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Abstract 

Very recently, we introduced a concept of Cone Heptagonal Metric Space 

and obtained the Chatterjea Mapping Theorem in this setting [1]. In the 

present paper, we obtain the expanding counterpart of the Hardy-Rogers 

Mapping Theorem [2, Theorem 1(a)]. 

1. Introduction 

Let ( )dX ,  be a metric space. Recall Hardy and Rogers [2] that a map 

XXT ֏:  is called a Hardy-Rogers contraction if 

( ) ( ) ( ) ( ) ( ) ( )yxfdTxyedTyxcdTyybdTxxadTyTxd ,,,,,, ++++≤  

for all ,, Xyx ∈  where 0,,,, ≥fecba  and satisfy .1: <++++=α fecba  

Remark 1.1. If 1=α  and 

( ) ( ) ( ) ( ) ( ) ( ),,,,,,, yxfdTxyedTyxcdTyybdTxxadTyTxd ++++<  
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then we say XXT ֏:  is Hardy-Rogers non-expansive. On the other hand if 

1>α  and 

( ) ( ) ( ) ( ) ( ) ( ),,,,,,, yxfdTxyedTyxcdTyybdTxxadTyTxd ++++≥  

then we say XXT ֏:  is Hardy-Rogers expansive. 

In Hardy and Rogers [2, Theorem 1], the authors proved under certain 

conditions on ( )dX ,  that if XXT ֏:  is a Hardy-Rogers contraction or Hardy-

Rogers non-expansive, then T has a unique fixed point. 

In the present paper, we consider ( )dX ,  a cone heptagonal metric space, and 

show under certain conditions on ( ),, dX  that if XXT ֏: is Hardy-Rogers 

expansive, then T has a unique fixed point. 

At first, we obtain a theorem related to the following, and obtain the main result 

as a Corollary. 

Definition 1.2. Let ( )dX ,  be a metric space, and XXgT ֏:,  be two self-

maps on X. We will say T is Hardy-Rogers expansive with respect to g if 

( ) ( ) ( ) ( ) ( ) ( )gygxfdTxgyedTygxcdTygybdTxgxadTyTxd ,,,,,, ++++≥  

for all ,, Xyx ∈  where 0,,,, ≥fecba  and satisfy .1: >++++=α fecba  

Remark 1.3. Note that if g is the identity in the above, then we simply refer to T 

as Hardy-Rogers expansive. 

This paper is organized as follows. Section 2 gives some preliminary ideas that 

would be useful in the sequel. By way of Example 2.9, we showed in [1] that the 

notion of cone heptagonal metric space is a proper extension of cone hexagonal 

metric space. Example 2.10 and Example 2.11 also show that the notion of cone 

heptagonal metric space is a proper extension of cone hexagonal metric space. The 

expanding counterpart of the Hardy-Rogers mapping theorem, Hardy and Rogers [2, 

Theorem 1(a)] is obtained as Corollary 3.2. Finally we illustrate Theorem 3.1 with 

Example 3.3. 

2. Preliminaries 

Notation 2.1. E will denote a real Banach space. 
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Definition 2.2. EP ⊂  will be called a cone iff 

(a) P is closed, nonempty, and { },0≠P  

(b) ,0,,, ≥∈ baba R  and Pyx ∈,  implies ,Pbyax ∈+  

(c) Px ∈  and Px ∈−  implies .0=x  

Notation 2.3. ≤  will denote a partial ordering with respect to P and will be 

defined by yx ≤  iff .Pxy ∈−  We shall write yx <  to indicate that yx ≤  but 

,yx ≠  while yx <<  will stand for ( ),int Pxy ∈−  where ( )Pint  denotes the 

interior of P. 

Definition 2.4. A cone P is called normal if there is a number 0>k  such that 

for all ,, Eyx ∈  the inequality yx ≤≤0  implies that .ykx ≤  The least 

positive number k satisfying ykx ≤  is called the normal constant of P. 

