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Abstract

The notion of modal @-valent set (m®s) noted (Fpz, Fy), pprime, is

defined by F. Ayissi Eteme in [3]. In this note, the purpose is to
construct the m® completion of Fraction Field of p-adic numbers on

Fpzs which respects the structure of m®s. We think that this approach
will bring something of interest to the notion of set of p-adic numbers

Zp as presented by Alain M. Robert in 2000 [2].
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0.1. Introduction

A m® approach of the notion of set [1] has allowed to bring out the
new classes of sets: m® sets. The m® sets present an enrichment from
the logical view-point compared with the classical sets. Indeed, with the

notion of m® sets, we can mathematically speak of m®s of m® p-adic
integers Z,; such that the subset of the m® invariants of Z,; is Z,

the classical p-adic set,

C(Zyz, Fy) =7,

A m® approach of m® ring Z,; would consist in enriching the

alphabet [, by taking instead of this one, a richer alphabet as the prime

m® field F,; with p2 elements [3].

The purpose of this paper is to define on the m® set (F,z, F,) a
notion of completion of Fraction Field of p-adic Integers which respects

its structure of m® set in the same manner completion of Fraction Field

of p-adic Integers is defined on a finite classical field.

Section 2 recalls the essential notions of m® set for our purpose.

Section 3 presents first and briefly Z,, the classical set of p-adic
integers as in [2] and then defines a study of m® Ring Z ;. Section 4 is
devoted to establish the m® fraction field of Z,. Section 5 presents the

m® completion of Q7.

0.2. The Modal ®-valent Set Structure and the
Algebra of (F,;, Fy,)

0.2.1. The modal ®-valent set structure

m® sets are considered to be non-classical sets which are compatible
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with a non-classical logic called the chrysippian m® logic.

Definition 0.1. Let E be a non-empty set, I be a chain whose first

and last elements are 0 and 1, respectively, (F) where I« =

oe Ix

I\ {0} be a family of applications form E to E.

A mO set is the pair (E, (Fy),.;, ) simply denoted by (E, Fy)

satisfying the following four axioms:

) FulB) = [(({Folx): x € (B} = @;

oe I+

- Vo, B e I«, if a # B, then F, # Fg;

- va, e I+, FaOFB = FB;

- Vx,ye E, if Vae I, Fy(x) = Fy(y), then x = y.
Theorem 0.1. (The theorem of m® determination)
Let (E, F,) bea m® set.

Vx, ye E, x =g y ifand only if Voo € I, Fy(x) = Fo(y).

Proof 0.1. [3].

Definition 0.2. Let C(E, F,) = ﬂFa(E). We call C(E, F,) the set

oe I«

of m® invariant elements of the m® set (E, F).

Proposition 0.1. Let (E, F,) be a m® set. The following properties

are equivalent:

1. xe ﬂFa(E);

oe I«

2. Vo e I, Fy(x) = x;
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3. Vo, B e I, Fylx) = Fa(x);
4. Fue Ix, x = Fy(x).

Proof 0.2. [3].
Definition 0.3. Let (E, F,) and (E’, F}) be two m® sets. Let X be
a nonempty set. We shall call

1. (E’, Fy) a modal @©-valent subset of (E, F,) if the structure of

mO set (E’, Fy) is the restriction to E’ of the structure of the m® set
(E, F,), this means:
. E' c E;
-Va:oe I, Fy = | B
2. X amodal ®-valent subset of (E, F,) if:
- X c E;
- (X, Fy x) is a m@®s which is a modal ©-valent subset of
(E, Fy).
In all what follows we shall write Fyx for Fy(x), FyE for F,(E),
etc.

Example 0.1. For n € N*, we define the closed chain

; {0, 1, 2} if n=2;
N, =101, . n-1} if n2>3.
The m® set (Z,7, Z, Fy).

Let us set x,7 = (p+0r),y, where xe€ Z\nZ (x =pn+r;p, r
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eZ;1<r<n-1).

7% if n=2
an e
7"t if n>3.

Let us set
Zynz =ZUix,z : = (x = 0 (mod n))}.
We define for all o € Ix;
Fy 2,y —> Z,yg
Foa=a if a€eZ,

@ \Fa=0b+aby if a=by, beZ\nZ

b=bn+by :by,b€Z;1<by <n-1).
(Z,7, Fy) is a mO set such that C(Z,,5, F, ) = Z.

