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Abstract

In this paper, we investigate the controllability for a class of abstract
impulsive neutral integrodifferential inclusions with infinite delays where
the linear paper is non-densely defined and satisfies the Hille-Yosida
condition. The approach used is the fixed point theorem for multivalued

maps due to Dhage.
1. Introduction

In recent years, the theory of impulsive integrodifferential equations or

inclusions has become an active area of investigation due to their applications in the
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fields such as mechanics, electrical engineering, medicine biology, ecology and so
on. One can see the monograph of Chang et al. [1] and the papers of Park and
Balachandtran et al. [2], Laskshmikantham et al. [3] and the survey papers of Bainov

[4] and the references therein.

It is well known that the issue of controllability plays an important role in control
theory and engineering [5-7] because they have close connections to pole assignment,
structural de-composition, quadratic optimal control, observer design etc. In recent
years, the problem of controllability for various kinds of impulsive neutral
differential equations or inclusions with infinite delays has been extensively studied
by many authors using different approaches. For example, Kavitha and Mallika
Arjunan et al. [8] study the controllability of non-densely defined impulsive neutral
functional differential systems with infinite delay in Banach space by using the
Shauder fixed point theorem combined with the operator semigroups, Park and
Balachandtran et al. [9] consider the controllability of impulsive neutral
integrodifferential systems with infinite delay in Banach spaces by using Shauder
fixed point theorem. More recently Hu and Liu et al. [10] proved the existence results
of impulsive partial neutral integrodifferential inclusions with infinite delay by using
another nonlinear alternative of Leray-Shauder typer for multivalued maps due to D.
O’Regan. Motivated by the previous mentioned paper, we prove the controllability of
non-densely defined impulsive neutral integrodifferential inclusions with infinite
delay. Our approach will be based on a fixed point theorem for multivalued maps due

to Dhage.

In this paper, we shall study a class of non-densely defined impulsive neutral
functional integrodifferential inclusions with infinite delay in Banach spaces

described in the form

i[)c(t) - p(t, x, )€ Ax(t) + Bu(t) + f(t, x,) + ItG(t, s, x¢))ds,
dt 0

te J -4, ..., t,, }, where J = |0, b|,

Ax(ty) = I (x(6))), k=1, ..., m,

xo = 0(t) € By,
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where the state variable x(-) takes in Banach space X with the norm |-| and the

control function u(-) is given in L?(J, U), the Banach space of admissible control
functions with U a Banach space. B is a bounded linear operator from U to X, the
unbounded linear operator A is not defined densely on X, that is D(A) # X.

fiIxB, > X, p:JxB, > X,G:JxJxB, > P(X), P(X) denotes the
class of all nonempty subsets of X. [:X — D(A), Ax(ty) = x(t])
—x(tp )k =1,...,m),0=1y <t; <<ty <ty =b Here x(t;) and x(t;)
represent the right and left limits of x(¢) at ¢ =1, respectively. The histories

X, (o0, 0) > X, defined by x,(0) = x(r +0), 8 <0, belongs to some abstract

phase space B,.

This paper has three sections. In the next section, we introduce some notations
and necessary preliminaries. In Section 3, we prove the controllability results of mild

solutions of system (1.1).
2. Preliminaries

In this section, we shall introduce some basic definitions and Lemmas which are

used through-out this paper.

At first, we will employ the abstract phase space 3, which is similar to that

used in [8]. Assume that A : (-, 0) = (0, + o) is a continuous function with

0
[ = J h(t)dt < +oo. For any a > 0, we define

B ={y :[-a, 0] » X such that y(¢) is bounded and measurable },
and equip the space B with the norm
v = sup |y(s)|], Vye B
¥l o= oo VG

Let us define

By, ={y : (-, 0] > X such that for any ¢ > 0, | [-c.0] € B and
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0
[ )l g < ).
If By, is endowed with the norm
0
s, = | #Ilg qds. Py e By

then it is clear that (B, || - "Bh ) is a Banach space.

Now we consider the space

B}, ={x: (=, b] » X such that x; € C(J;, X) and there exist x(z; ) and
x(t; ) with x(¢,) = x(13, ), xg = b€ By, k=0,1,..., m}, where x; is the
restriction of x to Jj, = (13, t341), k=0, 1, ..., m. Set || -|| » be a seminorm in B,
defined by

x| » = "q)"Bh +sup{|x(s)|: s € [0, ]}, x € B,

Let P(X) denote the class of all nonempty subsets of X. Let P, (X),
Py ov(X), Pog cr,ev(X) and  P4(X) denote, respectively, the family of all

nonempty bounded-closed, compact-convex, bounded-closed-convex and compact-
acyclic (see [11]) subset of X. For xe X and Y, Z € P,y ,(X), we define by

D(x,Y) =inf{|x—y|: ye Y}, p(Y, Z) = sup,ey D(a, Z) and the Hausdorff

metric H : Py (X)X Ppy o(X) — R* by H(A, B) = max {p(A, B), p(B, A)}.