Remark 2.5. In this paper, we always assume that E is a real Banach space and 

P is a solid cone in E with ( ) Φ≠Pint  and ≤  is a partial ordering with respect to P. 

Definition 2.6. Let X be a nonempty set. Suppose the mapping EXXd ֏×:  

satisfies 

(a) ( )yxd ,0 <  for all Xyx ∈, and ( ) 0, =yxd  iff ,yx =  

(b) ( ) ( )xydyxd ,, =  for all ,, Xyx ∈  

(c) ( ) ( ) ( )yzdzxdyxd ,,, +≤  for all .,, Xzyx ∈  

Then d is called a cone metric on X, and ( )dX ,  is called a cone metric space. 

Remark 2.7. If we replace (c) of the previous definition with the following, 

which we call the heptagonal property, ( ) ( ) ( ) ( ) +++≤ uwdwzdzxdyxd ,,,,  

( ) ( ) ( )ytdtvdvud ,,, ++  for all Xtvuwzyx ∈,,,,,,  and for all distinct points 

{ },,,,,, yxXtvuwz −∈  then we say d is a cone heptagonal metric on X, and we 

call ( )dX ,  a cone heptagonal metric space. 

Remark 2.8. A metric space is a cone metric space with R=E  and 

[ ).,0 ∞+=P  
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Example 2.9. Let { } 2,,,,,,, R== EkwvutsrX  and {( ) yxyxP ,:,=  

}0≥  be a cone in E. Define EXXd ֏×:  by 

( ) 0, =xxd  for all ,Xx ∈  

( ) ( ) ( ),12,6,, == rsdsrd  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ========= utdwsdvsdusdtsdwrdvrdurdtrd ,,,,,,,,,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ========= rwdrvdrudrtdwvdwudvudwtdvtd ,,,,,,,,,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ========= uwduvdtwdtvdtudswdsvdsudstd ,,,,,,,,,  

( ) ( ),2,1, =vwd  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ========= ktdksdkrdwkdvkdukdtkdskdrkd ,,,,,,,,,  

( ) ( ) ( ) ( ).10,5,,, === kwdkvdkud  

Then it is easy to see that ( )dX ,  is a cone heptagonal metric space, but it is not a 

cone hexagonal metric space, since it lacks the hexagonal property of Auwalu and 

Hincal [3] since ( ) ( ) ( ) ( ) ( ) ( ) ( ) =++++>= swdwvdvudutdtrdsrd ,,,,,,12,6  

( ) ( ) ( ) ( ) ( )2,12,12,12,12,1 ++++ ( )10,5=  as ( ) ( ) ( ) .2,110,512,6 P∈=−  

Example 2.10. Let 2, RR == EX  and ( ){ }.0,:, ≥= yxyxP  Define 

EXXd ֏×:  as follows 

( ) ( ) { }

( ) { }











≠

≠

=

=

,,2,1intimeatbothnotareandif1,

,,2,1inbothareandif6,6

,if0

,

yxyxa

yxyxa

yx

yxd  

where 0>a  is a constant. Then ( )dX ,  is a cone heptagonal metric space, but not a 

cone hexagonal metric space. Observe that, ( ) ( ) ( ) ( )4,33,12,16,6 ddda +>=  

( ) ( ) ( ) ( ),5,51,66,55,4 addd =+++  thus the hexagonal property of Auwalu and 

Hincal [3] does not hold. 

Example 2.11. Let ,N=X  [ ]1,01
RC=E  with ∞∞

′+= xxx  and 
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{ ( ) }0: ≥∈= txExP  for [ ].1,0∈t  Then this cone is not normal. Define 

EXXd ֏×: as follows 

( ) { }

{ }











≠

≠

=

=

.,2,1intimeatbothnotareandif

,,2,1inbothareandif6

,if0

,

yxyxe

yxyxe

yx

yxd

t

t
 

Then ( )dX ,  is a cone heptagonal metric space, but not a cone hexagonal metric 

space, since it lacks the hexagonal property of Auwalu and Hincal [3]. 