Consider (Zyy, Fy)
Lyz, = Z U {lyy, 32z, 5gz, Tazs -3
lyz = (0+a 1)yeq o = I 2t e 2%
397 = (L+ 0 1)geqy g = 2, 3} € Z%;
Boz = (2+a 1)geq g = 3, 4} e 2%

722 = (3 + o '1)0(6{1’2} = {4, 5}6 Z2;

FIZ = F2Z = Z,

Fl]‘QZ =0+1-1=]_; F212Z =O+2-1=2;
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F1397 = 2; Fy397 = 3.
0.2.2. The Algebra of (F,;, F)
Let p € N, a prime number. Let us recall that if a € F 7, then
Foz =Fp, u{xyz : = (x =0 (mod p))}; F, ={0,1, 2, ..., p—1}.
We define the m® support of @ denoted s(a) as follows:

a if ae Fps
s(a) = . .
x if a=x,; with I(x =0 (mod p)).

Thus s(a) € F,.

Definition 0.4. Let L be a binary operation on Fp. So, Va, b e Fp,
albelF, Letx, yeF,. We define a binary operation 1* on F,z as

follows:

. x,ye F_,
s(w) L sly) if {(s(x) L s?y)) = 0 (mod p) otherwise,
(s(x) L s(y))pZ otherwise.

x 1*y=

1* as defined above on Fp; will be called a m® law on F,; for
x, y € F,. Thus we can define x + y € F,; and xxy e Fp; for every
x, y € Fpz, where + and x are m® addition and m® multiplication,

respectively.

Theorem 0.2. (F,;, Fy, +, %) is a m@® ring of unity 1 and of m®
unit L

Y YA

Proof 0.3. [1].

Remark 0.1. Since p is prime, (Fpz, F) isa m® field.

Definition 0.5. x is a divisor of zero in (F,;, Fy) if there exists
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y € Fpz such that x xy = 0.
Example 0.2. 1. p = 2, we have Fy; =10, 1, 197, 397}

The table of m® determination and tables laws of Fyj

Foz 0 1 | 1oz | 3oz

F|o|1|1] 0

1 1 0 0 0
]‘ZZ ]‘ZZ 0 0 0
397 | 32z 0 0 0
x© 0 1 1oz | 32z

0 0 0 0 0

Observation.

Fo7 has no divisor of zero, is a m® ring from four elements, that is a
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mO field of four elements.

2. p = 3, we have F3Z = {0, ]., 2, 132, 232, 432, 532, 732, 832}.

The table of m® determination and tables laws of Fs3;

Faz 0 1 2 lsz, | 23z | 43z | B3z | Tsz | 83z
B | o 1 2 1 2 2 0 0 1
F, 0 1 2 2 1 0 2 1 0
+ 0 1 2 laz, | 23z | 48z | B3z | Tsz | 8az
0 0 1 2 Isz | 23z | 43z | B3z | Tsz | 8sz
1 1 2 0 | 25 | 0 |53 | 0 | 8y | 0
2 2 0 1 0 |49y | 0 | 755 | 0 | 14
lsz | laz | 23z 0 | 23 0 | 53z 0 83z | 0
232 | 23z 0 | 432 0 | 43z 0 T3z 0 lsz,

437 | 4sz | Osz 0 | 53z 0 8sz | 0 237 0
b3z | Baz 0 | T3z 0 | T3z 0 13z, 0 | 43z
Tsz | Tsz | 8sz | O 8z | 0 | 23z 0 53z 0

83z | 83z | O 13z, 0 13z, 0 | 432 0 T3z
X 0 1 2 lgz, | 23z | 43z | B3z | Tsz | 8sz
0 0 0 0 0 0 0 0 0 0
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1 0 1 2 Isz | 23z | 43z | B3z | Tsz | 8sz

2 0 2 1 237 | 43z | 83z | lsz | B3z | Tsz
13z, 0 137 | 232 | laz | 232 | 43z | B3z | T3z | 83z
237, 0 237 | 43z | 23z | 43z | 83z | Tsz | B3z | Taz
437, 0 437, | 83z | 43z | 83z | Tsz | 23z | l3z | B3z
53z 0 byz | laz | B3z | laz | 23z | Tsz | 83z | 43z
T3z 0 T3z | B3z | Tsz | B3z | laz | 83z | 43z | 23z
83z 0 83z | Tz | 83z | Tsz | 53z | 43z | 23z | laz

0.3. The m® Ring Z,; of p-adic Integers
0.3.1. Z, the set of p-adic integers [2]

Definition 0.6. A p-adic integer is a formal series Zi>0 aipi with

integral coefficients qa; satisfying

In particular, if a = Zi>0 a;p’, b= Z b;p' (with a;, b; € Fp),

120

we have

a=boaq =b forall i2>0.