G is called upper semicontinuous (shortly u.s.c) on X, if for each x, € X, the
G(x,) is nonempty, closed subset of X, and if for each open of V of X containing
G(x. ), there exists an open neighborhood N of x, such that G(N) c V. G is said

to be completely continuous if G(N) is relatively compact, for every bounded subset

V c X.

If the multivalued map G is completely continuous with nonempty compact
values, then G is us.c. if and only if G has a closed graph,

(i, x, = Xs, Yy = Yur ¥y € G(x,) imply y, € G(x,).
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A point xy € X is called a fixed point of the multivalued map G if
Xo € G()Co).
A multivalued map G : J — Pyy. . ,(X) is said to be measurable if for each

x € X, the function ¢ = D(x, G(t)) is a measurable function on J. For more detail

on the multivalued maps, see the books of Deimling [12].
Definition 2.1. Let F : X — F,; ,(X) be a multivalued map. Then F is called

a multivalued contraction if there exists a constant ke (0, 1) such that for each

x, y€ X we have
H(F(x), F(y)) < Hx -]
The constant % is called a contraction constant of F.

Theorem 2.1. Let X be a Banach space, W) :X — Py o (X) and

¥, : X = Py, ,(X) be two multivalued maps satisfying:
(1) ¥, is a contraction with a contraction constant k, and
(ii) W, is completely continuous.
Then, either
(1) the operator inclusion x € Wjx + W,x has a solution, or
(2)theset € ={xe X : xe |¥;x + [¥,x} is unbounded for /; € (0, 1).
Theorem 2.2 [13]. Let X be a Banach space, G be an - Carathéodory
multivalued  map — with  Sg o #0  where  Sg o ={g€ L', X): gt)
€ G(t, 0) ae. t € J}, for each fixed ¢ € By, and K be a linear continuous map

from LNJ,X) to C(J,X). Then the operator KoSge:CU, X)—

P, ov(C(J, X)) is a closed graph operator in C(J, X)x C (J, X).

Definition 2.2 [14]. An integrated semigroup {7y(¢)},5, is called locally
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Lipschitz continuous if, for all & > 0, there exists constant y such that
|To(t) = To(s)| < vt —s], 1t s€ [0, 3]
Definition 2.3 [15]. We say that the linear operator A satisfies the Hille-Yosida
condition if there exists M > 0 and @€ R such that (0, ) < p(A) and
sup{A —)"|(M - A)™"|:ne N,A>w}< M.
Theorem 2.3 [14]. The following assertions are equivalent:

(i) A is the generator of a non-degenerate, locally Lipschitz continuous

integrated semigroup;
(ii) A satisfies the Hille-Yosida condition.
Definition 2.4. A function x : (—eo, b)) — X is called a mild solution of (1.1) if

the following holds: xy =0(t)e B, on (-0, 0), Ax(1;,) = I.(x(2))),
k=1,2,...,m; the restriction of x(-) to the interval [0, b]—{z, ..., 1,} is
continuous; for each 7€ [0, b], the function ATy(t —s)p(s, x;), se [0, 1) is

integrable such that

Aﬁ=M®—M&®+prﬂ+AﬁAnw

+ I;[Bu(s) + (s, xg) + _[: g(s, T, x.)dt]ds

= > L)),

O<ty <t
where g€ S, ={g € N7, X): g(t) e G(t, s, x;), forae. re J}.

Let Ay be the part of A on D(A) define by

D(Ag) ={xe D(A): Axe D(A)},

Agx = Ax.
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Then Ay generates a strongly continuous semigroup 7 on D(A) (see Pazy [16] for

semigroup theory for semigroup theory) and the general solution in Definition 2.4 (if

it exists) is given by
q)(t)’ te (_ooy 0]9

To()[600) = p(0. O+ plr. 3)+ [ ATy(s = 9)pls. x, )

o) = + lim JtTo(t —s)B\) [Bu(s) + f(s, x;) + J.xg(s, T, x, )dt]ds
A—oo Jo 0
+ Z To(t—tk)lk(X(t]z))a te J,
O<tg <t

where B(A) = AR(A, A).
Remark 2.1. We should point out here that, from Definition 2.4, it is not
difficult to verify that if x is an integral solution of (1.1) on (—oco, b], then for all

te J, x(t) - plt, x,) € D(A). In particular, ¢(t) — p(0, 9) € D(A).

