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Abstract 

Let 
→

G  be a simple connected directed graph on 2≥n  vertices and let 

*V  be a non-empty subset of ( )→GV  and denote the undirected 

subgraph induced by *V  by .*V  We show that the competition graph 

of the Jaco graph ( ) 5,,1 ≥∈ nnJn N  denoted by ( ( ))1nJC  is given by: 

( ( )) { } { =−=
−≤≤= iminivVn mvvVJC

ii 13*
*1  

( )( ) } { }.,,23, 211 niJ vvvnivdi
n

∪−≤≤+
+

 

Further to the above, the concept of the grog number ( )→Gg  of a simple 

connected directed graph 
→

G  on 2≥n  vertices as well as the general 

grog number of underlying graph G, will be introduced. The grog number 

measures the efficiency of an optimal predator-prey strategy if the simple 

directed graph models an ecological predator-prey web. 

We also pose four open problems for exploratory research. 

1. Introduction 

For a general reference to notation and concepts of graph theory see [1]. For 

ease of self-containess, we shall briefly introduce the concept of a competition graph. 

1.1. The competition graph of a simple connected directed graph →G  

The concept of the competition graph ( )→GC  of a simple connected directed 

graph →G  on 2≥n  vertices, was introduced by Joel Cohen in 1968 [2]. Much 

research has followed and recommended reading can be found in [4, 5, 6 together 

with all their references]. The concept of competition graphs found application in 

amongst others, Coding theory, Channel allocation in communication, Information 

transmission, Complex systems modelled in energy and economic applications, 

Decionmaking based mainly on opinion influences and Predator-Prey dynamical 

systems. 

For a simple connected directed graph →G  with vertex set ( )→GV  the 

competition graph ( )→GC  is the simple graph (undirected and possibly 
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disconnected) having ( ( )) ( )→→ = GVGCV  and the edges ( ( )) {vyGCE =→  if at 

least one vertex ( )→∈ GVw  exists such that the arcs ( ) ( )wywv ,,, }.exist  

Let →G  be a simple connected directed graph and let *V  be a non-empty 

subset of ( )→GV  and denote the undirected subgraph induced by *V  by .*V  

1.2. The competition graph of the Jaco graph, ( ) N∈nJn ,1  

For ease of reference the definition and basic properties of the Jaco graph 

( ) N∈nJn ,1  will be repeated. 

The infinite Jaco graph (order 1) was introduced in [3], and defined by 

( ( )) { },1 N∈=∞ ivJV i  ( ( )) {( ) }jijivvJE ji <∈⊆∞ ,,,1 N  and ( ) ∈ji vv ,  

( ( ))1∞JE  if and only if ( ) .2 jvdi i ≥− −  

The graph has four fundamental properties which are; ( ( )) { }N∈=∞ ivJV 1  

and, if jv  is the head of an edge (arc), then the tail is always a vertex jivi <,  and, 

if ,kv  for smallest ,N∈k  is a tail vertex, then all vertices jkv << ℓℓ ,  are tails of 

arcs to jv  and finally, the degree of vertex k is ( ) .kvd k =  The family of finite 

directed graphs are those limited to N∈n  vertices by lobbing off all vertices (and 

edges arcing to vertices) ., ntvt >  Hence, trivially, we have ( ) ivd i ≤  for .N�∈i  It 

is important to note that the general definition of a finite Jaco graph [3], prescribes a 

well-defined orientation. So we have one well-defined orientation of the 
( ( ) )1

2 nJε
 

possible orientations. 

Theorem 1. 1. For the Jaco graph ( ) ,5,,1 ≥∈ nnJn N  the competition graph 

( ( ))1nJC  is given by: 

( ( )) { } { =−=
−≤≤= iminivVn mvvVJC

ii 13*
*1  

( )
( ) } { }.,,23, 211 niJ

vvvnivdi
n

∪−≤≤+ +  

Proof. The well-defined orientation of Jaco graphs renders the competition 

graphs of ( ) 411 ≤≤nnJ  to be isolated vertices only. 
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From the definition of a Jaco graph, it follows clearly that ( )15J  is the smallest 

Jaco graph for which the vertex 5v  exists such that arcs ( )53 , vv  and ( )54 , vv  exist 

to allow the edge 43vv  in the competition graph. It follows easily that vertices 

21, vv  are isolated vertices in ( ( )).15JC  

Since 
( )

