contraction if
d(Tx, Ty) < ad(x, Tx) + bd(y, Ty) + cd(x, Ty) + ed(y, Tx) + fd(x, y)
forall x, ye X, where a, b,c, e, f 20 andsatisfy o .=a+b+c+e+ f <1.
Remark 1.1. If oo =1 and

d(Tx, Ty) < ad(x, Tx) + bd(y, Ty) + cd(x, Ty) + ed(y, Tx) + fd(x, y),
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then we say 7 : X — X is Hardy-Rogers non-expansive. On the other hand if
o >1 and

d(Tx, Ty) = ad(x, Tx) + bd(y, Ty) + cd(x, Ty) + ed(y, Tx) + fd(x, y),
then wesay 7 : X — X is Hardy-Rogers expansive.
In Hardy and Rogers [2, Theorem 1], the authors proved under certain

conditions on (X, d) that if T : X — X is a Hardy-Rogers contraction or Hardy-

Rogers non-expansive, then 7 has a unique fixed point.

In the present paper, we consider (X, d) a cone heptagonal metric space, and
show under certain conditions on (X, d), that if T : X — X is Hardy-Rogers
expansive, then T has a unique fixed point.

At first, we obtain a theorem related to the following, and obtain the main result
as a Corollary.

Definition 1.2. Let (X, d) be a metric space, and T, g : X > X be two self-

maps on X. We will say T is Hardy-Rogers expansive with respect to g if
d(Tx, Ty) = ad(gx, Tx) + bd(gy, Ty) + cd(gx, Ty) + ed(gy, Tx) + fd(gx, gy)
forall x, ye X, where a, b, c, e, f 20 andsatisfy o =a+b+c+e+ f > 1.

Remark 1.3. Note that if g is the identity in the above, then we simply refer to T

as Hardy-Rogers expansive.

This paper is organized as follows. Section 2 gives some preliminary ideas that
would be useful in the sequel. By way of Example 2.9, we showed in [1] that the
notion of cone heptagonal metric space is a proper extension of cone hexagonal
metric space. Example 2.10 and Example 2.11 also show that the notion of cone
heptagonal metric space is a proper extension of cone hexagonal metric space. The
expanding counterpart of the Hardy-Rogers mapping theorem, Hardy and Rogers [2,
Theorem 1(a)] is obtained as Corollary 3.2. Finally we illustrate Theorem 3.1 with

Example 3.3.
2. Preliminaries

Notation 2.1. E will denote a real Banach space.
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Definition 2.2. P c E will be called a cone iff

(a) P is closed, nonempty, and P # {0},
(b)a,beR,a,b=20, and x, ye P implies ax + by € P,
(c) xe P and —x € P implies x = 0.

Notation 2.3. < will denote a partial ordering with respect to P and will be
defined by x < y iff y —xe P. We shall write x < y to indicate that x < y but
x #y, while x <<y will stand for y — x € int(P), where int(P) denotes the
interior of P.

Definition 2.4. A cone P is called normal if there is a number k& > 0 such that
for all x, ye E, the inequality 0 < x <y implies that ||x| < k|y|. The least

positive number k satisfying ||x| < k||| is called the normal constant of P.

Remark 2.5. In this paper, we always assume that E is a real Banach space and

P is a solid cone in E with int(P) # ® and < is a partial ordering with respect to P.

Definition 2.6. Let X be a nonempty set. Suppose the mapping d : X X X — E

satisfies
(a) 0 <d(x, y) forall x, ye X and d(x, y) =0 iff x =y,
(b) d(x, y)=d(y, x) forall x, ye X,
(¢) d(x, y)<d(x, z)+d(z, y) forall x, y, z€ X.
Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Remark 2.7. If we replace (c) of the previous definition with the following,
which we call the heptagonal property, d(x, y) < d(x, z)+ d(z, w)+d(w, u) +
d(u, v)+d(v,t)+d(t, y) forall x, y, z, w, u, v, t € X and for all distinct points
z, w,u, v, t € X —{x, y}, then we say d is a cone heptagonal metric on X, and we

call (X, d) a cone heptagonal metric space.