Definition 2.5. The system (1.1) is said to be controllable on the interval if for

every initial function ¢ € B, with &(r) — p(0, 0) € D(A) and x; € D(A), there
exists a control u € L*(J, U) such that the integral solution x(-) of (1.1) satisfies
x(b) = x;.

Lemma 2.1 [5]. Assume x € B'h, then for t € J, x, € Bj,. Moreover,

10 < Dl <1l + 1 sup ().
se(0,

0
where | = J. h(t)dt < +oo.

—o0

In order to establish our result we consider the following assumption in the

sequel:

(H;) A satisfies the Hille-Yosida condition.

Let B(L) = AR(A, A) = AR(A, A) = MAI — A)"!. Then for all xe D(A), B

(A)x = x as A — oo. Also from Definition 2.3 (with n = 1), it is easy to see that
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MA
A—o

lim |B(A)x| < M|x|, because |B(A)| = MM — A)7!| <
A—>+oo
Thus limy _, ,..|BQA)| < M.

(H,) The operator A generates a strongly continuous semigroup Ty (z) in D(A)

and there exists M =1, such that
”To(t)"SMl, Vte J.

(H3) The operator B:U — X is bounded and linear. The linear operator

W : I*(J, U) — D(A) defined by
b
Wi = lim j To(b — 5)B(\)Bu(s)ds,
A—+e0 J

has an induced inverse operator w=l:D(A) - L2(J , U) and there exists a positive

constant M, such that | BW || < M.

(Hy) () The function p:JxB, — X is continuous and there exists

constants L, >0, Ly >0, such that the function AR p satisfies the Lipschitz

conditions:
A% p(ty, 01) = A* pltz, 02) || < Lo (g = 12| + 01 = g, ),
k=0,11,t,€ J, 0, 05 € By,.
and
ATy (8 = 5)p(s. 0) = ATy (ty = s)p(s, O)| < Ls(ty —12]). .12 € J.
(ii) There exists a constant kj, k, and k3 such that

ATy = s)p(s, 0)] < k1||¢||8h +ky, teJ,0€ B,

and

Ip(, o)) < k3("¢"3h +1), teJ, ¢e By
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(Hs) I, e C(X,X) and there exist constants ¢, 20, k=1,..., m and

continuous nondecreasing functions L, : [0, + o) — (0, + ) such that

[1,(x) = L, € cplx =y, Vx ye X.
and

[1,(x)| € Li(x), k=12, ....,m, x, ye X.

(Hg) G) f:IxBy = X;(@t, ¢0) > f(r, ¢) is strongly measurable with
respect to 7 for each ¢ € B, and continuous with respect to ¢ for a.e. t € J, and f

satisfies the Lipschitz conditions, that is, there exists a constant L, > 0 such that
[ f(r1, 1) = f(t2, 02)|| < Ly(Jt; — 22| + |0y — ¢2"Bh )s
tl’t2 € J’ q)l’ ¢2€ Bh‘

(ii) There exists a continuous nondecreasing function o : R, — (0,+o0) such that
[ £ 0] < 0L(||¢||Bh ), forae.teJ.

(H7) The multivalued map G :JXJXBj = Py o o (X) satisfies the

following conditions:

(i) G:IXJIXBy = Py o(X); (t,5,0) > G(t,5,9) is  strongly
measurable with respect to ¢, s for each ¢ € 53, and u.s.c with respect to ¢ for a.e.

(t, s)e JxJ.
(i1) There exists a constant L; such that
IG(2, 01) = Gz, 2] < Li(|ry = 2| +]01 = 02, ) 11, 72 € T, 01, 02 € By,
(iii) There exists a positive function p; € L'(J, [0, + %)) such that
66, 5, Ol = sup ] - v Gl 5. 0} < pO(als, ), ae. < I, 0 By,

where O : [0, ) — (0, ) a continuous nondecreasing function and there exists a

constant d with
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(1— ks — bk — b>M MM 4k, )d N

1 1
Nl + KO ’ ( )
where
_ _ b m
Ko = bMM,o(d) + bMM,0(d) j pu(s)ds + My Ly(17'd)
0 =1
+ bM MM »{bk,d + bMM 0o(d)
_ b m
+ bMMIG)(d)J pi(s)ds + MIZLk(l_ld},
0
k=1
and

Ny = Mik3(|0ll5, + 1)+ ksbky + bM MM 5{|x,| + M,[[o(0)]

+ M1k3(||¢||3h +1) + k3 (| yp + qA)b"Bh +1)+bky }.