Remark 0.2. From the definition, we immediately infer that the set

of p-adic integers is not countable.
0.3.2. The m® ring Z 3

Z,y is m@®s of p-adic integers which has C(Z,y, Fy) = Z, as the

p
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subset of modal ®- valent invariants.

Definition 0.7. A m® p-adic integer is a formal series Zi>0 aipi

with integral coefficients a; € F,7 satisfying

Fy(aj) e Fp; Vae I

With this definition, a m® p-adic integer a = Zi>0 aipi can be
identified with the sequence (a;); of its coefficients, and the set of m®
p-adic integers coincides with the Cartesian product

N
XpZ = H]sz :sz.

120
The usefulness of the series representation will be revealed when we
introduce algebraic operations on these m® p-adic integers. Let us
already observe that the expansions in base p of natural integers
produce m® p-adic integers, and we obtain a canonical embedding of

the set of natural integers N = {0, 1, 2, ...} into X 5.
1. Addition of m® p-adic integers

Let us define the sum of two m® p-adic integers a and b by the
following procedure. The first component of the sum is Fy(ag) + Fy (bg),
Va e I« if this is less than or equal to p—1, or Fy(ag)+ Fy(by)—p
otherwise. In the second case, we add a carry to the m® component of p
and proceed by addition of the next m® components. In this way, we
obtain a series for the sum that has m® components in the desired
range. More succinctly, we can say that addition is defined m®

componentwise, using the system of carries to keep them in F .
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Example 0.3. Let p = 3 and
a=1x3%+13, x31 +85, x3% + 25, x3% +0x3% + ...,
b =547 x3% + 45, x31 +2x3% 475, x3% +0x3% + .,
with an infinity of zero coefficients from i = 4.
To simplify the notation, we will simply note
a =113, 83, 237, 0,..) and b = (535, 437, 2, T37, 0, ...).
We calculate the different m® values of @ and b.
Fi(a)=01,1,1,2,0,..) and Fy(a) =(1, 2,0, 1,0, ...),

Fi(b)=(0,2,20,0,..) and Fo(b) = (2,0, 2,1, 0, ...).

Thus
a+b = (Fi(a)+ F1(0), Fz(a) + F5(b))
=(@0,1,0,1,0,..),(0,0,0,0,1,0,..))
= (837, 0, 837, 0,1, 0, ...).
So

a+b= (832, 0, 837, 0,1, 0, ...).

2. Product of two m® p-adic integers

Let us define the product of two m® p-adic integers by multiplying

their expansions m® componentwise, using the system of carries to keep

these m® components in the desired range F .

This multiplication is defined in such a way that it extends the usual
multiplication of elements of F 7, written in base p.
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Example 0.4. Let p = 3 and
a = (73Z’ 1, 2, 43Z’ 532, 0, ), b = (132, 0, 2, 832, 232, 0, )

with an infinity of zero coefficients from i = 6. We calculate the different

mO® values of @ and b.
Fi(a)=1(0,1,2,2,0,0,..) and Fy(a)=(1,1,1,2,0,0,0,...),

F(b)=(1,0,2120,.) and Fp(0)=(20,20,1,0,..).

Thus
axb= (Flz(axb), Fzz(axb))
= (Fy(a)x Fy(b), Fy(a)x Fy(b))
- ((0,2,1,0,21,1,1,0,..),(10,1,1,0,21,20,..)
= (732, 432, 1, T3z, 43z, 132, 1, 137, 0, ...).
So

axb= (732, 43Z’ 1, 732, 43Z’ 13Z’ 1, 13Z’ 0, )

Definition 0.8. Let a = Zi>0 aipi be a m® p-adic integer. If

a # 0, that is, Va e I+, F,(a) # 0, there is a first index v = v®(a) 2 0

such that Fy(a,)# 0. This index is the p-adic order
v=0%0)= ord,z(a), and we get a m® map
e _ .
v° =ordyy L,y —{0} - N.