( ) ,0515
=+ vd

J
 vertex 5v  remains isolated in ( ( )).15JC  Hence, the edges 

(previously arcs, respectively), 53vv  and 54vv  do not exist in ( ( )).15JC  It implies 

that the edge (previously an arc), ,
3353 mvvvv =  

( )
( ),3 313

5
vdm

J
++=  333 ≤≤  

25 −=  does not exist. So the result: 

( ( )) { } { =−=
−≤≤= iminivVn mvvVJC

ii 13*
*1  

( )
( ) } { }niJ

vvvnivdi
n

,,23, 211
∪−≤≤+ +  

holds for .5=n  

We will now apply induction. Assume the result holds for ,kn =  hence assume: 

( ( )) { } { =−=
−≤≤= imikivVk mvvVJC

ii 13*
*1  

( )
( ) } { }.,,23, 211 kiJ

vvvkivdi
k

∪−≤≤+ +  

Also assume ( )1kJ  has Jaconian vertex .iv  

Consider .1+= kn  This extension adds the vertex 1+kv  and the set of arcs, 

{( ) ( ) ( ) ( )}1131211 ,...,,,,,,, +++++++ kkkikiki vvvvvvvv  to ( )1kJ  to obtain 

( ).11+kJ  From the definition of the competition graph, it follows that edges 

kkkiki vvvvvv 121 ,...,, −++  are defined in ( ( )).11+kJC  Since ( ) ,211 −+=− kk  we 

have the edges kkkiki vvvvvv 2)1(21 ,...,, −+++  defined in ( ( )).11+kJC  

Clearly vertices 1v  and 2v  remain isolated vertices in ( ( )).11+kJC  Equally 

evident is that 
( )

( ) ,0111
=+

+

+
kJ

vd
k

 so 1+kv  is an isolated vertex in ( ( )).11+kJC  

Hence the result: 
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( ( )) { ( ) } { =−=
−+≤≤=+ imikivVk mvvVJC

ii
,*1

113*1  

( )
( ) ( ) } { },,,213, 12111

+
+ −+≤≤+

+
kiJ

vvvkivdi
k

∪  holds. 

Thus the result: 

( ( )) { } { =−=
−≤≤=≥ iminivVnn mvvVJC

ii 13*5 *1  

( )
( ) } { }niJ

vvvnivdi
n

,,23, 211
∪−≤≤+ +  

is settled through induction. 

2. Grog Numbers of Simple Connected Directed Graphs 

For a simple connected graph G on 2≥n  vertices, we consider any orientation 

→G  thereof. Label the vertices randomly ....,,,, 321 nvvvv  The aforesaid vertex 

labelling is called indicing and a specific labelling pattern is called an indice of G. 

Consider the graph to represent a predator-prey web. A vertex v with ( ) 0=
+

→
vd

G
 is 

exclusively prey. To the contrary a vertex w with ( ) 0=−
→ wd

G
 is exclusively 

predator. A vertex z with ( ) ( ) ( ) 00 >
−

>
+

→→→ += zdzdzd
GGG

 is a mix of predator-

prey. 

Let a vertex labelled iv  have an initial 00 prey-predator ≥≥  population of 

exactly ( )ivρ .i=  So generally there is no necessary relationship between the 

initial 00 prey-predator ≥≥  population ( ) ivi =ρ  and ( ) ( ) 0≥
+

→
=→ i

G
iG vdvd  

( ) .0≥
−

→+ iG vd  

2.1. The Grog algorithm 

The predator-prey dynamics now follow the following rules. 

Grog algorithm.
1
 

0. Consider the initial graph .→G  

                                                           

1
Admittedly, the Grog algorithm has been described informally. See Open problem 3. 
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1. Choose any vertex iv  and predator along any number ( ) ivd i
G

≤≤≤
+

→
ℓ1  

of out-arcs or along any number ( )i
G

vdi
+

→
<≤≤ ℓ1  of out-arcs, with only one 

predator per out-arc provided that the preyed upon vertex jv  has .1≥j  

2. Remove the out-arcs along which were predatored and set ( ) =+
ivd

*
 

( ) ,ℓ−
+

→ i
G

vd  and for all vertices ijv ≠  which fell prey, set ( ) =
−

jvd
*

 

( ) .1−−
→ iG

vd  

3. Set the 00 prey-predator ≥≥  populations ( ) ℓ−=ρ ivi*  and ( )ijv ≠ρ*  

.1−= j  

4. Consider the next amended graph →
*

G  and apply rules 1, 2, 3 and 4 thereto if 

possible. If not possible, exit. 