Remark 2.2. The construction of the operator W and its inverse is studied by
Quinn and Carmichael [17].

3. Controllability Result

Theorem 3.1. Suppose that (H,) - (H;) are satisfied and

m
CO = [M1M2Mb(L2 + MlbL2 +M1MbL4 + Mlﬁbzl‘l + MIZCk)
k=1

n
MY e l<l. )
k=1
Let ¢ € By, with ¢(t) — p(0, &) € D(A). Then the system (1.1) is controllable on J.
Proof. Using hypothesis (H3) for an arbitrary function x(-), define the control

process

u(t) = W' [x; = Ty(6)[9(0) — p(0, ¢)] - p(b, x,)
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b
- -[0 ATy (b — s)p(s, x)ds

) b s
- klgnoo IO To(b = s)BM) [ f(s, x;) + -[O g(s, 7, x;)dr]ds

= To(b - ) (e 1),
k=1

where g € Sg ;.

We shall now show that when using this control the operator I defined by

¢(t)’ te (_°°’ O]’

To()1600) - p(0. O+ plr. 3) + [ ATy(t = 9)pls. x,)d

() () = + xh_rgo J;To(t —s)B(\) [Bu(s) + f(s, x;) + J.(:g(s, T, X, )dt]ds
O Tolt =) (x(1p), tel,
O<tp <t

where ge Sg , ={ge L'(J, X): g(t)e G, s, xg), for ae. re J}. It has a
fixed point x(-). This fixed point x(-) is then a integral solution of the system (1.1).
Clearly, x(b) = (I'x)(b) = x;, which means that the control u steers the system from

the initial function ¢ to x; in time b, provide we can obtain a fixed point of the

operator I' which implies that the system is controllable. For ¢ € B, we define (T)

by

o), te (e, 0],

<>
Il

Ty (1)6(0), te J,

then de B),. Let x(¢) = y(t) + qA)(t), —oo <t <bh It easy to see that y satisfies

yo =0 and

(1) = =Ty (t)p(0, 0) + p(t, y, +¢,) + J;ATo(f —$)p(s, ys + 0, )ds
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#Jim [0 = BOILS (s vy + 8,0+ g v, + b )arlas
A—ee J g 0

+ Z To(r -1 )Ik;(Y(tE)+&’(11;))+7}i_1>11WJ.;T0(t—n)B(?»)BW_l

O<ty <t
A b N
[x1 = To(®)[6(0) = p(0. )] = p(b. yp +¢p) - IO ATy(b = s)p(s. ys + Oy )ds

b ~ s ~
= Jim [ T~ 0B (s. vy 800+ [ sl 3o+ 8 )arlds
—*J0 0

m
=) To(b = 1)1 (e ) + (e )] (m)en,
k=1
if and only if x satisfies

x(t) = To () [6(0) = p(0, )] + p(t, x,) + J.(:ATO (e = 5)p(s. x)ds

+ lim J.(:To(t —s)BM)[f(s, xg) + j(:g(s, T, x; )dt]ds

A—o0

b Tl =iy )+ Jim [ Tyt - mBa)mw

O<tp <t

b
[ = T () [6(0) = p(0, 0)] = p(b, x;,) - jo ATy(b = s)p(s, xg)ds
) b K
_ 7}13100 J.O To(b — s)B(M) [ f(s, x,) + jo g(s, T, x.)dt]ds

- ZTO(b — 3 ) (x(z5; )] () d,
k=1

and
x(t) = 0(t), te (-, 0]

Define By, ={ye B),: yg =0€ B, }. Forany y e B},
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I8, = Iyl +supy(s)]: 0 < s < b} = sup {y(s)| : 0 < 5 < b},
thus (B7.]|- ||,h ) is a Banach space. Set
B, ={ve By <, < q)

for some ¢ > 0, then Bq for each ¢, is a bounded, closed convex set in B';’l.