Proposition 0.2. The ring Z,; of m® p-adic integers is an m®

integral domain.

Proof 0.4. The commutative m® ring Z,; is not {0}, and we have to
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show that it has no zero divisor. Let therefore a = Zizo aipi = 0,

b= Zizo bipi # 0, and define v =0v%(a), w =0v®®). Then a, is the
first nonzero m® coefficient of a, Voae I., 0< Fy(a,)< p, and
similarly b,, is the first nonzero m® coefficient of b. In particular, p
divides neither a, nor b, and consequently does not divide their product

a,b, either. By definition of multiplication, the first nonzero m®

coefficient of the product ab is the m® coefficient c,,, of p'"*, and

this m® coefficient is defined by

Voe I, 0< Fy(cpw) <D Fyleprw) = F2(ayb,) (mod p).
0.4. The Fraction Field of Z

Let (F ,z, Fy) be the finite m® field with p® elements.

Definition 0.9. The m® mapping

a= Zaipi — ag mod pZ

i>0
defines a ring m® homomorphism &® : Zpz, —> Fpy called reduction

mod pZ.

This reduction m® homomorphism is obviously surjective, with

kernel

{ae Z,y : Vae I+, Fy(ag) = 0} = {Zaipi = pZaHlp‘} = pZ .-

i1 120

Since the quotient is a m® field, the kernel PZ g, of € is a maximal

ideal of the m® ring Z ;.
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Theorem 0.3. The m® group ZEZ of invertible elements in the m®

ring Zpz consists of the m® p-adic integers of order zero, namely
Z;Z = {Zaipi tag # 0}
>0
Proof 0.5. If a m® p-adic integer a is invertible, so must be its

reduction €®(a) in F,z. This proves the inclusion Z}()Z c

{zi>0 aipi tag # O}. Conversely, we have to show that any mO®
p-adic integer a of order v®(a) = 0 is invertible. In this case the
(

reduction €7 (ag) € F,7 is not zero, and hence is invertible in this field.

Choose Va e I+, 0< Fy(by) < p with agby =1,7(mod pZ) and write

Fo%(aobo) =1+ kx p. Hence, if we write Fy(a) = ag + p X K/, then
F2(a-by)=1+kxp+pk'by =1+ pxk”

for some m® p-adic integer k”. It suffices to show that the classical

p-adic integer 1 + k” X p is invertible, since we can then write

FEla-by)Q+k xp) ' =1, (Fy(@) ' = Fylby)@+k xp) .

In other words, it is enough to treat the case Fgy(agp) =1,

Fy(a) =1+ k" x p. Let us observe that we can take
Q+k ' xp) P =1-k'xp+ (k' xp)?—..
=l+cgxp+c ><p2 +...,

with integers ¢; € F,. This possibility is assured if we apply the rules for

carries suitably.
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Remark 0.3. The ring Z,; of m® p-adic integers has a unique
maximal ideal, namely
PLypg = Lyz ~ Lpg.

The statement of the preceding remark corresponds to a partition

Zpg = Z}()ZH PZ py (a disjoint union). In fact, one has a partition
Zpz - 10} = | [ p"2;
pZ pZ-
k>0
Definition 0.10. Every nonzero m® p-adic integer a € Z,7 has a
canonical representation a = p’u, where v = v®(a) is the p-adic order

of @ and u € Z}7 isa m® p-adic unit.
The principal m® ideals of the ring Z 7,

(pk) = kapZ ={xe ZpZ : Orde(x) > k},

have an intersection equal to {0}:

k k -
Lz D PLpg D o D P Lpy DD ﬂkzop Z,z = {0}.

Indeed, any element @ # 0 has an order v®(a) = k, hence a e (p**1).

In fact, these principal m® ideals are the only nonzero ideals of the ring

of m® p-adic integers.

Proposition 0.3. The ring Z,z is a principal m® ideal domain.

More precisely, its ideals are the principal ideals {0} and kapZ, ke N.

Proof 0.6. Let I # {0} be a nonzero m® ideal of Z,; and 0 # a € [

an element of minimal order, say k = v®(a) < oo, Write a = pku with a
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1 k)

m® p-adic unit u. Hence pk =u ael and (p =kapZ c I.