Observation 1. We observe that since both the 00 prey-predator ≥≥  population of 

all vertices, and the number of out-arcs embedded in →G  as well as those, 

respectively, found in the iterative amended graphs →
*

G  are finite, the Grog 

algorithm will always terminate. So it can be said informally that the Grog algorithm 

is well-defined. 

We note that rule 1 allows us to choose any vertex iv  per iteration. Following 

that, any number of the existing out-arcs from iv  can be chosen to predator along. 

Collectively, the specific iterative choices will be called the predator-prey strategy. 

Generally, a number of predator-prey strategies may exist for a given →G  and the 

set of all possible strategies is denoted, ( ).→GS  Amongst the strategies there will be 

those who for a chosen vertex ,iv  consecutively predator along the maximal number 

of out-arcs available at .iv  These strategies are called greedy strategies and a greedy 

strategy ( )→∈ GSsk  is denoted .kgs  

Observation 2. We observe that if a predator-prey strategy ( )→∈ GSsk  is 
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repeated for a specific graph ,
→

G  the amended graph →
*

G  found on termination 

(exit step) is unique. Put differently, we informally say the predator-prey strategy ks  

is well-defined. 

In the final amended graph →
*

G  (exit step) we will find each vertex iv  has 

( ) .0
*

≥ρ → iG
v  Some residual arcs may be present as well. 

Lemma 2.1. In the final amended graph 
→
*

G  (exit step) there will be at least 

one vertex iv  and at least one vertex jv  with ( ) 0
*

=ρ → iG
v  and ( ) .0

*

>ρ → jG
v  

Proof. Part 1: Since G is a simple connected graph the open neighborhood of 1v  

has ( ) .1 φ≠vN  If in the final amended graph →
*

G  (exit step), we have 

( ) .01
*

=ρ → v
G

 Part 1 of the result holds. If ( ) ,01
*

≠ρ → v
G

 it implies that 

( ) ( ).,0 1
*

vNvv kkG
∈∀=ρ →  Hence, Part 1 of the result holds. 

Part 2: Since →G  is a a simple connected directed graph, the extremal case is 

that nv  is preyed upon or predator on, cumulatively over all other 1−n  vertices of 

.→G  Thus we have ( ) ( ) ( ) ( ) .0111
*

>=−−=−−ρ=ρ →→ nnnvv nGnG
 Hence, 

Part 2 of the result holds. 

Definition 2.1. For a predator-prey strategy ks  and the final amended graph 

→
*

G  (exit step), the cumulative residual, 00 prey-predator ≥≥  population over all 

vertices is denoted and defined to be ( ) ( ).
*

∑
∀

→
→ρ=

i

k
v

iGs vGr  

Definition 2.2. The grog number of →G  is defined to be ( ) =→Gg  

( ( )) ( )→∈∀
→

GSss kk
Grmin  or equivalently, 

( ) ( ( )) ( ) .min →∈∀
→→ = GSgsgs kk

GrGg  

Definition 2.3. The grog number of a simple connected graph G is defined to be 
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( ) ( ( ))→= GgGg min  over all possible orientations of G. 

Consider a simple connected graph G on 2≥n  vertices with ( )Gε  edges. It is 

easy to see that the n vertices can be randomly labelled (indiced), through 

nvvvv ...,,,, 321  in !n  ways. Equally easy to see that the edges can be orientated in 

( )Gε2  ways. Hence, ( )Gn ε2!.
2

1
 distinct predator-prey webs can be constructed from 

.→G  

Let ( ) {( ) ijis vvvG
k

⇝=
→

P  is predator to }.jv  Call an arc ( )ji vv ⇝  

( )→
∈ G

ksP  a predator arc. Denote the cardinality of ( )→
G

ksP  by ( ( )).→
Gc

ksP  

From the Grog algorithm the interative sequence of ks  can be recorded as an 

ordered string. So if ks  terminates (exit step) after t iterations, we can express ks  as, 

( ) ( ) ( ) ( )....,,,,
332211 tt jijijijik vvvvvvvvs ⇝⇝⇝⇝=  Clearly any pair of 

predator arcs say, ( )
ℓℓ ji vv ,  and ( ) tmvv

mm ji ≤≤ ,1,, ℓ  can interchange positions 

in the ordered string without changing the value of ( ).→
Gr

ks  We say that ks  has 

the commutative property. 