Definition 2.12. Let ( )dX ,  be a cone heptagonal metric space, and { }nx  be a 

sequence in X and .Xx ∈  If for every Ec ∈  with ,0 c<<  there is a natural number 

N such that for all ( ) ,,, cxxdNn n <<>  then { }nx  is said to be convergent to x 

and x is the limit of { }.nx  We sometimes write .lim xxnn =∞→  

Definition 2.13. Let ( )dX ,  be a cone heptagonal metric space, and { }nx  be a 

sequence in X. If for every Ec ∈  with ,0 c<<  there is a natural number N such that 

for all ( ) ,,,, cxxdNmn mn <<>  then { }nx  is said to be a Cauchy sequence in X. 

Definition 2.14. Let ( )dX ,  be a cone heptagonal metric space. If every Cauchy 

sequence in X converges to a point in X, then X is called a complete cone heptagonal 

metric space. 

Definition 2.15. Let f and g be two self-maps of a nonempty set X. If 

ygxfx ==  for some ,Xx ∈  then x is called a coincidence point of f and g and y is 

called the point of coincidence of f and g. 

Definition 2.16. Two self-maps f and g of a nonempty set X are said to be 

weakly compatible if they commute at their coincidence points, that is, gxfx =  

implies that .gfxfgx =  

In the sequel, we will need the following from M. Abbas and G. Jungck [4]. 

Proposition 2.17. If f and g are weakly compatible self-maps of a nonempty set 

X such that they have a unique point of coincidence, that is, ,ygxfx ==  then y is 

the unique common fixed point of f and g. 
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In the sequel, we will need the following from Malhotra et al. [5]. 

Remark 2.18. Let P be a cone in a real Banach space E and let ,,, Ecba ∈  

then 

(a) If ba ≤  and ,cb <<  then ,ca <<  

(b) If ba <<  and ,cb <<  then ,ca <<  

(c) If ,0 cu <<≤  for each ( ),int Pc ∈  then ,0=u  

(d) If ( )Pc int∈  and ,0→na  then there exists N∈0n  such that for all 

,0nn >  we have ,can <<  

(e) If ,0 nn ba ≤≤  for each n and ,, bbaa nn →→  then ,ba ≤  

(f) If ,aa λ≤  where ,10 <λ<  then .0=a  

3. Main Results 

Theorem 3.1. Let ( )dX ,  be a complete cone heptagonal metric space and let 

XXgT ֏:,  satisfy 

( ) ( ) ( ) ( ) ( ) ( )gygxfdTxgyedTygxcdTygybdTxgxadTyTxd ,,,,,, ++++≥  

for all ,, Xyx ∈  where 0,,,, ≥fecba  and satisfy ,12 >+++ feba  

,1>++ ecf  ,1,1 <+> cbf  and .1<+ ea  If ( ) ( )XTXg ⊆  and either ( )XT  

or ( )Xg  is complete, then T and g have a unique point of coincidence in X. If T and 

g are weakly compatible, then they have a unique common fixed point in X. 

Proof. Let ,0 Xx ∈  since ( ) ( ),XTXg ⊆  we can choose Xx ∈1  such that 

.10 Txgx =  Continuing this process we can construct a sequence { }nx  in X such that 

,1−= nn gxTx  for all .1≥n  If nn gxgx =−1  for some ,1≥n  then nn gxTx =  and 

nx  is a coincidence point of T and g. Hence assume that 1−≠ nn xx  for all .1≥n  

Now observe that 

( ) ( )11 ,, +− = nnnn TxTxdgxgxd  

( ) ( ) ( ) ( )nnnnnnnn TxgxedTxgxcdTxgxbdTxgxad ,,,, 1111 ++++ +++≥  
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( )1, ++ nn gxgxfd  