Remark 2.8. A metric space is a cone metric space with E =R and
P =10, + o).
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Example 2.9. Let X ={r, s, t, u, v, w,k}, E = R? and P = {(x, y):x, y
>0} beaconeinE. Define d : X Xx X — E by

d(x, x) =0 forall xe X,

d(r,s)=d(s, r) = (6,12),

d(r,t)=d(r,u)=d(r,v)=d(r, w)=d(s, 1) = d(s, u) = d(s, v) = d(s, w) = d(t, u) =
dt, v) = d(t, w) = d(u, v) = d(u, w) = d(v, w) = d(t, r) = d(u, r) = d(v, r) = d(w, r) =
d(t, s)=du, s)=d(v, s)=d(w, s)=du, 1) =dv, 1) =d(w, 1) =d(v, u) = d(w, u) =
d(w, v) = (1, 2),

d(k, r) = d(k, 5) = d(k. 1) = d(k. u) = d(k, v) = d(k, w) = d(r. k) = d(s. k) = d(t, k) =
d(u, k) = d(v, k) = d(w, k) = (5, 10).

Then it is easy to see that (X, d) is a cone heptagonal metric space, but it is not a

cone hexagonal metric space, since it lacks the hexagonal property of Auwalu and
Hincal [3] since (6,12)=d(r, s)>d(r,t)+d(t, u)+d(u,v)+dv, w)+d(w, s) =

(L2)+(1,2)+(1,2)+1,2)+(1,2)=(5,10) as (6,12)—(5,10)=(1, 2) e P.

Example 2.10. Let X =R, E=R? and P={(x, y):x, y 20}. Define
d: X xX +— E asfollows

0 if x=y,
d(x, y)=4(6a, 6) if x and y are both in {1, 2}, x # y,
(a, 1) if x and y are not both at time in{l, 2}, x # y,

where a > 0 is a constant. Then (X, d) is a cone heptagonal metric space, but not a
cone hexagonal metric space. Observe that, (6a, 6) = d(1, 2) > d(1, 3) +d(3, 4)
+d(4, 5) +d(5, 6) + d(6, 1) = (5a, 5), thus the hexagonal property of Auwalu and
Hincal [3] does not hold.

Example 2.11. Let X =N, E=Ck[0,1] with [x| =], +[*]. and
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P={xe E:x(t)=0} for te[0,1]. Then this cone is not normal. Define

d: X XX — E asfollows
0 if x=y,

d(x, y)=<6e’ if x and y are both in {I, 2}, x # v,

e if x and y are not both at time in {I, 2}, x # y.

Then (X, d) is a cone heptagonal metric space, but not a cone hexagonal metric

space, since it lacks the hexagonal property of Auwalu and Hincal [3].

Definition 2.12. Let (X, d) be a cone heptagonal metric space, and {x,} be a
sequence in X and x € X. If for every c € E with 0 <« ¢, there is a natural number
N such that for all n > N, d(x,, x) < ¢, then {x,} is said to be convergent to x

and x is the limit of {x,}. We sometimes write lim,_,, x, = x.

Definition 2.13. Let (X, d) be a cone heptagonal metric space, and {x,} be a
sequence in X. If for every ¢ € E with 0 << ¢, there is a natural number N such that

forall n, m > N, d(x,, x,,) < ¢, then {x,} is said to be a Cauchy sequence in X.

m

Definition 2.14. Let (X, d) be a cone heptagonal metric space. If every Cauchy
sequence in X converges to a point in X, then X is called a complete cone heptagonal
metric space.

Definition 2.15. Let f and g be two self-maps of a nonempty set X. If
fx = gx =y for some x € X, then x is called a coincidence point of fand g and y is
called the point of coincidence of fand g.

Definition 2.16. Two self-maps f and g of a nonempty set X are said to be
weakly compatible if they commute at their coincidence points, that is, fx = gx

implies that fgx = gfx.
In the sequel, we will need the following from M. Abbas and G. Jungck [4].

Proposition 2.17. If f and g are weakly compatible self-maps of a nonempty set

X such that they have a unique point of coincidence, that is, fx = gx =y, theny is

the unique common fixed point of f and g.
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In the sequel, we will need the following from Malhotra et al. [5].

