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Abstract 

We solve the exact solvable potentials of the Schrödinger equation with 

spatially dependent masses via the Nikiforov-Uvarov method. This 

method is used to obtain the energy eigenvalues and the corresponding 

wave functions. As an example, we considered two potentials: (a) Morse 

potential (b) Singular potential with quadratically growing mass. 

1. Introduction 

In recent times many authors have studied the Schrödinger equation with 

different potentials [1-5]. The exact solutions of the Schrödinger equation with 

position dependent mass have been investigated [6]. These quantum systems with the 

position dependent effective mass [7] have been investigated for Coulomb-like 

potential [8], Hardcore potential [9], Harmonic oscillator potential [10], Morse 

potential [11] and Hulthen potential [12]. 

An alternative method called the Nikiforov-Uvarov (NU) method [13] has been 
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used in recent times for solving the exact solution of the Schrödinger equation [14]. 

These solutions can be used to get better approximated solutions for potentials more 

physically interesting [15]. Also many advances have been forwarded in this area by 

doing the classification of quantum potential regarding its solvability, for instance by 

relating the solutions to an underlying supersymmetry [16], or a dynamical one [17]. 

The aim of our study is to analyze the solution of the Schrödinger equation for the 

mass dependent potential for .0=l  

2. Review of Nikiforov-Uvarov Method 

The NU-method is based on solving a second order linear differential equation 

by reducing it to a generalized equation of hypergeometric type [13]. This method 

has been used to solve the Schrödinger, Dirac and Klein-Gordon equation for 

different kind of potentials [18]. In NU method, the second order differential 

equation can be written in the form 

 ( )
( )
( )

( )
( )

( )
( ) ,0

2
=ψ

σ

σ
+ψ′

σ

τ
+ψ ′′ s

s

s
s

s

s
s  (1) 

where ( )sσ  and ( )sσ  are polynomials, at most of second degree and ( )sτ  is a first 

degree polynomial. We write the transformation for the wave function in equation (1) 

as 

 ( ) ( ) ( ),sss nχϕ=ψ  (2) 

and equation (1) reduces to equation of hypergeometric type 

 ( ) ( ) ( ) ( ) ( ) ,0=λχ+χτ+χ ′′σ sssss nnn  (3) 

and ( )sϕ  is defined as a logarithmic derivative [13] 
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The other wave function ( )snχ  is the hypergoemetric function whose solutions are 

obtained by the Rodriques relation [13] 
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where nB  is a normalization constant and ( )sρ  is the weight function that must 

satisfy the condition 
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 ( ) ( )( ) ( ) ( ).ssss
ds

d
ρτ=ρσ  (6) 

The function ( )sπ  in equation (4) and the parameter λ  in equation (3) required for 

the NU-method are defined as follows: 

( ) ( ) ( ),
22

skss σ+σ−





 τ−σ′

±
τ−σ′

=π  (7) 

( ).sk π′+=λ  (8) 

In order to find value of k in equation (7), then the expression in the square root must 

be square of a polynomial. Thus, a new eigenvalue equation for the second-order 

differential equation becomes 

 
( ) ( ) ( )

,
2

1
2

2

ds

sdnn

ds

snd
n

σ−
−

τ
−=λ=λ  (9) 

where 

 ( ) ( ) ( )sss π+τ=τ 2  (10) 

and its derivative is negative. Thus, by the comparison of equation (8), and equation 

(9), we obtained the energy eigenvalues. 

3. Generalized Effective Hamiltonian and the Schrödinger Equation 

The general Hermitian effective Hamiltonian for the spatially dependent mass 

was proposed by Von Roos [19] as 

 [ ( ) ( ) ( ) ( ) ( ) ( )],ˆˆˆ
4

1 rmprmprmrmrmprmHVR
αβγγβα +=

�����
 (11) 

where m is the mass, p̂  is the momentum operator ,α  β  and γ  are parameters. In 

order to accommodate the Weyl ordering, Dutra and Almeida [7] use the effective 

Hamiltonian of the form 

( )
[ { ( )}rmppma

a
H 1221 ˆˆ

14
1 −− +
+

=  

( ) ( ) ( ) ( )],ˆˆˆˆ rmpmpmrmprmprm αβγγβα ++
���

 (12) 

where a constraint is imposed on the parameter 1−=γ+β+α  and the Weyl 

Ordering is recovered by choosing 0,1 =γ=α=a  [20]. 