( ) ( ) ( ) ( )1111 ,,,, −++− +++≥ nnnnnnnn gxgxedgxgxcdgxgxbdgxgxad  

( )1, ++ nn gxgxfd  

( ) ( ) ( ) ( ).,,, 1111 −++− +++≥ nnnnnn gxgxedgxgxdfbgxgxad  

From the above, one has, 

( ) ( ) ( ) ( ) ( ).,,1, 1111 −+−+ −−≤+ nnnnnn gxgxedgxgxdagxgxdfb  

Now using the triangle inequality in the expression immediately above, one deduces 

that 

( ) ( ) ( ) ( ).,1, 11 nnnn gxgxdeagxgxdefb −+ −−≤++  

Thus, it follows that ( ) ( ),,, 11 nnnn gxgxdgxgxd −+ γ≤  where,  ∈
++

−−
=γ

efb

ea1
:  

( ),1,0  and by induction, we have ( ) ( ).,, 101 gxgxdgxgxd n
nn γ≤+  Now observe 

that 

( ) ( )211 ,, ++− = nnnn TxTxdgxgxd  

( ) ( ) ( ) ( )nnnnnnnn TxgxedTxgxcdTxgxbdTxgxad ,,,, 2222 ++++ +++≥  

( )2, ++ nn gxgxfd  

( ) ( ) ( ) ( )121121 ,,,, −++++− +++≥ nnnnnnnn gxgxedgxgxcdgxgxbdgxgxad  

( )., 2++ nn gxgxfd  

From the above, we deduce that 

( )2, +nn gxgxfd  

( ) ( ) ( )12111 ,,, ++−+− −−≤ nnnnnn gxgxbdgxgxadgxgxd  

( ) ( )121 ,, −++ −− nnnn gxgxedgxgxcd  

( ) ( ) ( ) ( )11221 ,,,, −+++− −++≤ nnnnnnnn gxgxadgxgxdgxgxdgxgxd  

( ) ( ) ( ).,,, 12112 −++++ −−− nnnnnn gxgxedgxgxcdgxgxbd  
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From the above, we deduce that 

( ) ( )2,1 +− nn gxgxdf  

( ) ( ) ( ) ( )121 ,1,1 ++− −+−≤ nnnn gxgxdbgxgxda  

( ) ( )121 ,, −++ −− nnnn gxgxedgxgxcd  

( ) ( ) ( ) ( )121 ,1,1 ++− −+−≤ nnnn gxgxdbgxgxda  

[ ( ) ( )]122 ,, +++ +− nnnn gxgxdgxgxdc  

[ ( ) ( )].,, 21 +− +− nnnn gxgxdgxgxde  

From the above, one deduces that 

( ) ( )2,1 +−++ nn gxgxdecf  

( ) ( ) ( ) ( ).,1,1 121 ++− −−+−−≤ nnnn gxgxdcbgxgxdea  

It follows that ( ) ( ) ( ),,,, 122112 ++−+ α+α≤ nnnnnn gxgxdgxgxdgxgxd  where 

0
1

1
:1 >

−++

−−
=α

ecf

ea
 and .0

1

1
:2 >

−++

−−
=α

ecf

cb
 Now observe that 

( ) ( )321 ,, ++− = nnnn TxTxdgxgxd  

( ) ( ) ( ) ( )nnnnnnnn TxgxedTxgxcdTxgxbdTxgxad ,,,, 3333 ++++ +++≥  

( )3, ++ nn gxgxfd  

( ) ( ) ( ) ( )132231 ,,,, −++++− +++≥ nnnnnnnn gxgxedgxgxcdgxgxbdgxgxad  

( )., 3++ nn gxgxfd  

From the above, we deduce that 

( )3, +nn gxgxfd  

( ) ( ) ( )23121 ,,, ++−+− −−≤ nnnnnn gxgxbdgxgxadgxgxd  

( ) ( )132 ,, −++ −− nnnn gxgxedgxgxcd  

( ) ( ) ( ) ( )12331 ,,,, −+++− −++≤ nnnnnnnn gxgxadgxgxdgxgxdgxgxd  
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( ) ( ) ( ).,,, 13223 −++++ −−− nnnnnn gxgxedgxgxcdgxgxbd  