Clearly, pairs of predator arcs can be grouped together for preferred sequential 

application prior to other predator arcs, meaning (( ),
11 jik vvs ⇝=  ( ),

22 ji vv ⇝  

( ),
33 ji vv ⇝  ...,  ( ))

tt ji vv ⇝ ((( ),
ss ji vv ⇝=  ( )),

ℓℓ ji vv ⇝  ( )
ww ji vv ⇝  

).,,arcsother ℓsw≠∀  We say that ks  has the associative property. The next two 

lemmas follow. 

Lemma 2.2. Consider a specific orientation of a simple connected graph G on 

2≥n  vertices labelled nvvv ...,,, 21  say, .→G  For the initial cumulative 

00- ≥≥ preypredator  population given by ( ) ,
11
∑∑
==

=ρ
n

i
i

n

i

iv  we have that: 
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( )













=

∑

∑

=

=→

.,,

,,,

1

1

unevenisiifonlyandifuneven

evenisiifonlyandifeven

Gr
n

i

n

i
sk

 

Proof. Note that if vertex iv  predator along the arc ( )ji vv ,  in step *  of the 

Grog algorithm then ( ) ( ) 11** −ρ=ρ − ii vv  and ( ) ( ) 11** −ρ=ρ − jj vv  so the total 

reduction is always 2 for each predator arc in .
ksP  Hence, ( ( ))→

Gc
ksP2  is always 

even. 

The two parts now follow immediately from Number Theory. 

Lemma 2.3. For a specific orientation of a simple connected graph G on 2≥n  

vertices labelled nvvv ...,,, 21  say, →G  we have that ( ( )) =
→

Gc
ksP  

( ) .
2

1

1













−

→

=
∑ Gri
n

i
sk

 

Proof. From Lemma 2.2, it follows that ( ) ( ( )).2
1

→

=

→ ∑ −= GciGr
kk s

n

i
s P  

Hence the result: 

( ( )) ( ) .
2

1

1













−=

→

=

→ ∑ GriGc

n

i

ss kk
P  

2.2. On paths and cycles 

Proposition 2.4. If a path 3, ≥nPn  and any specific orientation thereof say, 

→
nP  is extended to ,1

→
+nP  then the residual population over all possible predator-

prey strategies applicable to →
+1nP  is given by: 

( )
( ) ( )

( ) ( )







−+

=++

=
→

→

→
+

,,1

,,1 1

1*

otherwisenPr

vvifonlyandifnPr

Pr

ns

sns

ns

k

k

k

 

and *
ks  is the minimal deviation from ks  to accommodate arcing to or from 1+nv  
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and, 1+nv  is linked to an end vertex sv  of →
nP  or; 

( )
( )

( ) ( )







−+

==+

=
→

→

→
+

,,1

,, 11

1*

otherwisenPr

vvorvveitherifonlyandifnPr

Pr

ns

qpns

ns

k

k

k

 

and *
ks  is the minimal deviation from ks  to accommodate arcing to or from 1+nv  

and, 1+nv  squeesed in-between two vertices qp vv ,  of →
nP  with .,1 nqp ≤≤  

Proof. Consider .1+nP  We begin by considering any specific orientation of nP  

having end vertices ntsvv ts ≤≤ ,1,,  and denote it .→
nP  Clearly the extension 

from →
nP  to →

+1nP  is made possible by linking (arcing) vertex 1+nv  to either sv  or 

tv  or squeesing it between two vertices of ,→
nP  say qp vv ,  with .,1 nqp ≤≤  

Case 1. Assume 1+nv  is linked to .sv  

Subcase 1.1. If we consider the arc ( )sn vv ,1+  in ,1
→
+nP  the one strategy ,*

ksr  

could be for 1+nv  to prey on sv  first, leaving a portion of the residual population 

amounting to n at 1+nv  and a portion of the residual population amounting to 1−s  

at .sv  However, if ,1vvs =  the vertex 1v  cannot predator further on its neighbor in 

→
nP  anymore. So, if ks  is applied from vertex sv  throughout the rest of the 

remaining path then we have: 

( )
( ) ( )

( ) ( )







−+

=++

=
→

→

→
+

otherwise.,1

,ifonlyandif,1 1

1*

nPr

vvnPr

Pr

ns

sns

ns

k

k

k

 

If we consider the strategy to apply ks  effecting from sv  first, the vertex 1+nv  

cannot predator at all if .1vvs =  If 1vvs ≠  there is a loss of 2 at sv  and a loss of 1 

at 1+nv  from the initial total 00 prey-predator ≥≥  population in .1
→
+nP  Hence the 

result: 

( )
( ) ( )

( ) ( )







−+

=++

=
→

→

→
+

otherwise,,1

,ifonlyandif,1 1

1*

nPr

vvnPr

Pr

ns

sns

ns

k

k

k
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holds. 

