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Abstract 

In this paper, we establish a quicker approximation of the Wallis ratio 

based on continued fraction. This approximation is fast in comparison 

with the recently discovered asymptotic series. We also establish the 

double-side inequalities related to the approximation. Finally, we also 

give some numerical computations to demonstrate the superiority of our 

approximation over the classical ones. 
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1. Introduction and Motivation 

The factorial function !n  and the gamma function ( )xΓ  are important 

components in the researches of pure mathematics, statistics and other 

branches of science. The gamma function can be regarded as an extension 

of the factorial function. When n  is larger, a general method in the 

researches is to find approximations of the two functions. A well-known 

formula approximating to the ratio of factorial function is the Wallis 

formula. The Wallis ratio is defined as 
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where ( )xΓ  is the gamma function which has attracted the attention of 

many researchers [1-8] and can be defined by 
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The study and applications of ( )nW  have a long history, many 

remarkable results and applications for the Wallis ration can be found in 

the literature [9-16] and references cited therein. 

For every natural number ,n  Chen and Qi [9] presented the following 

inequalities for the Wallis ratio: 
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where the constants 1
4
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 and 
4

1
 are the best possible. 

Guo, Xu and Qi proved in [18] that the double-side inequalities 
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for 2≥n  is valid with the best possible constants 
π

e
 and .

3

4
 They also 

obtained the approximation formula 
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Recently, Qi and Mortici [17] improved the approximation formula 

(1.3) as 
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Motivated by these works, in this paper we will apply the multiple-

correction method [19-21] to obtain an improved asymptotic expansion for 

the Wallis ratio based on continued fraction as follows: 

Theorem 1. For the Wallis ratio ( )
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where ,
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1
1 =a  ;
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1
1 =b  ,

3600

781
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109340

4309
2 −=b  

,
89664267

51396085
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124495718347

12568234612
3 =b  
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Using Theorem 1, we provide some double-side inequalities for the 

Wallis ratio. 

Theorem 2. For every integer ,1>n  it holds: 
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where ,
144

1
1 =a  ;

60

1
1 =b  ,
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781
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4309
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,
89664267
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124495718347

12568234612
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To prove Theorem 1, we need the following lemma which was used in 

[22-24] and is very useful for constructing asymptotic formulas. 

Lemma 1. If the sequence ( )
N∈nnx  is convergent to zero and there 

exists the limit 

 ( ) [ ]∞+∞−∈=− +
+∞→

,lim 1 lxxn nn
s

n
 (1.7) 

with ,1>s  then 
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−
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l
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 (1.8) 

Lemma 1 was proved by Mortici in [22]. From Lemma 1, we can see 

that the rate of convergence of the sequences ( )
N∈nnx  increases together 
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with the values s  satisfying (1.8). 

The rest of this paper is arranged as follows. In Section 2, we will 

apply the multiple-correction method to construct a new asymptotic 

expansion for the Wallis ratio based on continued fraction and prove 

Theorem 1 by the multiple-correction method. In Section 3, we established 

the double-side inequality for the Wallis ratio. In Section 4, we give some 

numerical computations which demonstrate the superiority of our new 

series over some formulas found recently. 

2. Proof of Theorem 1 

According to the argument of the Theorem 5.1 in [17], we can 

introduce a sequence ( )( ) 1≥nnu  by the relation 
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better if the speed of convergence of ( )nu  is higher. 

(Step 1) The initial-correction. When ,∞→n  we define a 

sequence ( ( )) 10 ≥nnu  
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Developing (2.4) into power series expansion in ,1 n  we have 

 ( ) ( ) .
11

48

1
1

5400 







+=+−

n
O

n
nunu  (2.5) 

By Lemma 1, we know that the rate of convergence of the sequence 

( ( )) 10 ≥nnu  is .3−n  

(Step 2) The first-correction. We define the sequence ( ( )) 11 ≥nnu  by 
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Developing (2.7) into power series expansion in ,1 n  we have 
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By Lemma 1, we know that the fastest possible sequence ( ( )) 11 ≥nnu  is 

obtained as the first item on the right of (2.8) vanishes. So taking 
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Using the same method as above, we obtain that the sequence ( ( )) 12 ≥nnu  
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converges fastest only if ,
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(Step 4) The third-correction. Similarly, define the sequence 
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The new asymptotic (1.5) is obtained. 

3. Proof of Theorem 2 

The double-side inequality (1.6) may be written as follows: 
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( ) 2
2 915720308709199818595695557814083; xxx ++=ψ  

.5180725368 3x+  

( ) ...512...,,461003 18 −−= nxA  is a polynomial of 18th degree with 

all negative coefficients and ( ) ...696...,,212876 22 += xxB  is a 

polynomial of 22th degree with all positive coefficients. 

It shows that ( )xF  is strictly concave and ( )xG  is strictly convex on 

( ).,0 ∞  According to Theorem 1, when ∞→n  it holds that ( )nfn ∞→lim  

( ) ;0lim == ∞→ ngn  thus ( ) ( ) .0limlim == ∞→∞→ nGnF nn  As a result, 

we can make sure that ( ) 0<nF  and ( ) 0>nG  on ( ).,0 ∞  Consequently, 

the sequence ( )nf  is strictly increasing and ( )ng  is strictly decreasing 

while they both converge to .0  As a result, we conclude that ( ) ,0>nf  

and ( ) 0<ng  for every integer .1>n  

The proof of Theorem 2 is complete. 

4. Numerical Computations 

In this section, we give Table 1 to demonstrate the superiority of our 

new series respectively. From what has been discussed above, we found 

out the new asymptotic function as follows: 
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Chen and Qi [10] gave: 
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We can easily observe that the new formula converges fastest of the 
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other three formulas. 

Table 1. Simulations for ( ),nα  ( ),nβ  ( )nγ  and ( )nσ  

n  
( ) ( )

( )nW

nnW α−
 

( ) ( )
( )nW

nnW β−
 

( ) ( )
( )nW

nnW γ−
 

( ) ( )
( )nW

nnW σ−
 

50 6101876.6 −×−  14103576.7 −×  8105532.5 −×  19108082.3 −×−  

500 8102438.6 −×−  20101643.7 −×  11105554.5 −×  28108138.3 −×−  

1000 8105617.1 −×−  21101177.1 −×  12109443.6 −×  31104489.7 −×−  

2000 9109053.3 −×−  23107452.1 −×  13106805.8 −×  33104549.1 −×−  
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