From the above, we deduce that 

( ) ( )3,1 +− nn gxgxdf  

( ) ( ) ( ) ( )231 ,1,1 ++− −+−≤ nnnn gxgxdbgxgxda  

( ) ( )132 ,, −++ −− nnnn gxgxedgxgxcd  

( ) ( ) ( ) ( )231 ,1,1 ++− −+−≤ nnnn gxgxdbgxgxda  

[ ( ) ( )]233 ,, +++ +− nnnn gxgxdgxgxdc  

[ ( ) ( )].,, 31 +− +− nnnn gxgxdgxgxde  

From the above, one deduces that 

( ) ( )3,1 +−++ nn gxgxdecf  

( ) ( ) ( ) ( ).,1,1 231 ++− −−+−−≤ nnnn gxgxdcbgxgxdea  

It follows that ( ) ( ) ( ),,,, 232113 ++−+ α+α≤ nnnnnn gxgxdgxgxdgxgxd  where 

0
1

1
:1 >

−++

−−
=α

ecf

ea
 and .0

1

1
:2 >

−++

−−
=α

ecf

cb
 Similarly, we have, 

( ) ( ) ( ),,,, 342114 ++−+ α+α≤ nnnnnn gxgxdgxgxdgxgxd  

( ) ( ) ( ),,,, 452115 ++−+ α+α≤ nnnnnn gxgxdgxgxdgxgxd  

where 0
1

1
:1 >

−++

−−
=α

ecf

ea
 and .0

1

1
:2 >

−++

−−
=α

ecf

cb
 For the sequence 

{ },ngx  we consider ( )pnn gxgxd +,  in two cases, p is even and p is odd. When p is 

even, let ,22 mp +=  where ,2≥m  and when p is odd let ,25 mp +=  where 

.1≥m  In the case ,25 mp +=  we have 

( )25, ++ mnn gxgxd  

( ) ( )31 ,2,2 ++ +≤ nnnn gxgxdgxgxd  

( ) ( )25155 ,, +++++ +++ mnmnnn gxgxdgxgxd ⋯  

( ) ( ) ( )232111 ,2,2,2 ++−+ α+α+≤ nnnnnn gxgxdgxgxdgxgxd  
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( ) ( ) ( )251545211 ,,, ++++++− ++α+α+ mnmnnnnn gxgxdgxgxdgxgxd ⋯  

( ) ( ) ( )10
2

210
1

110 ,2,2,2 gxgxdgxgxdgxgxd nnn +− γα+γα+γ≤  

( ) ( ) ( )10
15

10
4

210
1

1 ,,, gxgxdgxgxdgxgxd mnnn +++− γ++γα+γα+ ⋯  

( ) ( ) ( )10
4

210
2

210
1

1 ,,2,3 gxgxdgxgxdgxgxd nnn ++− γα+γα+γα≤  

( ).,
1

2
10 gxgxd

n

γ−

γ
+  

In the case ,22 mp +=  we have, 

( )22, ++ mnn gxgxd  

( ) ( ) ⋯++≤ ++ 42 ,,2 nnnn gxgxdgxgxd  

( ) ( )2212122 ,, +++++++ ++ mnmnmnmn gxgxdgxgxd  

( ) ( ) ( )1121211 ,,2,2 −++− α+α+α≤ nnnnnn gxgxdgxgxdgxgxd  

( ) ( )122432 ,, +++++ ++α+ mnmnnn gxgxdgxgxd ⋯  

( )2212 , +++++ mnmn gxgxd  

( ) ( ) ( )10
1

110
1

210
1

1 ,,2,2 gxgxdgxgxdgxgxd nnn −+− γα+γα+γα≤  

( ) ( ) ( )10
12

10
2

10
3

2 ,,, gxgxdgxgxdgxgxd mnmnn ++++ γ+γ++γα+ ⋯  

( ) ( ) ( )10
1

110
1

210
1

1 ,,2,2 gxgxdgxgxdgxgxd nnn −+− γα+γα+γα≤  

( ) ( ).,
1

, 1010
3

2 gxgxdgxgxd
n

n

γ−

γ
++γα+ +

⋯  

Since 0, 21 >αα  and  ( ),1,0∈γ  if we take limits as ∞→n  in the even and odd 

cases above, we deduce from Remark 2.18, that for every Ec ∈  with ,0 c<< there 

exists a natural number 0n  such that ( ) cgxgxd pnn <<+,  for all .0nn >  Hence 

{ }ngx  is a Cauchy sequence. Suppose ( )Xg  is a complete subspace of X, then there 

