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Abstract 

We introduce a concept of Cone Heptagonal Metric Space and obtain the 

Chatterjea Fixed Point Theorem (Chatterjea [1]) in this setting. 

1. Introduction 

Huang and Zhang [2] introduced the concept of a cone metric space. They 

replaced the set of real numbers by an ordered Banach space and proved some fixed 

point theorems for contractive type conditions in cone metric spaces. Later on many 

authors have proved some fixed point theorems for different contractive type 

conditions in cone metric spaces; for examples, see, Common fixed point results for 

non commuting mappings without continuity in cone metric spaces (Abbas and 

Jungck [3]); Common fixed points for maps on cone metric space (Ilic and 

Rakocevic [4]); Some notes on the paper cone metric spaces and fixed point 

theorems of contractive mappings (Rezapour and Hamlbarani [5]). 



CLEMENT BOATENG AMPADU 

 

16 

Garg [6] introduced the notion of cone hexagonal metric space and proved 

Banach contraction mapping principle in a normal cone hexagonal metric space 

setting. Very recently, Auwalu and Hincal [7] proved the Kannan contraction 

mapping principle in cone hexagonal metric space. 

In this paper, inspired by the works of Garg [6] and Auwalu and Hincal [7], we 

introduce a concept of cone heptagonal metric space, and prove the Chatterjea 

contraction mapping principle in this setting. 

This paper is organized as follows. Section 2 contains some preliminary ideas 

that would be useful in the sequel. Example 2.8 shows that the notion of cone 

heptagonal metric space is a proper extension of cone hexagonal metric space. 

Section 3 contains the main results, in particular, the Chatterjea contraction mapping 

principle in cone heptagonal metric space is given by Theorem 3.1, and Example 3.2 

is given to illustrate the Chatterjea contraction principle in cone heptagonal metric 

space. 

2. Preliminaries 

Notation 2.1. E will denote a real Banach space. 

Definition 2.2. EP ⊂  will be called a cone iff 

(a) P is closed, nonempty, and { },0≠P  

(b) ,0,,, ≥∈ baba R  and Pyx ∈,  implies ,Pbyax ∈+  

(c) Px ∈  and Px ∈−  implies .0=x  

Notation 2.3. ≤  will denote a partial ordering with respect to P and will be 

defined by yx ≤  iff .Pxy ∈−  We shall write yx <  to indicate that yx ≤  but 

,yx ≠  while yx <<  will stand for ( ),int Pxy ∈−  where ( )Pint  denotes the 

interior of P. 

Definition 2.4. A cone P is called normal if there is a number 0>k  such that 

for all ,, Eyx ∈  the inequality yx ≤≤0  implies that .ykx ≤  The least 

positive number k satisfying ykx ≤  is called the normal constant of P. 
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Remark 2.5. In this paper, we always assume that E is a real Banach space and 

P is a cone in E with ( ) Φ≠Pint  and ≤  is a partial ordering with respect to P. 

Definition 2.6. Let X be a nonempty set. Suppose the mapping EXXd ֏×:  

satisfies 

(a) ( )yxd ,0 <  for all Xyx ∈,  and ( ) 0, =yxd  iff ,yx =  

(b) ( ) ( )xydyxd ,, =  for all ,, Xyx ∈  

(c) ( ) ( ) ( )yzdzxdyxd ,,, +≤  for all .,, Xzyx ∈  

Then d is called a cone metric on X, and ( )dX ,  is called a cone metric space. 

Remark 2.7. If we replace (c) of the previous definition with the following, 

which we call the heptagonal property, ( ) ( ) ( ) ( ) +++≤ uwdwzdzxdyxd ,,,,  

( ) ( ) ( )ytdtvdvud ,,, ++  for all Xtvuwzyx ∈,,,,,,  and for all distinct points 

{ },,,,,, yxXtvuwz −∈  then we say d is a cone heptagonal metric on X, and we 

call ( )dX ,  a cone heptagonal metric space. 