Subcase 1.2. If we consider the arc ( )1, +ns vv  in ,1
→
+nP  the one strategy ,*

kss  

could be for sv  to prey on 1+nv  first, leaving a portion of the residual population 

amounting to n at 1+nv  and a portion of the residual population amounting to 1−s  

at .sv  Now, if ks  is applied from vertex sv  throughout the rest of the remaining 

path then we have: 

( )
( ) ( )

( ) ( )







−+

=++

=
→

→

→
+

otherwise.,1

,ifonlyandif,1 1

1*

nPr

vvnPr

Pr

ns

sns

ns

k

k

k

 

If we consider the strategy to apply ks  effecting from sv  first, the vertex 1+nv  

cannot predator at all if .1vvs =  If ,1vvs ≠  there is a loss of 2 at sv  and a loss of 1 

at 1+nv  from the initial total 00 prey-predator ≥≥  population in .1
→
+nP  Hence the 

result: 

( )
( ) ( )

( ) ( )







−+

=++

=
→

→

→
+

otherwise.,1

,ifonlyandif,1 1

1*

nPr

vvnPr

Pr

ns

sns

ns

k

k

k

 

holds. 

Case 2. Assume 1+nv  is linked to .tv  

The proof of this case follows similar to that of Case 1. 

Case 3. Assume 1+nv  is squeesed in-between vertices qp vv ,  with 

.,1 nqp ≤≤  

Subcase 3.1. The arcs ( )1, +np vv  and ( )qn vv ,1+  exist in .1
→
+nP  The one 

strategy *
ksr  in ,1

→
+nP  could be for pv  to prey on 1+nv  first, leaving a portion of the 

residual population amounting to n at 1+nv  and a portion of the residual population 

amounting to 1−p  at .pv  Then let 1+nv  prey on ,qv  leaving a portion of the 

residual population amounting to 1−n  at 1+nv  and a portion of the residual 
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population amounting to 1−q  at .qv  Now, if ks  is applied throughout the rest of 

the remaining path then we have: 

( )
( )

( ) ( )







−+

==+

=
→

→

→
+

otherwise,,1

,or,eitherifonlyandif, 11

1*

nPr

vvvvnPr

Pr

ns

qpns

ns

k

k

k

 

holds. 

Subcase 3.2. The arcs ( )1, +np vv  and ( )1, +nq vv  exist in .1
→
+nP  By applying 

the strategy *
ks  to accommodate vertex 1+nv  and with similar reasoning as in 

Subcase 3.1, the result: 

( )
( )

( ) ( )







−+

==+

=
→

→

→
+

otherwise,,1

,or,eitherifonlyandif, 11

1*

nPr

vvvvnPr

Pr

ns

qpns

ns

k

k

k

 

holds. 

Subcase 3.3. The arcs ( )pn vv ,1+  and ( )qn vv ,1+  exist in .1
→
+nP  By applying 

the strategy *
ks  to accommodate vertex 1+nv  and with similar reasoning as in 

Subcase 3.1, the result: 

( )
( )

( ) ( )







−+

==+

=
→

→

→
+

otherwise,,1

,or,eitherifonlyandif, 11

1*

nPr

vvvvnPr

Pr

ns

qpns

ns

k

k

k

 

holds. 

Subcase 3.4. The arcs ( )1, +nq vv  and ( )pn vv ,1+  exist in .1
→
+nP  By applying 

the strategy *
ks  to accommodate vertex 1+nv  and with similar reasoning as in 

Subcase 3.1, the result: 

( )
( )

( ) ( )







−+

==+

=
→

→

→
+

otherwise,,1

,or,eitherifonlyandif, 11

1*

nPr

vvvvnPr

Pr

ns

qsns

ns

k

k

k

 

holds. 
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Corollary 2.5. For a path ,3, ≥nPn  we have that ( ) ( ) ( ).11 ++=+ nPgPg nn  

Proof. From Proposition 2.4, it follows that for a specific orientation of nP  and 

for all possible predator-prey strategies, 

( ) { ( ) ( ) ( ) ( ) ( )} ( ) =−++++= →∈∀
→→→→

+ nkkkk PSsnsnsnsn nPrnPrnPrPg 1,,1min1

{ ( )} ( ) ( ).1min −+→∈∀
→ nPr

nkk PSsns  

From Definition 2.3, it then follows that ( ) ( ) ( ).11 ++=+ nPgPg nn  

Example 1. Consider path .3P  Note vertex labelling will be from left to right. 