Moreover, for any y € B g from Lemma 2.1, we have

e+ 8, <Iils, +18,05,

<[ su (s)] + +1 su A(S)"‘ 0
s D<ol +1 s 60+ ol

< U(q + My [9(0)) +[0l5, = 4" 3)

In view of Lemma 2.1, for each ¢t € J,

|30+ 60) < 173 = by g,

Foreach 1€ J, y € B, we have (3) and (Hs)
furj)ly(t) 00 <17y = dillg, <17,
7 () + 0l < L (| () + 0(25)])
< Ly (sup|y()) - $(1) )
telJ

< Lk(l_lq'), k=1 .., m

Let the operator ¥ : B}, — B}, defined by Wy the set of p € B such that
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0, t € (—oo, 0]
~ t ~
=Ty (t)p(0, ) + p(t, y, + ¢z)+j0 ATy (t = s)p(s, ys +¢y)ds
+ lim J.ITO(t —S)BO\.)[f(S, Vs +$s)+J.Sg(S’ T Yr +$T)dT]dS
A—eo J o 0

_ A . t »
56) - + O;deO(t = 1) () + 01 ) + lim. IOTO(t —M)B(\)BW

N b N
[x; = To(®) [6(0) = p(0, O)] = p(b, yp, +0p) - IO ATo(b = s)p(s, ys + 0y )ds
b

_)\’hm TO(b_ S)B(k)[f(sa Vs + EI\)S)+J‘Sg(Sa T, Yt -‘r(’I\)T)d’T]dS
—J0 0
= ) Ty(b = 1 ) (520 ) + 8l )] (), rel.

k=1

We can see that if W has a fixed point in B}, then I' has a fixed point in B},

which is a solution of system (1.1).
Now, we consider the following multi-valued operators ¥, and ¥, defined by

0, t e (—oo, 0]
Tim I 0’ To(t ~M)BM)BW ™' [x — Ty (b) [0(0) — p(0, 9)]

n b n
— p(b. vy +by) - jo ATy(b - 5)p(s. v, +, )ds

A= i | Tylb— )BOILF (s, vy + ) + [ et m v+ b, )drlds
A—eo J o 0
- ZTO(b — 1) (y(1;) + 0(27; )1 () dn
k=1
3 Tole= ) () + 8e7), teJ
O<ty <t
and

Oa te (—oo’ O]

W, (1) = 1 - Ty(1)p(0, 0) + p(t, y, +0,) + jo ATy(t = 5)p(s, ys + by )ds

+ lim jtTo(t— $) B[ £ (s, yg +(T)S)+JASg(s, T, V. +(T)T)d’r]ds, te J.
Ao Jo 0
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It is clear that
Y=Y +¥,.

The problem of finding mild solutions of (1.1) is reduced to find the solutions of the

operator inclusion x € ¥[(x) + ¥, (x). In the follow, we show that the operators ¥

and ¥, satisfy the conditions of Theorem 2.1.
Step 1. ¥, is a contraction.

Let y;, y, € B}. By the assumption, we have
t
1) = #i02) < Jim [ ¢ =l B0
—e Jo
1BW M p(b, ya.p +05) = p(by yip +0p)]

b . .
+ _[0 ATy (b = 5)[p(s, yo 5 +05) = p(s, vy 5 +0;)]ds
b . .
+lim -[0 To(b = s)BA)[f(s, yo 5 +05) = f(s, yi 5 +0,)]ds

b N ~
; nmj' To(b—s)B(k)J. [g(s, T, yo o +0.)dr
A= J g 0 ’

—8(s, 7, yi 7 + 6, )dr]ds —ZTo(b — ) 1 (v (1) + (17 )
=1

= 1 () + 8 NI @Ydn] + > [Tt = 1)

O<1y <t

T (o () + 0a ) = T (ya (1) + (e )]

_¢b
< MleM_[O {Laolly2,6 =105,

b
o [ MLl = ol ds
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b __
[ MLy = 3 s

__prbpeb
M [ [ Ly = ool

# MY el (1) = 3 (1) Y
k=1

+ Mlzck" (yi(tg ) = y2 (21|
k=1

< [M M yMb(Ly + MbL, + M;MbL, + M,Mb>L,
m m
+ Mlzck ) + Mlzck: 1ly1 = ¥al
k=1 k=1
< Collyr = yal.-

where C, is given in (2). hence, ¥; is a contraction.

Step 2. ¥, has compact, convex value and it is completely continuous. This

will divided into the following claims.

Claim 1. ¥,y is convex for each y € Bj.

In fact, if Py, Py € ¥, , then, there exists gi, g§» € Sg,,, such that

B: = ~To(t)p(0, 0) + p(t, y, +0,) + J;ATo(f —$)p(s, ys + 0 )ds

1 N s A
e lim [ Ty = BRI, vy + 8,0+ [ gism v + 6, )drlds
A—ee J g 0
i=12 tel.

Let Be [0, 1]. Since the operators B and W are linear, we have

(Bpy + (1=PB)p2)(2)
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N 1 ~
= Ty (1)p(0, ¢) + p(r, y, +,) + IO ATy (1 = s)p(s, yg + 0y )ds

e Jim [ Tyl = 0BR (s 3y + 800+ [ [Be(on 3 +6)

+(1-Bga(s, T yr + 0, )]dr]ds.