AKPAN N. IKOT et al. 

 

22 

This effective Hamiltonian can be written as [7] 
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4. Exact Potentials with Co-ordinate Dependent Mass 

The Schrödinger equation with the effective Hamiltonian of equation (13) is 

written as [7] 
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Making the transformation for the wave function as 

 ( ) ( ) ( ).2
1

rRrmr =ψ  (16) 

This reduces the Schrödinger equation (15) to the form 
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where the effective potential is defined as 
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4.1. Particular cases 

(a) Morse potential 

Here ( ) ,0
remrm β=  ( ) .0

reVrV β=  In this case, the effective Schrödinger 

equation of (17) reduces to 
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where 






 β−=ε 8

2

0

2
q

m
ℏ  and q is given by 
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We introduce a variable change in equation (19) given as 

 reS β=  (21) 

and it becomes 
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On comparison of equation (22) with equation (1), we obtain the corresponding 

polynomials as 

 ( ) ( ) ( ) .,,1 2
0 ε++−=σ=σ=τ EssVssss  (24) 

Substituting this into equation (7), and according to the property that ( )sπ  is a 

polynomial, we find that ( )sπ  can take the following four possible values: 
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where k is determined by the polynomial π+τ=τ 2  having a negative derivative. 

However, the polynomial ( )sτ  in equation (10) for which its derivative has a 

negative value; is established by a suitable choice of the polynomial ( )sπ  for 
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02 ViEk ε−=  from equation (25), 

( ) ,0 ε+−=π isVs  

 

( ) .2 0Vs −=τ′  

One can easily show that substituting these results into equations (8) and (9) leads to 

energy eigenvalues 
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where we have used equation (23) in obtaining equation (27). 

Similarly, the weight function ( )sρ  is obtained from equation (6) as 

 ( ) ,22 sess υ−µ=ρ  (28) 

where ε=µ i  and .0V=υ  On substituting equation (28) into the Rodrique 

relation of equation (5), we get 

 ( ) [ ].2222 sn

n

n
s

nn es
ds

d
esBs υ−µ+υµ−=χ  (29) 

Equation (29) can be expressed in terms of Laguerre polynomial as 

 ( ) ( )( ),222 sLesBs n
n

s
nn

+µυµ−=χ  (30) 

where nB  is the normalization constant. The other part of the wave function is 

obtained from equation (4) as 

 ( ) .sess υ−µ=ϕ  (31) 

Finally, we combine equations (29) and (31) to get the total wave function as 

 ( ) [ ].22 sn

n

n
s

n es
ds

d
esBsR υ−µ+υµ−=  (32) 

(b) Singular potential with quadratically growing mass 

Here the potential and the effective mass are defined as [7] 
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where A and B are constants. 

Substituting equation (33) into the effective Schrödinger equation yields 
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( ),1 xr +β=  we write equation (34) as 
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The third term in equation (35) can be Taylor expanded as follows 
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where ( ).GA +=δ  

In Pekeris approximation [21], a potential function is defined as [22] 
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If one Taylor expands equation (37), we obtain 
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Substituting equation (35) into equation (34) and using equations (36)-(37), we 

obtain 
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where ,, 10 CC  and 2C  are arbitrary constants and where the terms in ( )21 x+  have 

been absorbed into the coefficient of the potential term. 
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Now introducing a new variable xes α−=  and using the following 

dimensionless parameters, 
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reduces equation (39) into the generalized hypergeometric type equations as 
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Now comparing equation (41) with equation (1), we have 