Example 2.8. Let { },,,,,,, kwvutsrX =  2
R=E  and {( ) }0,:, ≥= yxyxP  

be a cone in E. Define EXXd ֏×:  by 

( ) 0, =xxd  for all ,Xx ∈  

( ) ( ) ( ),12,6,, == rsdsrd  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ========= utdwsdvsdusdtsdwrdvrdurdtrd ,,,,,,,,,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ========= rwdrvdrudrtdwvdwudvudwtdvtd ,,,,,,,,,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ========= uwduvdtwdtvdtudswdsvdsudstd ,,,,,,,,,  

( ) ( ),2,1, =vwd  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ========= ktdksdkrdwkdvkdukdtkdskdrkd ,,,,,,,,,  

( ) ( ) ( ) ( ).10,5,,, === kwdkvdkud  
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Then it is easy to see that ( )dX ,  is a cone heptagonal metric space, but it is not 

a cone hexagonal metric space, since it lacks the hexagonal property of Auwalu and 

Hincal [7], since ( ) =12,6 ( ) ( ) ( ) ( ) ( ) ( ) =++++> swdwvdvudutdtrdsrd ,,,,,,  

( ) ( ) ( ) ( ) ( ) ( )10,52,12,12,12,12,1 =++++  as ( ) ( ) ( ) .2,110,512,6 P∈=−  

Definition 2.9. Let ( )dX ,  be a cone heptagonal metric space. Let { }nx  be a 

sequence in X and .Xx ∈  If for every Ec ∈  with c<<0  there exists N∈0n  such 

that for all ,0nn >  ( } ,, cxxd n <<  then { }nx  is said to be convergent. 

Definition 2.10. Let ( )dX ,  be a cone heptagonal metric space. Let { }nx  be a 

sequence in X. If for every Ec ∈  with c<<0  there exists N∈0n  such that for all 

,, 0nmn >  ( ) ,, cxxd mn <<  then { }nx  is called a Cauchy sequence in X. 

Definition 2.11. Let ( )dX ,  be a cone heptagonal metric space. If every Cauchy 

sequence is convergent in X, then X will be called a complete cone heptagonal metric 

space. 

Taking inspiration from Garg and Agarwal [8], we have the following 

Lemma 2.12. Let ( )dX ,  be a cone heptagonal metric space, and P be a 

normal cone with normal constant k. Let { }nx  be a sequence in X, then { }nx  

converges to x iff ( ) 0, →xxd n  as .∞→n  

Taking inspiration from Garg and Agarwal [8], we have the following 

Lemma 2.13. Let ( )dX ,  be a cone heptagonal metric space, and P be a 

normal cone with normal constant k. Let { }nx  be a sequence in X, then { }nx  is a 

Cauchy sequence iff ( ) 0, →+mnn xxd  as ., ∞→mn  

Taking inspiration from Jleli and Samet [9, Lemma 1.10], we have the following 

Lemma 2.14. Let ( )dX ,  be a complete cone heptagonal metric space, P be a 

normal cone with normal constant k. Let { }nx  be a Cauchy sequence in X and 

suppose there is a natural number N such that 
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(a) mn xx ≠  for all ,, Nmn >  

(b) xxn ,  are distinct points in X for all ,Nn >  

(c) yxn ,  are distinct points in X for all ,Nn >  

(d) xxn →  and yyn →  as .∞→n  

Then .yx =  

3. Main Results 

Theorem 3.1. Let ( )dX ,  be a complete cone heptagonal metric space, P be a 

normal cone with normal constant k. Suppose the mapping XXf ֏:  satisfies the 

contractive condition: ( ) ( ) ( )[ ]fxydfyxdfyfxd ,,, +α≤  for all Xyx ∈,  and 

.
2

1
,0 








∈α  Then 

(a) f has a unique fixed point in X, 

(b) for any ,Xx ∈  the iterative sequence { }xf n  converges to the fixed point. 