Remark 2.18. Let P be a cone in a real Banach space E and let a, b, c € E,

then

(@If a<band b<c, then a < ¢,
b)If a<b and b < ¢, then a < ¢,
(©)If 0 <u < ¢, foreach c e int(P), then u = 0,

(d) If ceint(P) and a, — 0, then there exists ny € N such that for all

n > ny, we have a,, < ¢,
e)If0<aq, <b,, foreachnand a, — a, b, = b, then a < b,

(f) If a < Aa, where 0 < A <1, then a = 0.
3. Main Results

Theorem 3.1. Let (X, d) be a complete cone heptagonal metric space and let

T, g:X > X satisfy
d(Tx, Ty) = ad(gx, Tx) + bd(gy, Ty) + cd(gx, Ty) + ed(gy, Tx) + fd(gx, gy)

for all x, ye X, where a,b,c,e, f 20 and satisfty a+b+2e+ f >1,
f+c+e>1, f>L,b+c<l, and a+e<1. If g(X)c T(X) and either T(X)
or g(X) is complete, then T and g have a unique point of coincidence in X. If T and

g are weakly compatible, then they have a unique common fixed point in X.

Proof. Let xy € X, since g(X) < T(X), we can choose x; € X such that
gxo = Tx;. Continuing this process we can construct a sequence {x, } in X such that
Tx, = gx,_q, forall n 21. If gx,_y = gx,, for some n =1, then Tx, = gx, and
is a coincidence point of T and g. Hence assume that x, # x, | forall n > 1.

Xn

Now observe that
d(gxn—l’ 8Xn ) = d(Txn’ Tx, i )

> ad(gx,, Tx, ) + bd(gx, 1> Tx,41) + cd(gx,, Tx, 1)+ ed(gx,,1, Tx, )
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+fd(gx,, 8xp41)
> ad(gx,, gx,—1)+bd(gx, 41, gx,) +cd(gx,, gx, )+ ed(gx,,1> &,_1)
+fd(gx,, 8xp41)
> ad(gx,, gx,—1)+ (b + f)d(gxy41. 8x,) + ed(8X, 11 8%p-1)-
From the above, one has,
(b + fld(gxps1, g%, ) < (L—a)d(gx, 1, gx,) — ed(gx,11, 8%,-1)-

Now using the triangle inequality in the expression immediately above, one deduces
that

(b+ f+e)d(gxyi1s gx,) < (1—a—e)d(gx,_y, gx,).

l—-a-e

Thus, it follows that d(gx,,|, gx,) < vd(gx,_;, gx,), where, 7:= m
e

(0, 1), and by induction, we have d(gx,.;, gx,) < v"d(gxg, gx;). Now observe
that

d(gx,-1> %n41) = d(Txy, Txyi2)
> ad(gx,, Tx, )+ bd(gx,.2, Tx,4n) + cd(gx,, Tx, 2 )+ ed(gx, 2, Tx,)
+fd(gxy, 8xn12)
> ad(gx,, gx,—1)+bd(gx, 12, 8x,41) + cd(gx,, gx,.1)+ ed(8x,in, 8%_1)
+fd(gx,, 8xp42)-
From the above, we deduce that
fd(gx,, gx,12)
< d(gx,-1, 8%n41) — ad(gxy, 8x,1) = bd(gx,42, 8Xps1)
—cd(8x,, 8xy41) = ed(8xy12, 8%-1)
< d(gx,_1, gx,) +d(gx,, g5,00) +d(gx,10, 8%y41) — ad(gx,, gx,_1)

_bd(gxn+2’ 8Xn+1 ) - Cd(gxn» 8Xn+1 ) - ed(gxn+2’ 8Xn—-1 ).
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From the above, we deduce that
(f =Dd(gx, gxy42)
< (- a)d(gx,, gx,—1)+ (1= b)d(gxy2. 8Xp11)
—cd(gx,, 8%,11) — ed(8xy 42, 8%,-1)
< (1—a)d(gx,, gx,—1)+ (0 =b)d(gx, 2. 8Xy41)
—cld(gx,, gxy42)+d(gx,42, 8%p11)]
—e[d(gx,, gx,1)+d(gx,, gxy12)]
From the above, one deduces that
(f +c+e—1d(gx,, 8x,42)
S(-a—e)d(gx,. gx,—1)+ (1 —b—c)d(gx,12. 8xys1)-
It follows that d(gx,, gx,.2) < oqd(gx,, gx,_1)+ 0rd(gx,42, gX,41), Wwhere
l-a-e 1-b-c