Also note that the labelled vertices will be denoted through an ordered triplet and the 

arcs through an ordered arc-pair. The 122!.3.
2

1 2 =  distinct predator-prey webs are: 

(1) ( ) { }3213 ,, vvvPV =→ and ( ) {( ) ( )},,,, 32213 vvvvPA =→  

(2) ( ) { }3213 ,, vvvPV =→ and ( ) {( ) ( )},,,, 23213 vvvvPA =→  

(3) ( ) { }3213 ,, vvvPV =→ and ( ) {( ) ( )},,,, 32123 vvvvPA =→  

(4) ( ) { }2313 ,, vvvPV =→  and ( ) {( ) ( )},,,, 23313 vvvvPA =→  

(5) ( ) { }2313 ,, vvvPV =→  and ( ) {( ) ( )},,,, 32313 vvvvPA =→  

(6) ( ) { }2313 ,, vvvPV =→  and ( ) {( ) ( )},,,, 23133 vvvvPA =→  

(7) ( ) { }3123 ,, vvvPV =→  and ( ) {( ) ( )},,,, 31123 vvvvPA =→  

(8) ( ) { }3123 ,, vvvPV =→  and ( ) {( ) ( )},,,, 13123 vvvvPA =→  

(9) ( ) { }3123 ,, vvvPV =→  and ( ) {( ) ( )},,,, 31213 vvvvPA =→  

(10)  ( ) { }1323 ,, vvvPV =→  and ( ) {( ) ( )},,,, 13323 vvvvPA =→  

(11)  ( ) { }2133 ,, vvvPV =→  and ( ) {( ) ( )},,,, 21133 vvvvPA =→  

(12)  ( ) { }1233 ,, vvvPV =→  and ( ) {( ) ( )}.,,, 12233 vvvvPA =→  
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For each case the number of greedy strategies together with the residual population 

( )→
3Pr

ks  as well as the grog number ( )→
3Pg  will be depicted. 

(1) Number of greedy strategies ;2=  

( ) ( ) 2,2 33 21
==

→→
PrPr ss  and ( ) { } .22,2min3 ==→Pg  

(2) Number of greedy strategies ;2=  

( ) ( ) 2,2 33 21
==

→→
PrPr ss  and ( ) { } .22,2min3 ==→Pg  

(3) Number of greedy strategies ;2=  

( ) ( ) 2,2 33 21
==

→→
PrPr ss  and ( ) { } .22,2min3 ==→Pg  

(4) Number of greedy strategies ;2=  

( ) ( ) 2,2 33 21
==

→→
PrPr ss  and ( ) { } .22,2min3 ==→Pg  

(5) Number of greedy strategies ;2=  

( ) ( ) 2,2 33 21
==

→→
PrPr ss  and ( ) { } .22,2min3 ==→Pg  

(6) Number of greedy strategies ;2=  

( ) ( ) 2,2 33 21
==

→→
PrPr ss  and ( ) { } .22,2min3 ==→Pg  

(7) Number of greedy strategies ;2=  

( ) ( ) 4,4 33 21
==

→→
PrPr ss  and ( ) { } .44,4min3 ==→Pg  

(8) Number of greedy strategies ;2=  

( ) ( ) 4,4 33 21
==

→→
PrPr ss  and ( ) { } .44,4min3 ==→Pg  

(9) Number of greedy strategies ;2=  

( ) ( ) 4,4 33 21
==

→→
PrPr ss  and ( ) { } .44,4min3 ==→Pg  

(10) Number of greedy strategies ;2=  
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( ) ( ) 2,2 33 21
==