( ) ( ) ( ) ( ),1,1 sssss −=τ−=σ  

( ) ,2 cbsass −+−=σ  (42) 

where 

( ),222 η+γ+ε=a  

( ),222 2222 ∧+η+γ+ε=b  

( ).22222 η+ξ+∧+γ+ε=c  (43) 

In the NU-method the ( )sπ  function is obtained as 

 ( ) ( ) ( ) .444441
2
1

2
2 csbkskaSs +−+−+±−=π  (44) 

The expression in the square root must be the square of a polynomial according to the 

NU method. Therefore, we can determine the k-value by using condition that the 

discriminant of the square root is zero, that is, 

 ( )( ).142 22222222 η+ξ+∧+γ+ε+ξ±ξ−∧−=K  (45) 

Using equation (45) in equation (44), we have 
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For the polynomial of ( ) ( ) ( )sss π+τ=τ 2  which has a negative derivative, we select  

( ) ( )22222222 142 η+ξ+∧+γ+ε+ξ−ξ−∧−=K  

and 

( ) (

 η+ξ+∧+γ+ε−−=π 222222
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With this selection, we can obtain ( )sτ  from equation (10) as 
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,2 22222 η+ξ+∧+γ+ε−  (47) 

( ) .1422 222222 +ξ−η+ξ+∧+γ+ε−−=τ′ s  (48) 

Applying equations (42) and (47) in equation (9), we have 

 ( ) ( ).11422 222222 −++ξ−η+ξ+∧+γ+ε+=λ=λ nnnn  (49) 

Similarly, from equation (8), we have 
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Equating equation (49) to equation (50), we have 
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Solving equation (51) explicitly for 2ε  and substituting in equation (40), we obtain 

the energy spectrum as 
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Similarly, the weight function ( )sρ  is obtained from equation (6) as 

 ( ) ( ) ,1 2νµ−=ρ sss  (53) 

where 14 2 +ξ=µ  and .22222 η+ξ+∧+γ+ε=ν  

On substituting equation (53) into the Rodrique relation of equation (5), we get 

 ( ) ( ) [ ( ) ],11 22 µ+υ+υ−µ− −−=χ nn

n

n

nn ss
ds

d
SsBs  (54) 

where nB  is the normalization constant. The other part of the wave function is 

obtained from equation (4) as 

 ( ) ( ) ( ).1 1
2
1

µ+υ −=ϕ sss  (55) 

Combining equations (54) and (55), we have the total wave function as 

 ( ) ( ) ( ) [ ( ) ].11 21
2
1

µ+υ+υ−µ− −−=ψ nn

n

n

n Ss
ds

d
ssBs  (56) 

5. Result and Discussion 

We plotted the variation of the effective potential effV  with r for the Morse 

potential in Figure 1 for various parameters of 5.0,0.1,5.0 −−=β  and .0.1  We also 

plotted the effV  with r for the singular potential with quadratically growing mass for 

various parameters of 4,3,2,1=β  and 5  in Figure 2. Choosing the separated 

atoms limit as the zero of energy, the Morse potential has the form ( ) ,0
reVrV β−=  
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where 00 >V  corresponds to its depth, β  is related to the range of the potential and 

r is the relative distance from the equilibrium position of the atom. In the limits 

0→β  and ,0 ∞→V  we have [8] 

 ,2
1Lim 2

Morse
0

krV
V

=
∞→

 

where .0
2Vk β=  

In the case of the singular potential, our result corresponds to the analytical 

solution obtained for Woods-Saxon with arbitrary l-value by Badalov et al. [22]. 

Here the β -values play the analogue role of the arbitrary l-values. 

 

Figure 1. A plot of effV  with r for Morse Potential with various parameters of 

5.0,0.1,5.0 −−=β  and .0.1  

 

Figure 2. A plot of effV  with r for singular potential and quadratically growing mass 

with various parameters of 4,3,2,1=β  and 5. 
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6. Conclusion 

We solve the effective mass Schrodinger equation for Morse potential and the 

singular potential with quadratic growing mass using Nikiforov-Uvarov method. We 

obtain the eigenfunction and the corresponding eigenvalues for the two cases. 
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