Proof. Let .Xx ∈  From the contractive condition, we deduce that 

( ) ( ) [ ( ) ( )]xffxdfxxdxfxdxffxd 222 ,,,, +α≤α≤  

from which it follows that ( ) ( ).,
1

, 2 fxxdxffxd
α−

α
≤  Similarly, we have, 

( ) ( ) ( ).,
1

,
1

,
2

232 fxxdxffxdxfxfd 







α−

α
≤

α−

α
≤  Continuing, we deduce, for 

each positive integer n that, ( ) ( ) ( ),,,
1

, 1 fxxdrfxxdxfxfd n
n

nn
=








α−

α
≤

+  

where .1
1

:0 <
α−

α
=≤ r  Now we divide the proof into two cases. 

First Case. Let xfxf nm
=  for some N∈nm,  with .nm ≠  Let .nm >  
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Then ) ,( xfxff nnnm
=

−  that is, ,yyf p
=  where nmp −=  and .xfy n

=  Now 

since ,1>p  we have ( ) ( ) ( ).,,, 1 fyydryfyfdfyyd ppp
≤=

+  Since [ ),1,0∈r  

it follows that ( ) Pfyyd ∈− ,  and ( ) Pfyyd ∈,  which implies that ( ) ,0, =fyyd  

that is, .yfy =  

Second Case. Assume that xfxf nm
≠  for all N∈nm,  with .nm ≠  Since 

,0 r≤  then it follows that ,
1 r

r
r

n
n

−
≤  thus it is clear that ( )xfxfd nn 1, +  

( ) ( ).,
1

, fxxd
r

r
fxxdr

n
n

−
≤≤  

Now ( ) ( ) ( ) ( ) +
−

≤+≤
++++ fxxd

r

r
xfxfdxfxfdxfxfd

n
nnnnnn ,

1
,,, 2112  

( )
( )

( ),,
1

1
,

1

1

fxxd
r

rr
fxxd

r

r
nn

−

+
=

−

+

 and since ( )
( )

( ),,
1

1
,

1
fxxd

r

rr
fxxd

r

r
nn

−

+
≤

−
 

we deduce that ( ) ( ).,
1

, 2 fxxd
r

r
xfxfd

n
nn

−
≤

+  

Also we have the following ( )
( )

( ),,
1

1
,

2
3 fxxd

r

rrr
xfxfd

n
nn

−

++
≤

+  and 

since ( )
( )

( ),,
1

1
,

1

2

fxxd
r

rrr
fxxd

r

r
nn

−

++
≤

−
 we deduce that ( ) ≤

+ xfxfd nn 3,  

( ).,
1

fxxd
r

r n

−
 

Therefore, it is clear, that we also have the following 

( ) ( )fxxd
r

r
xfxfd

n
nn ,

1
, 4

−
≤

+    and   ( ) ( ).,
1

, 5 fxxd
r

r
xfxfd

n
nn

−
≤

+  

Now if 5>m  is odd, then writing ,1,25 ≥+= llm  and using the fact that 

xfxf rp
≠  for ,,, rprp ≠∈ N  we see that 

( ) ≤
+ xfxfd mnn ,

( )
( ),,

1

1 22

fxxd
r

rrrr ln

−

++++ ⋯
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and since 

( ) ≤
−

fxxd
r

r n

,
1

( )

