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Abstract
In basic homological algebra, the projective dimensions of modules
play an important and fundamental role. In this paper, the closely

related Ding projective dimensions are studied.

1. Introduction

Throughout the paper, R is a commutative ring with identity element, and all R-

module are unital. We use P(R) and F(R) to denote the class of all projective and
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flat R-module, respectively. For any module M, we use pdgr(M) to denote

projective dimensions of M.

In [5], the author introduced strongly Gorenstein flat module and strongly

Gorenstein flat dimension, which are defined as follows:

Definition 1.1 [5]. Let n be a positive integer. An R-module M is called strongly
Gorenstein flat module (we called Ding projective module) if there is an exact

sequence
P> P —>P—>P 5P ..

of projective right R-modules with M = ker(P’ — P') such that Hom(-, flat)

leaves the sequence exact.

Definition 1.2 [5]. For a right R-module M, let SGfd(M ) (we called Dpd(M))

denote the infimum of the set of n such that there exists an exact sequence

0->G, > =G =Gy > M — 0 of right R-modules, where each G; is a
strongly Gorenstein flat and called SGfd(M ), the strongly Gorenstein flat dimension

of M (we called Ding projective dimension).

The main purpose of this paper is to study some properties of Ding projective

dimension and we get some interesting results.
2. Ding Projective Dimension

Proposition 2.1. Let M be an R-module with finite Ding projective dimension n.

Then M admits a surjective Ding projective precover ©:G — M, where K =

Ker(9) satisfies pdp(K)=n—1.

Proof. Pick an exact sequence, 0 — K - Py —>>F->M-=0,
where Ry, ..., P,_; are projective modules. Then K’ is Ding projective by [11,
Corollary 1.26]. Hence there is an exact sequence 0 — K — QO —

- Q"_1 — G —> 0, where QO, — Q"_1 are projective modules, G’ is Ding
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projective, and such that the functor Hom(—, Q) leaves this sequence exact,

whenever Q is flat.

Thus there exist homomorphisms, Qi - P, 4, for i=0,1,..,n—-1, and

G — M, such that the following diagram is commutative.

0 ]j QO . [ . anl C\;’ 0
0 K’ P, e P M 0

This diagram gives a chain map between complexes

’

0 Q° -, Q! G 0
o
0 P,y - Py M 0

which induces an isomorphism in homology. Its mapping cone is exact, and all the

modules in it, except for By @ G” (which is Ding projective) are projective. Hence
the kernel K of @: By ® G" — M satisfies pdgr(K) < n—1 and then necessarily
pdr(K)=n-1.

Since K has finite projective dimension, we have Ext}e(Q', K) = 0 for any Ding

projective modules Q’, by [11, Proposition 1.11] and thus the homomorphism
Hompg(Q’, ¢) : Homg(Q', G) = Homg(Q', M)
is surjective. Hence @ : G —» M is the desired precover of M.

Proposition 2.2. Let 0 > G - G - M — 0 be a short exact sequence
where G' and G are Ding projective modules, and where Ext}g(M, 0) =0 forall
projective module Q. Then M is Ding projective.

Proof. Since Dpdp(M) < n, Proposition 2.1 above gives the existence of an
exact sequence 0 = Q0 — G —> M — 0, where Q is projective, and G is Ding

projective. By our assumption Ext}e (M, Q) =0, this sequence splits, and hence M is

Ding projective by [11, Theorem 1.15]
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According to the definition of Ding projective dimension and Ding projective

module, with standard arguments, we immediately obtain the next two results:

Lemma 2.3. Let 0 > K - G > M — 0 be an exact sequence of R-module
where G is Ding projective. If M is Ding projective, then so is K. Otherwise we get

Lemma 2.4. Consider an exact sequence 0 — K, — G,_; = -+ = Gy —

M — 0, where Gy,..., G,_; are Ding projective modules. Then Ext}?(Kn, L)=

Ext};r”(M, L) for all R-modules L with finite flat dimension and all integers i > 0.

Proposition 2.5. If (M) ),_, is any family of R-modules, then we have an

equality
Dde(H M) = sup{Dpd (M3, )| A e A}

Proof. The inequality < is clear, since DP(R) is closed under direct sums by
[11, Theorem 1.15]. For the converse inequality 2, it suffices to show that if M is
any direct summand of an R-module M, then Dpdr(M’) < Dpdg(M ). Naturally we

may assume that Dpd z(M) = n is finite, and then proceed by induction on .