Conversely, for any be I, let w = v®(b) > k and write
b=pPu = pfxp¥ e kapZ.
The ring of m® p-adic integers is an m® integral domain

(Proposition 0.2). Hence we can define the field of m® p-adic numbers

as the fraction field of Z ,;,
Qpz = Frac(Zpyy).

We have seen that any nonzero m® p-adic integer x € Z,7 can be

written in the form x = p™u with a m@® unit u of Z,; and m € N the
order of x. The inverse of x in the m® fraction field will thus be

%= p ™u". This shows that this m® fraction field is generated-

multiplicatively, and a fortiori as a m® ring by Z,; and the negative

powers of p. We can write
1
Q= Z H
DPZ DPZ D

-m

The representation % =p w1 also shows that % e p "z pz, and

QpZ = H p_mZpZ
m=0

1s a union over the positive integers m. These considerations also show

that a nonzero m® p-adic number x € Q,7 can be uniquely written as

x = p™u with m € Z and a unit u € Z%;z; hence

Gz = [ 1252

m=0
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is a disjoint union over the rational integers m € Z.
0.5. m® Completion of Q,;

0.5.1. The m®s of Q,7 - sequences

Definition 0.11. Intrinsic metric of Qpz or m® metric space on

Qpz 1s any list defined as follows:

(QpZa F(X9 de)’ or Slmply (QpZ’ de)

with d,7 a m@® p-adic metric such that:

8x;, yi) 1

Vx = (‘xi)iZO’ Yy = (yi)iz() € sz; de(x’ y) = sup ; ) )
20  p pv (x-y)

1s the discrete topology.

1 if x; #y,;
where 8(x;, v;) = { ' '

0 if xX; =Y

Definition 0.12. (a,,) is a m® Cauchy sequence of Q,z, a,, =

Zi>0 Ay s ipi, if and only if (a,,) verifies the following statement:

Vee Qp, dmye N :m,m’'>my = dpz (@, ayr) < e
U =0(Q,) is the set of sequences of elements of Q, noted
(am): Vm; ap, € Q.
Q = Q(Q,) is the set of Cauchy sequences of Q,.

Let U,z be the set of sequences of elements of Q,z : V(ay);
Va e Is, Fylay,) = (Fyay) € B(Q,).
Remark 0.4. 1. (U,z, F,) is a m@s whose the subset of m®

invariants, C(U,z) is U(Q,); so
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C(Opz, Fo) = 0(Qp).

2. (Q,7, Fy) is a m@®s whose the subset of m® invariants, C(Q,z )

is Q(Q,); so
C(Qpz, Fy) = Q(Q,).

Definition 0.13. Let Q,; = Q,(Q,z) be the set of m® Cauchy

sequences of (Q,z ).

0.5.2. m® construction of @\pz
Definition 0.14. We define R ,7 in Q7 as follows:
V(am), (bm) € Qpz, (@R 7, (br)
o (Vee Q:, Img € N :m> my = dyz(an, by) < €).
Consequence 0.1. 1. Let R = RPZ/Q. By definition,
V(an), (by) € Q, (@, )R(by,)
o (Vee Q),Imge N :m =mg = dlay,, by) < ¢),

1

v(ap—bp)

p

where d(a,,, b,,) =

2. Iay), 0y); (ap), (by)e Q,z such that (a,,)e Q,; - Q, b, €
Q but (a,)R pz(by)-

Therefore (a,, )R pz(by,); either (ay,), (by) e Qpz —Q or (ay), (by,)
e Q.

Observation 0.1. 1. Since R ;7 is respectful with the m® structure

of QpZ
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(@, )R(b,,) = Va e I+, Fyla,,)RFy(b,,).

QpZ
DPZ

Therefore let Sf;z = be the m® quotient m®s modulo R ,7 of

Q.
2. Let N be defined as follows:
N =A{lay); (a,) e Q: (a,)RO)}.
It is known that A is a maximal ideal of Q. N ,; defined as follows:
Nopz = {@,); (@,) e Qpy : Vae Is, Fylay,) € N}

respects all the m® structures of Q,; and even is a m® maximal ideal

. . : Qpz _ Lz
of Q.7 for all its m® algebraic structures. Obviously, =
P Npz  Rpz
—  Qu
Let O = 2L
p N oz

The following remark results from the preceding observation.
Remark 0.5. (QT,Z is a m® quasifield whose the subfield of the m®
invariants, C((QT,Z) is T@\p: C((QT,Z) =@.