Since Sg, y is convex (because G has convex values), we have

(Bp1 + (1=B)p2) (1) € ¥s.
Claim 2. ¥,y maps bounded sets into bounded sets in B7,.

Indeed, it is enough to show that there exists a positive constant A such that for

pe ¥y, ye B, ={ye B}, :|y| B, <q}, onehave |jp| B, < A.

If pe W,y, then there exists g € S¢ , such that, for each 1 € J

ﬁ(t) = _TO(t)p(O’ ¢)+ P(t’ yt + (,f)t)-"-J‘OtATO(t - S)P(S’ yx + (T)S)ds

t A N ~
+ lim J To(r = s)BM) [ f(s, ys + 05) +J. g(s, T, y; + 0. )dr]ds. (4)
—J(0 0

Therefore, by hypotheses (H;), (H,), (Hy), (Hg), and (H), we observe that, for

each re J

p@)] < M1k3("¢”3h +1)+ k3] y, + (,f)t "Bh +1)+ bk ys + qA)x "Bh +ky)
_ b _ bpeb ~
© 0, [ o (s)ds 4 0, [ [ (51001 v, + b, et
= A.

Then, for each p € ¥,y, we have ”5",311 <A

Claim 3. ¥,y maps bounded sets into equicontinuous sets of 57,.
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< b. Then, we have for eachand y € B, and p € ¥, y, there

exists g € Sg, y such (4) holds. Therefore,

[5(r2) = BCr) < [ [To (1) = To(2)1p(0, @)+ [ (72 ¥e, + 82y )= P71, vy, +65))

+ IIIOTl[ATo(Tz —5)p(s, yy +0,) = ATy () — s)p(s, v, + 0, )]ds|

T2 ~
I[P aty(es = s)pts, v, + b, as]
Tl

+| 7}im
oo J

+| 7}im
—oo J

+| 7}im
oo

+| 7}im
o0

IN

0 [Ty(73 = 5) = To(r1 = $)IBA)F(s. ys + b, )ds]

Ty (ra = $)BOf (s, vy + 6, )ds|

T1

T b A
[ 1572 =)= Tory = )1BOIg s, 7. v + b, )]
0 40

)

b ~
[ To(r2 = 928005, 7. 3 + b )|
T

I To(r1) = To(x2)] PO, 0)]

+Lollrs =l +1ey = v g, 413 =35 Iy, ]

T1 T2 ~
S N e I CTEOR N R 22

1

— T
# M [ To(rs =)= Tyt = ot (5)ds

_ )
+ MMIJ. oy (s)ds
ul

P T1
+ Mbj.
0

[To(72 = s) = To (71 = 5)|p1(s)O(g") ds
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_ ™
+ MleI p1(5)0(q")ds.
ul

The right-hand side is independent of y € B, and tends to zero as T, — T, since

the strong continuity of Ty(¢) for ¢ >0 implies the continuity in the uniform

operator topology. Thus, the set {¥,y: y € Bq} is equicontinuous.

Claim 4. ¥,y is compact multi-valued map.

From the above claims, we see that family W, B, is a uniformly bounded and

equicontinuous collection. Therefore, it suffices to show by Arzeld-Ascoli theorem

that ¥, map B, into a precompact set into B7,. That is for each fixed t € J, the

set V(1) ={¥,y(t): y e B,} is precompact in X.

Obviously, V(0) = {¥,(0)}. Let > 0 be fixed and for 0 < ¢ < 7, define

t—e¢

W5 y(t) = ~To(1)p(0, 0) + p(t, v, +6,) + A ATy(r = 5)p(s, ys + &y )ds

t—e

+lim | Ty = B (s v, + q3s>+j;g(s, T, vy + 9. )drlds

Since T} is a strongly continuous operator, and from condition (Hg) and (H;), the

set V.(t) ={W5y(t): ye B, } is precompact X for every ¢, 0 < ¢ < . Moreover,

a0 = w50 < [ IATo(0 = 5)ps, v, +6,)lds

t—e

. ? n

+ Jim | (e = )BOIS (s, ys + 0 )] ds
—0 Jr—¢

t .
+ lim J. [To( = s)B(A)g(s, T, yr + 0. )| dr]ds.
A—>o0 t—e

Therefore,

[W,y(t) - ¥5y(t)| = 0, ase— 0",
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and there are precompact sets arbitrary close to the set {¥,y(¢): y € B, }. Hence,

the Arzeld-Ascoli shows that W, is a compact multi-valued map.