→→
PrPr ss  and ( ) { } .22,2min3 ==→Pg  

(11) Number of greedy strategies ;2=  

( ) ( ) 4,4 33 21
==

→→
PrPr ss  and ( ) { } .44,4min3 ==→Pg  

(12) Number of greedy strategies ;2=  

( ) ( ) 2,2 33 21
==

→→
PrPr ss  and ( ) { } .22,2min3 ==→Pg  

From Definition 2.3, it follows that ( ) { } .24,2min3 ==Pg  

Theorem 2.6. For all simple connected graphs on N∈≥ nn ,3  vertices, over 

all indices and over all orientations of G, there exists at least one indice with at least 

one orientation say orientation io  with corresponding directed graph 
→

io
G  and at 

least another indice with at least one orientation say orientation jo  with 

corresponding directed graph jio
ooG

j
≠

→
,  with ( ) ( ).→→

≠
ji oo

GgGg  

Proof. In any simple connected graph G on ,,3 N∈≥ nn  at least one induced 

subgraph 
i

G  on ni ≤  vertices exists with .~
3PG

i
−  Hence in any simple 

connected graph G on N∈≥ nn ,3  vertices, we can find as a minimal indiced case, 

the subgraph 3P  with ( ) { }.,, 3213 vvvPV =  

Consider the orientation {( ) ( )}.,,, 32211 vvvvo =  So for ,
1,3

→
o

P  we have 

( )→

11 ,3 os Pr ( ) 2,2
12 ,3

== →
os Pr  and ( ) { } .22,2min

1,3
==→

o
Pg  

Now consider the orientation {( ) ( )}.,,, 31122 vvvvo =  So for ,
2,3

→
o

P  we have 

( ) ( ) 4,4
2221 ,3,3

== →→
osos PrPr  and ( ) { } .44,4min

2,3
==→

o
Pg  

So we have ( ) ( ).
21 ,3,3

→→ ≠
oo

PgPg  

Considering the partial graph ,3PG −  let ( ) tPGg
io =−

→
3  for a specific 

orientation io  and a predator-prey strategy .ks  
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For the path ,3213 vvvP =  consider the graph →G  with the predator-prey 

strategy ( )kk sss ,1
* =  and the orientation {( ) ( ) }.,,,, 3221

*
ii ovvvvo =  Clearly 

arcs to and from →
3P  and the rest of →G  may exist such that upon applying ,*

ks  we 

have (( ) ) ( ) (( ) ) .2244 33 * +−=+≤≤−=−−
→→→

iii ooo PGgtGgtPGg  

For the path ,3123 vvvP =  consider the graph →G  with the predator-prey 

strategy ( )kk sss ,1
* =  and the orientation {( ) ( ) }.,,,, 3112

*
jj ovvvvo =  Clearly 

arcs to and from →
3P  and the rest of →G  may exist such that upon applying ,*

ks  we 

have (( ) ) ( ) (( ) ) .4488 33 * +−=+≤≤−=−−
→→→

jjj ooo PGgtGgtPGg  

Since the set of arcs between the two directed paths and the rest of →G  must 

specifically remain the same, it follows that: 

(( ) ) ( ) (( ) ) ≠+−=+≤≤−=−−
→→→

2244 33 *
iii ooo PGgtGgtPGg  

(( ) ) ( ) (( ) ) .4488 33 * +−=+≤≤−=−−
→→→

jjj ooo PGgtGgtPGg  

Therefore, in general the result that there exist at least two different orientations and 

at least two different indices of G, such that ( ) ( )→→
≠

ji oo
GgGg  follows. 

Proposition 2.7. If a cycle 3, ≥nCn  and any specific orientation thereof say, 

→
nC  is extended to 

→
+1nC  the residual population over all possible predator-prey 

strategies applicable to 
→
+1nC  is given by: 

( ) ( ) ( ),11* −+=
→→

+ nCrCr nsns kk
 

and *
ks  is the minimal deviation from ks  to accommodate arcing to or from .1+nv  

Proof. Consider .1+nC  We begin by considering any specific orientation of nC  

and denote it .→
nC  Clearly the extension from →

nC  to →
+1nC  is made possible by 

squeesing ,1+nv  (arcing) in-between two vertices of ,→
nC  say ts vv ,  with 
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.,1 nts ≤≤  

Without loss of generality, consider the arc ( )ts vv ,  in .→
nC  Begin by letting 

sv  prey on tv  by predatoring along the arc ( )., ts vv  After this first step of the Grog 

algorithm the rest of the application applies to a path →
*nP  with end vertices sv  and 

tv  having ( ) 1−=ρ svs  and ( ) .1−=ρ tvt  After applying ks  to this path the value 

( )→
ns Cr

k
 is obtained. 

We now squeese 1+nv  in-between ts vv ,  and for any one of the four possible 

orientation between ,, ,1 tns vvv +  we have that if the Grog algorithm is applied to 

path ( ) { },,, ,133 tns vvvPVP +
→

=  we obtain 

( ) ( ) ( ) .1,1,1 1 −=ρ−=ρ−=ρ + tvnvsv tns  

Furthering with the Grog algorithm, we are left with exactly the path →
*nP  mentioned 

above. Hence the result: 

( ) ( ) ( ),11* −+=
→→

+ nCrCr nsns kk
 

and *
ks  is the minimal deviation from ks  to accommodate ,1+nv  follows. 