Consider the following commutative diagram:

Jpz
@pZ — SZpZ

\ l¢RPZ
ipZ". e
QpZ
With the following definitions Va € Qpz : jpz : a = Jjpz(a) = (a,).

or, ¢ (am) o or,, (@) = ;g:z) Dz (@) = gg:lz) :
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1. By construction, 7;2 = PR,y ° Jpz 18 @ m® isomorphism of m®

ring from the m® f Q, over the sub m® f ]A (QpZ) of @/\pz .

—

2. =7 g, is a field isomorphism of Q,, over the subfield J(Q,)
of @.
Definition 0.15. 1. Let ap € Q,z, (a,,) a sequence of elements of

Qpz; (a,) mO converges (mOcv) to ap; notation (a,,) mOcv — ag if

and only if:
Vee Q;,dmge N :m >mg - dpz(ay,, apg) < e
2. (a,,) m® converges to a in Q,y is equivalent to the following
statement:
Va e I, Fyla,,) converges to Fy(a) in Q.
Proposition 0.4. Vae Qpy, VJ : D #dJ c I+, Y(a,)e O,y If

Va e J, Fyla,) converges to Fy(a)e Q,, then (a,,) J-converges to

a€ Qpz.
Proof 0.7. Since Vo, o€ J, Imyy € N such that m = my, —

€ *
<<
d(Fya,,, Fya) < CardeeE Q,, Ya e .

m>»

€
Let mg = max{mgy,}; then m >my — d(Fyua,,, Fua) < Card T

Ve € Qi, Vo € J. Therefore ZueJd(Fa(am), Fy(a)) < e what is

dj(a,, a) < e and (a,,) J - converges to a in Q7.

Lemma 0.1. If o € QTDZ, then

A

V(a,,) € o; jla,,) m® convergesto ¢ in @/\pz-
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Proof 0.8. It is obvious that in Q,; as well as in Q, the following

statements are equivalent:

1. (@,,) m® converges to ¢ in Q,; and
2. Vae I, Fy o ]/'p\Z (a,,) converges to F,o in @.

So that it then remains the same to state that Vo e I, }(Faam)

converges to Fyp in @\p. That is

* *
Vo e Ix,Vee Q,Imyg € N 1 m 2 mpq

. €
= d(j(Faapn), Fyo) < Card I+

Let  mg = maxge 1, {mog s if  Vm=>=my, then  Voae I+,

d(](Faam ), FaQ) < m Therefore d(](Faam ), FOLQ) < e

—

This means that Ve e Qi, m 2 my = dpy (jpz (@), 0) < e So that

A

j(a,,) m® converges to ¢ in @\pz-
Remark 0.6. It is obvious that VJ :J #J < I« if pe @\pz,
V(ap) e 0 M Q;(Qpz), then (a,)J cv to ¢ in Q,y;. One would then

say that Q7 1s </ -dense in QTDZ.
Qpz 1s m® dense in @\pz-

Theorem 0.4. Let (K, F;) be a m@Of such as Qpy is m® dense in
Kpz and any m® Cauchy sequence of Kp; m®Ocv in Kp;, then
37;2 : @\pz - Kz such that 71,\2 is @ m® isomorphism of @\pz over

Kz, 8(fpz) is unique and pr\QpZ = ideZ.
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Proof 0.9. Any m® Cauchy sequence of QT,Z is a m® Cauchy
sequence of K,;. Let then ae @/\pz and (a,)e Q,z such that

{am)
DPZ

a= . It is known that (a,,) m®cv say to @ in @\pz-

As a Cauchy sequence of K,;, let @ be the m@® limit of (a,,) in

K pz. Define now f as follows:
pr: QpZ 4 KpZ: am- a'.
By definition of 71)\2 and the respective laws of QTDZ and K7,

pr\sz - ld@pZ )

0.6. Conclusion

This note shows that Q7 is a m@® Fraction Field of Z 7, the ring of
m® p-adic integers compatible with the m® structure as presented in
[4].

Qpz 1s m® dense in @/\pz . QTDZ is the unique m® completion of
Qpz and

C(QPZ9F(;L) = Qp-

The results obtained in this paper can be used in the construction of

the compact topological m® ring Z,; of m® p-adic integers and of its

quotient m® field Q7 the locally compact m® field of p-adic numbers.
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