Claim 5. ¥,y has a closed graph.

Let y" = y*, P, = ¥,y" and P, — P.. We aim to show that P, € ¥,y".

Indeed, P, € W,y" means that there exists g, € S Gy such that
—_— n ~ t n ~
Pa(t) = =To()p(0, 0) + p(t, y;' +¢,) + JO ATyt = s)p(s, y5 +0y)ds

+ lim jtTo(t—S)B(K)[f(s, Vs +<T>x)+j.xgn(s, T, Y%+ ¢, )dr]ds,
A—=eJo 0

te J.

We need to prove that there exists g, € Sa, y* such that

P.(t) = =Ty (1) p(0, 0) + p(t, y; +0,) + j ;ATOO —5)p(s, vs +04)ds

# i [ 7= B0 3 48,0+ [l m o + o darlas
A—oeo Jo 0

te J.

Since p and fis continuous, we get

I[P, (1) + To(1)p(0, ) = p(z, ¥ +0,)
—I;ATo(t—S)P(S, ¥+ b, )ds
— lim leo(t—s)B(k)f(s, i+ 9y)ds]
A—>e J

~[Put) + To (1) p(0, 0) = p(z, ¥, + ;)

t N
- IOATo(l— $)pls, &+ 6y )ds
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t .
- 7}im J. Tyt — $)BV)f (s, y5 + 05 )ds]|| = 0, as n — oo,
—o J0
Consider the linear continuous operator K : L'(J, X) — C(J, X) define by

t N A~
Kelo) = Jim [ Tl =) a(s. 7. vy + b, )aras

From Theorem 2.2, it follows that K o S is a closed graph operator, and

Do)+ To(1)p(0, 0) = p(z, ¥ +¢,) - j;ATo(t —$)p(s, Y + 0, )ds

t A
= Jim [ Tyl = 0B (s, 5} +dy)ds € K o5,

Since y" — y* and P, — P, it follows from Theorem 2.2 that, there exists an

g« € SG’y*, such that
— * ~ t * N
B.(1) = ~To(1)p(0, ) + plr. y! +&,) + j (AT (s 3 + 8, )ds

+ lim J.tTo(t —s)BA) [ f(s, y: + (T)s)+J.Sg*(s, T, y: +(T)T)d*r]ds.
Ao g 0

Therefore, ¥,y is completely continuous multi-valued map, u.s.c. with convex

closed, compact values.
Step 3. A priori estimate.
Now it remains to show that the set
e={ye B} :ye |¥)y+[¥,y, for some 0 < /| <1}
is bounded.

Let y € €, then there exist ¢ € Sg , such that

(1) = =L To(0)p(0, 0) + 1y p(t, y, +¢,) + llI; ATy(t = 5)p(s, ys + by )ds
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t N s ~
el Jim [ Tl =B (s, vy + 8,0+ [ glom 3, + by )drlds

w1 Y Tyl = )00 )+ 66 )) + i [ (e~ msw !

O<ty <t

- b A
[x1 = To(6) [6(0) = p(0, 9)] - p(b, yp + 0p) - IO ATy (b = s)p(s. ys + 0y )ds

b N s N
_7}1m J- To(b—S)B(x)[f(S, ys+¢x)+J- g(S, T, yT+¢T)d‘r]ds
—Jd0 0

n
= To(b = )0 (5(e) + 8 DI ()
k=1
for some 0 < /; < 1. Then, by the assumptions, we have

IOl < Myks g, + 1)+ ks, + 85, + 1)+ bllly, + 8,5, +F2)

_ b R _ t R
+ MMIJ.O (x("ys + q)s "Bh )ds +bMM1J-O pl(s)G)("ys + q)S"Bh )ds

m
+ My ) L (7 vy + 05, )+ MMM ]| + M [0(0)] + M ks (ol 5, +1)
=

o N _ b A
+ k3(”yb + q)b "Bh + 1) + b(kl"ys + q)S”Bh + k2)+ MMIJ-O a(lly.v + q)S"Bh )ds

m

b
_ R 4 R
+ bMMlJ.O P1()O(]|ys + by ”Bh )ds + MlkZ:;Lk(l |y + 0, "Bh )}

Let

(0)=1 sup 1y(0)| +[yollg, +1 sup [+ [l 1< [0. b1
g se [()I,)t]ly( | "yOHB" se [OI,)z]| o)l + oo "Bh
where

llye + (T)z"Bh < ||Yz"3h +[1é "Bh
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<1 sup |y(s)| + sup {||(f)(s)||Bh :0< s <b}
€[0,1]