Corollary 2.8. For a cycle ,3, ≥nCn  we have that ( ) ( ) ,2* −=
→→

nsns
PrCr

kk
 

with *
ks  the minimal deviation from ks  to accommodate an orientation of the edge 

qp vv ,  with pv  and qv  the end vertices of .→
nP  

Proof. The result follows directly from the proof of Proposition 2.7. 

2.3. On Jaco graphs, ( ) 2,,1 ≥∈ nnJn N  

As stated in Kok et al. [3], finding a closed formula for the number of edges of a 

finite Jaco graph will assist in finding closed formulae for many recursive results 

found for Jaco graphs. In the absence of such formula, we present the next 

proposition. We begin with a lemma. 
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Lemma 2.9. For a Jaco graph, ( ) 2,1 ≥nJn  having the Jaconian vertex ,iv  we 

have that .02 ≥− ni  

Proof. From the definition of a Jaco graph ( ) 2,1 ≥nJn  with Jaconian vertex 

,iv  we have that either ( ) nvdi i =+ +  or ( ) .1−=+ + nvdi i  Therefore: 

Case 1. ( ) nvdi i =+ +  

( ),ivdni +−=∴  

( ),22 ivdni +−=∴  

( ) ( ) ( ( )) ( ) =−−=−=−−=−∴ ++++
iiii vdvdnvdnnvdnni 2222  

( ).ivdi +−  

Since ( ) ( )ii vdvdi −+ =−  and ( ) 0≥−
ivd  in ( ) ,2,1 ≥nJn  the result follows. 

Case 2. ( ) 1−=+ + nvdi i  

( ) ( ),1 ivdni +−−=∴  

( ) ( ),2122 ivdni +−−=∴  

( ) ( ) ( ) (( ) ( ))iii vdnvdnnvdnni
+++ −−=−−=−−−=−∴ 1222122  

( ) ( ( )) ( ) .111 −=−−=−− −++
iii vdvdivd  

Since ( ) 1≥−
ivd  in ( ) ,2,1 ≥nJn  the result follows. 

Proposition 2.10. For a Jaco graph, ( ) 2,1 ≥nJn  having the Jaconian vertex 

,iv  we have that: 

( ( )) ( ( )) ( ) .12111 +−+=+ niJgJg nn  

Proof. Consider any Jaco graph ( ) 2,1 ≥nJn  with Jaconian vertex iv  and grog 

number ( ( )).1nJg  In extending to ( ( )) ,11+nJ  the vertex 1+nv  with arcs 
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( ) ( ) ( )11211 ,...,,,,, +++++ nnnini vvvvvv  are added to ( ).1nJ  So clearly in −  

additional arcs are added. 

By applying the Grog algorithm to vertices njiv j ≤≤+ 1,  along the 

respective arcs ( ) ,1,, 1 njivv nj ≤≤++  there is a corresponding cumulative 

reduction in the residual population at vertices njiv j ≤≤+ 1,  of .in −  

Furthermore, there is an corresponding increase in the residual population at vertex 

1+nv  of ( ) ( ).1 inn −−+  Hence, 

( ( )) ( ( )) ( ) (( ) ( )) ( ( )) ( ) .1211111 +−+=−−++−−=+ niJginninJgJg nnn  

Corollary 2.11. For a Jaco graph, ( ) ,2,1 ≥nJn  we have ( ( )) >+ 11nJg  

( ( )).1nJg  

Proof. Since ( ) 3,02 ≥≥− nni  (Lemma 2.9) and ( ( )) ( ( )),111 nn JgJg >+  

,2≥n  it follows that ( ( )) ( ) ( ( )) .2,1121 ≥>+−+ nJgniJg nn  Therefore, 

( ( )) ( ( )) .2,111 ≥>+ nJgJg nn  

[Open problem 1: Formalise Observation 1, mathematically.] 

[Open problem 2: Formalise Observation 2, mathematically.] 

[Open problem 3: The Grog algorithm has been described informally. 

Formalise the Grog algorithm.] 

[Open problem 4: For a given →G  find the number of possible predator-

prey strategies, (cardinality of ( ))→GS  and if possible describe the 

algorithmic efficiency of determining it.] 
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