>0 and 0.y := — > 0. Now observe that

Ol =
! fH+c+e—-1

= rerel
d(gx,—1, 8%n12) = d(Tx,, Txyy3)
2 ad(gx,, Tx, ) + bd(gx, 43, Tx,43) + cd(gx,, Tx,,3) + ed(gx, 3, Tx, )
+fd(gx,, 8%,43)
> ad(gx,, 8x,—1)+bd(8x,,3, §X,42) +cd(gx,, 8% 40 )+ ed(8x,43, 8X,1)
+fd(gx,, 8%p43)-
From the above, we deduce that
fd(gx,, gxp13)
< d(gxy-1, 8%p42) — ad(gxy, gx,_1) = bd(gx,13, 8%y12)
—cd(gxy, 8%y12) = ed(8x,13, 8%,-1)

< d(gxn—lv 8Xn )+ d(gxn’ 8Xn+3 )+ d(gxn+3’ 8Xn+2 ) - ad(gxn? gxn—l)
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_bd(g-xn+3’ g—xn+2 ) - Cd(gxn’ g—xn+2 ) - ed(g-xn+39 gxn—l )

From the above, we deduce that
(f = Dd(gx,. 8%4+3)
< (1 -a)d(gxy,, gx,-1) + (1= b)d(8X,43, 8%p12)
—cd(gx,, 8%,12) — ed(8x,13, 8%,1)
< (- a)d(gx,, gx,-1) + (1= b)d(8X,43, 8%p12)
—cld(gx,, 8xp43) + d(gx,13, 8%y42)]
—e[d(gx,. gx,-1) +d(gx,. 8x,43)]
From the above, one deduces that
(f +c+e—1)d(gx,, gx,43)
S(-a-e)d(gx,, gx,_1)+ (1 —b—c)d(gx,13. 8,42 )-

It follows that d(gx,, gx,.3) < oqd(gx,, gx,—_1)+ 0rd(gx,43, X,12), Where

o = _lzaze >0 and o, = A=bze > 0. Similarly, we have,
fH+c+e—-1 fH+c+e—-1
d(gxn’ gxn+4) < (xld(gxn’ 8Xn-1 ) + 0c2d(gxn+4’ 8Xn+3 )’
d(gx,. 8xy45) < oqd(gx,. gx,_1)+ 0ad(8X,45. 8xy14),
l-a-e 1-b—-c
where o) = —————>0 and 0o, :=—————>0. For the sequence
fH+c+e—-1 fH+c+e—1

{gx, }, we consider d(gx,, 8Xn+p ) in two cases, p is even and p is odd. When p is

even, let p =2+ 2m, where m > 2, and when p is odd let p =5+ 2m, where

m = 1. In the case p = 5+ 2m, we have
d(8xy, 8Xpi5m+2)
< 2d(gx,, g%p41) +2d(gx,, 8Xp43)
+d (8%, 8Xpys)+ o+ (8% 51y 8Xntsme2)

< Zd(gxn’ 8Xn+1 )+ 20cld(gxn’ 8Xn-1 )+ 2(X2d(gxn+3, 8Xn+2 )
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+Ocld(gxn’ 8Xn—-1 ) + Oc2d(gxn+5’ 8Xn+4 ) +ot d(gxn+5m+l’ 8Xn+5m+2 )

< 29"d(gxg, gx )+ 200y d(gxg, gxy) + 207" 2d (gx¢, gx)

n+5m+ld(

+ ocly"_ld(gxo, gx )+ 0°2Yn+4d(gxo, gxp )+t y gxo- 8X1)