exists ( ) ( )XTXgy ⊆∈  such that ygxnn =∞→lim  and yTxnn =∞→lim  and if 
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( )XT  is complete, this holds also with ( ).XTy ∈  Let Xu ∈  be such that .yTu =  

Now observe that, 

( ) ( )TuTxdTugxd nn ,,1 =−  

( ) ( ) ( ) ( ) ( )gugxfdTxguedTugxcdTugubdTxgxad nnnnnn ,,,,, ++++≥  

( )., gugxfd n≥  

Thus, ( ) ( ).,
1

, 1 Tugxd
f

gugxd nn −≤  Now observe that, 

( ) ( ) ( ) ( )23344 ,,,, −−−−− ++≤ nnnnn gxgxdgxgxdgxydguyd  

( ) ( ) ( )gugxdgxgxdgxgxd nnnnn ,,, 112 +++ −−−  

( ) ( ) ( )23344 ,,, −−−−− ++≤ nnnnn gxgxdgxgxdgxyd  

( ) ( ) ( ).,
1

,, 1112 Tugxd
f

gxgxdgxgx nnnnn −−−− +++  

Now for ,0 c<<  we can choose a natural number 0n  such that 

( ) ,
6

, 4
c

gxyd n <<−  ( ) ,
6

, 34
c

gxgxd nn <<−−  ( ) ,
6

, 23
c

gxgxd nn <<−−  

( ) ,
6

, 12
c

gxgxd nn <<−−  ( ) ,
6

,1
c

gxgxd nn <<−  and, ( ) .
6

,1
cf

Tugxd n <<−  

Thus, 

( ) c
c

guyd =⋅<<
6

6,  

for all 0nn >  and ,ygu =  hence ,yguTu ==  which means y is a coincidence 

point of T and g. If there exists *y  such that *** yTugu ==  for some ,* Xu ∈  

then by the expanding condition of the theorem, we deduce that, 

( ) ( ).*,
1

*, yyd
f

yyd ≤  

Since ,1>f  then by Remark 2.18, ( ) ,0*, =yyd  that is, .*yy =  Therefore g 

and T have a unique point of coincidence in X. If g and T are weakly compatible, then 
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by Proposition 2.17, they have a unique common fixed point in X 

If g is the identity in the previous theorem, then we obtain the following. 

Corollary 3.2. Let ( )dX ,  be a complete cone heptagonal metric space and let 

XXT ֏:  be an onto mapping satisfying 

( ) ( ) ( ) ( ) ( ) ( )yxfdTxyedTyxcdTyybdTxxadTyTxd ,,,,,, ++++≥  

for all ,, Xyx ∈  where 0,,,, ≥fecba  and satisfy ,12 >+++ feba  

,1,1 >>++ fecf ,1<+ cb  and .1<+ ea  Then T has a unique fixed point in 

X. 

Example 3.3. Let ,,, PEX  and EXXd ֏×:  be defined as in Example 2.8, 

Ampadu [1]. As that example shows, ( )dX ,  is a cone heptagonal metric space but 

not a cone hexagonal metric space. Now define mappings XXgT ֏:,  as 

follows: xTx =  for all ,Xx ∈  and ,: fg =  where XXf ֏:  is the mapping in 

Example 3.2, Ampadu [1]. It follows that all the conditions of Theorem 3.1 hold for 

( ] =∈ af ,2,1  .0=== ecb  Moreover, Xw ∈=6  is the unique common fixed 

point of T and g. 
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