The induction start is clear, because if M is Ding projective, then so is M~ by
[11, Theorem 1.15]. If n > 0, we write M = M’ @ M” for some module M”. Pick

exact sequence 0 > K’ > G - M =0 and 0 - K" - G — M” — 0, where

G’ and G” are Ding projective. We get a commutative diagram with split-exact

rows

"

00— K — K oK' —K'—=0

1"

0—G —G oG ——=G

— 0

! "

0O— M —sMaeM —M —0
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Applying Lemma 2.3 to the middle column in this diagram, we get that
Dpdr(K'® K”) = n—1. Hence the induction hypothesis yields that Dpdg(K")

<n-—1, and thus the short exact sequence 0 — K" — G — M’ — 0 shows that

Dpdgr(M’) < n, as desired.

Theorem 2.6. Let M be an R-module with finite Ding projective dimension, and

let n be an integer. Then the following conditions are equivalent:

(1) Dpdg(M ) < n;
2) Ext}} (M, L)=0 forall i > n, and all R-modules L with finite fdp(L);

3) Ext;g (M, Q) =0 forall i > n, and all flat R-modules Q;

(4) For every exact sequence 0 > K, -G, 1 = - —>Gy—>M =0,

where Gy, ..., G,_; are Ding projective modules, then also K, is Ding projective

module.

Consequently, the Ding projective dimension of M is determined by the

formulas:
DpdgM = sup{i e N |3Le F(R): Extp(M, L) # 0}
=sup{ie N|3F € F(R): Exth(M, F) # 0}.

Proof. The proof is ‘cyclic’. Obviously (2) = (3) and (4) = (1), so we only
have to prove the last two implications.

To prove (1) = (2), we assume that Dpdp(M ) < n. By definition there is an
exact sequence 0 - G, - G,_; > - > Gy - M — 0, where Gy, ..., G, are
Ding projective modules. By Lemma 2.4 and [11, Proposition 1.11], we conclude the
equalities Ext}} M, L)= Extfe_"(Gn, L) =0 wherever i > n, and L has finite flat

dimension, as desired.

To prove (3) = (4), we consider an exact sequence

0—-K,—>G,1—=>—>Gy—>M—=Q0,
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where Gy, ..., G,_; are Ding projective modules. Applying Lemma 2.4 to this

sequence, and using the assumption, we get that Ext}}(K w F)E Ext};r”(M ,F)=0
for every integer i > n, and every flat module F. Since Dpdr(M) < oo, by Lemma
2.3, we see that Dpdgr(K,) <. Hence there is an exact sequence 0 — G,,

-G

el = > Gy > K, >0, where Gy, ..., G,

m are Ding projective

modules. We decompose it into short exact sequence, 0 — C; — G| — C/j_
— 0 for j=1,..., m, where C,, =G,,, Cy = K,,. Now another use of Lemma 2.4
gives that Ext}g(C}_l, Q)= Extlje.(Kn, Q)=0 for all j=1,..,m, and all flat

module Q. Thus Proposition 2.2 can be applied successively to conclude that
Cy, ..., C,, are Ding projective modules. In particular, K, = C;, is Ding projective

module.

The last formulas in the theorem for determination of Dpdp(M) are direct

consequence of the equivalence between (1)-(3).

Proposition 2.7. Let 0 - N' = N — N” — 0 be a short exact sequence of

R-modules. If any two of the modules N’, N, N” have finite Ding projective

dimension, then so has the third.
Proof. By Theorem 2.6, the proof is obvious.

Proposition 2.8. If M is an R-module with finite projective dimension, then
Dpdg(M) = pdg(M).

Proof. Assume that n = pdgr(M) is finite. By definition, there is always an
inequality Dpdr(M) < pdr(M), and consequently, we also have Dpdp(M) < n
< oo, In order to show that Dpdp (M) = n, we need, by Theorem 2.6, the existence
of a flat module Q, such that Extg(M, Q) # 0. Since pdgr(M) = n, there is some
module N, with Extgx(M, N) # 0. Let Q be any flat module which is surjective onto

N. From the long exact homology sequence, it now follows that also

Extg(M, Q) # 0, as desired.
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