)
Therefore, we get
W) < Miks (0, + 1)+ k() +1) + bkp() + k)

b

0, [ ol(s)ds + 63, | py(5)00(s))ds

0

+ My ) L (17 W(0) + oM MM o {x | + My [0(0)] + M ks (0], +1)

1

m
k=

~ _ b
# ka3 + b s, +1)+ bUkite) + o)+ WM, | () s

_ b uz
n bMMIJ.O P()0(u(s))ds + M, D L, (7))},
k=1

Consider the norm of the function (), ||| = sup {i(r) : 0 < < b}, therefore, we

have
Il < Mk (0l 5, +1)+ Fs (I + 1) + DOk ] + £2)

- - b m
+ bbb a]) + oM ()| (s)as + My Y L (17
k=1

+ M IV ol | + M [0(0)] + M ks (ol 5, +1)
+k3(1yp + 0pllg, + 1)+ bkl + k) + oMM (]
_ b 1t
+ b0 | p(s)ds + My Y L7 ),
k=1
Thus, we obtain

(1= k3 — by = b>M MM oky) W] _ |
N1+N2 -
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where N; are givenin (H) and
o o b m
Ny = bMM o |u]) + bMM1®(||H||)J0 pi(s)ds + Mlsz;(l_l"M")

k=1

_ b uz
+ IO pr()ds + 0y L (17l
k=1

Then by (1), there exists d such that || # d. Set € ={ye B}, : ||y||,Bh < d}, this

indicate that the set € is bounded. As a consequence of Theorem 2.1, we deduce that
¥, + ¥, has a fixed point which is a mild solution of the system (1.1). Thus the

system (1.1) is controllable.
4. Example

As an application of Theorem 3.1, we consider the impulsive neutral partial

integrodifferential inclusions of the following form:

t T 2
% [2(t, 5)— j_w I Jals 1. &, x)agds] e alr S)aax_2 2(t, x) + ko(0)z(t, )

tps

+J J k(s — 7)0(z(T, x))dtds + Bu(t),
0d—c

xe [0, w], te[0,b],t#1, @1

Az(ty,, x) = Z(t]:, x) =z, x) =1 (21, x)), k=1 .., m,

2(t,0)=z(t, ®) =0, >0,

Z(t, x) = @(t, ®) = 0, t € [- o0, 0), x € [0, 7).

where J =[0,b],k=1,...,m,  z(t},x)=1limy,_ z(t; + h,x), z(t;,x)=
limj,_,o— z(#; + h, x), O : J X R — R is given functions. We assume that for each

te J, O(t, -) is lower semi-continuous.
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Let X = L?[0, ] be endowed with usual norm |-|,2. Define A: X — X by

Av = —a(t, x)v” with the domain

D(A) ={v(-)e X : v,V are absolutely continuous; v’ € X, v(0) = v(n) = 0}.
We have

D(A)={v()e X : v,V are absolutely continuous; v’ e X, v(0) = v(n) =

0} # X.
It is well known that (see [18]) that A satisfies the following properties.

(@) (0, =) < p(A);
(i) | — A7 < % A>0.

This implies that the operator A satisfies the Hille-Yosida condition (with M =1
and v =0). Assume that B: U — X, U € J is a bounded linear operator and the

operator
b
Wu = J. T (b — s)Bu(s)ds
0
has a bounded invertible operator W~!:D(A) — L?(J,U). Example with
W :I*(J,U) = X suchthat W' exists and is bounded as discussed in [17].

0
Let h(s)= e, s <0, then I = | h(s)ds =% and defined

0
_ h(S) su (9) 2.ds.
"(p"Bh J.—oo e [SI,)O]l(P |L

Hence for (z, @) € [0, b]x B, where @(8)(x) = @(8, x), (6, x) € (-, 0]x [0, 7].
Now define

2(r) (x) = z(z, x),

0
P @)= [ [ "als =1, & xots. Eaas,
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f( @) (x) = ko (X)elt, x),

J‘IG(I, s, xg)ds = Jt ° k(s — 0)0(9(0) (x))dOds.
0 0d -

Then, (4.1) can be rewritten as the abstract form as the system (1.1).

Thus, under appropriate conditions on the functions f, p, G and I, as those in

(H,)-(H), then the system (4.1) is controllable on J.
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