< 3oy d(gxg, gx1) + 207" 2d(gxg, gx1) + oy d(gx, gx1)

n

2y
I-y

+ d(gxp. gx1)-

In the case p = 2 + 2m, we have,
d(8xy, 8Xps2m+2)
< 2d(gxy,, gxp4p ) +d(gx,, 8Xppq )+
+d (8% 42m> 8%n+2m+1) + A8 omets &ns2mr2)
< 200d(8x,, 8Xp—1) + 2002d(8X 41, 8Xp42) + 1d(gx,, 8%, 1)
+00d(8Xy435 Xnia) + o+ d(8Xy10ms 8Xnrome1)
+d(8%y42m+1> 8Xn+2m+2)
< 207" d(gxg. gx) + 20,7 N d(gxg. gxy ) + oy ld(gx. gxp)
+ oY Pd(gxg. gx) + o+ YA (gxo. gx) + YT d(gxg. g1y)
< 2047""'d(gxg. gx1) + 202Y" d(gxo. gxp) + 0y d(gxg. gxp)

n

v
I-y

+0‘2Yn+3d(gx07 gxy)+ e+ d(gxp. gx;)-

Since oy, 0ty >0 and ye (0, 1), if we take limits as n — oo in the even and odd
cases above, we deduce from Remark 2.18, that for every c € E with 0 <« ¢, there
exists a natural number n, such that d(gx,, gx,.,) << ¢ for all n > ny. Hence
{gx,} is a Cauchy sequence. Suppose g(X) is a complete subspace of X, then there

exists ye g(X) < T(X) such that lim,_,., gx, =y and lim,_,, Tx, = y and if
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T(X) is complete, this holds also with y € T(X). Let u € X be such that Tu = y.

Now observe that,
d(gx,_1, Tu) = d(Tx,,, Tu)
> ad(gx,, Tx, )+ bd(gu,, Tu) + cd(gx,, Tu) + ed(gu, Tx, ) + fd(gx,, gu)

> fd(gx,, gu).

Thus, d(gx,, gu) < %d(gxn_l, Tu). Now observe that,

d(y, gu) <d(y, gx,_4)+d(gx,_4, gx,—3) +d(gx,_3. gx,_2)
+d(gx,_n, 8%y—1) +d(gx,_y, gx,) +d(gx,, gu)
< d(y, gxy_a) +d(gx,_4, 8%,—3) +d(gx,_3, gx,_2)

1
+ (gxn—Z’ 8Xn—-1 ) + d(gxn—l’ 8Xn ) + 7 d(gxn—h Tu)'

Now for 0 << ¢, we can choose a natural number n; such that

C
- d(gxn—47 gxn—3) <

d(y, gxp_4) < 6

Cc C
< d(gx,_3, gxy_n) < o

o

c c
d(gx,_y, 8x,_1) < < d(gx,_1, gx,) << —, and, d(gx,_;, Tu) < o

6

Thus,
d(y, gu) < 6-%=c

for all n >ny and gu =y, hence Tu = gu = y, which means y is a coincidence
point of T and g. If there exists y* such that gu* = Tu* = y* for some u*e X,

then by the expanding condition of the theorem, we deduce that,

d(y, y*) < —d(y, y*).

=

Since f >1, then by Remark 2.18, d(y, y*) =0, that is, y = y* . Therefore g

and T have a unique point of coincidence in X. If g and T are weakly compatible, then
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by Proposition 2.17, they have a unique common fixed point in X
If g is the identity in the previous theorem, then we obtain the following.

Corollary 3.2. Let (X, d) be a complete cone heptagonal metric space and let

T : X — X be an onto mapping satisfying
d(Tx, Ty) = ad(x, Tx) + bd(y, Ty) + cd(x, Ty) + ed(y, Tx) + fd(x, y)

for all x, ye X, where a,b,c,e, f 20 and satisfy a+b+2e+ f >1,
fH+c+e>L, f>1,b+c<]1, and a+e <1. Then T has a unique fixed point in
X.

Example 3.3. Let X, E, P, and d : X X X — E be defined as in Example 2.8,
Ampadu [1]. As that example shows, (X, d) is a cone heptagonal metric space but
not a cone hexagonal metric space. Now define mappings 7, g: X > X as
follows: Tx = x for all xe X, and g = f, where f : X — X is the mapping in
Example 3.2, Ampadu [1]. It follows that all the conditions of Theorem 3.1 hold for
fe(,2],a= b=c=e=0. Moreover, 6 = we X is the unique common fixed

point of 7 and g.
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