r

rrrr ln

−

++++

1

1 22
⋯

( ),, fxxd  

we deduce that ( ) ( ).,
1

, fxxd
r

r
xfxfd

n
mnn

−
≤

+  

Now if 5>m  is even, then writing ,2,22 ≥+= llm  and using the fact that 

xf p xf r
≠  for ,,, rprp ≠∈ N  we see that 

( ) ≤
+ xfxfd mnn ,

( )
( ),,

1

1 122

fxxd
r

rrrr ln

−

++++
−

⋯
 

and since 

( ) ≤
−

fxxd
r

r n

,
1

( )
( ),,

1

1 122

fxxd
r

rrrr ln

−

++++
−

⋯
 

we deduce that ( ) ( ).,
1

, fxxd
r

r
xfxfd

n
mnn

−
≤

+  

Thus combining all the cases, we have ( ) ( ),,
1

, fxxd
r

r
xfxfd

n
mnn

−
≤

+  for 

all ., N�∈mn  

Now if we take norm to inequality in the expression immediately above, we 

deduce that ( ) ( ) .,
1

, fxxd
r

r
kxfxfd

n
mnn

−
≤

+  Since ( ) 0,
1

→
−

fxxd
r

r
k

n

 as  

,∞→n  it follows that the sequence { }xf n  is Cauchy, and by the completeness of 

X, there is Xx ∈*  such that *xxf n
→  as .∞→n  Now we show existence of the 

fixed point. Notice that 

( )**, fxxd  

( ) ( ) ( ) ( )xfxfdxfxfdxfxfdxfxd nnnnnnn 32211 ,,,,* +++++
+++≤  

( ) ( )*,, 443 fxxfdxfxfd nnn +++
++  
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( ) ( ) ( ) ( )xfxfdxfxfdxfxfdxfxd nnnnnnn 32211 ,,,*, +++++
+++≤  

( ) [ ( ) ( )]xfxdfxxfdxfxfd nnnn 4343 ,**,, ++++
+α++  

( ) ( ) ( ) ( )xfxfdxfxfdxfxfdxfxd nnnnnnn 32211 ,,,*, +++++
+++=  

( ) ( ) ( ).*,*,, 3443 fxxfdxfxdxfxfd nnnn ++++
α+α++  

Taking limits in the above inequality, we get ( ) ( )*,**,* fxxdfxxd α≤  and since 

,
2

1
,0 








∈α  it follows ,1<α  thus .01 >α−  Hence from the inequality 

( ) ( ),*,**,* fxxdfxxd α≤  we deduce that ( )*,* fxxd ,0=  that is, .** fxx =  

Now we show uniqueness of the fixed point. If *y  is another fixed point of f, then it 

follows that 

( ) ( ) ( ) ( )[ ] ( )[ ],*,*2*,**,***,**, yxdfxydfyxdfxfxdyxd α=+α≤=  

and since ,
2

1
,0 








∈α  it follows that .021 >α−  Hence from the inequality 

( ) ( ),*,*2*,* yxdyxd α≤  we deduce that ( ) ,0**, =yxd  that is, ,** yx =  and 

uniqueness follows. 

Now we illustrate the main result with the following 

Example 3.2. Let C=E  and ( ){ }0,,,:, ≥∈+== yxyxiyxyxP R  be a 

normal cone in E. Let X and XXd ֏:  be given by Example 2.8. Then as 

Example 2.8 shows, ( )dX ,  is a cone heptagonal metric space, but it is not a cone 

hexagonal metric space, since it lacks the hexagonal property of Auwalu and Hincal 

[7] since ( ) ( )srdi ,12,6126 ==+ ( ) ( ) ( ) ( ) ( )swdwvdvudutdtrd ,,,,, ++++>  

( )10,5105 =+= i  as ( ) −+ i126 ( ) ( ) ( ) ( ) .212,110,512,6105 Pii ∈+==−=+  

Now define a mapping XXf ֏:  as follows, ,6=fx  if ;kx ≠  1=fx  if .kx =  

Note that f is not a contractive mapping with respect to the standard metric since 

561 =−=− fsfk .27 −=−= sk  However, f satisfies ( ) [ ( )fyxdfyfxd ,, α≤  

( )]fxyd ,+  for all { } { }7,6,5,4,3,2,1:,,,,,,, ==∈ kwvutsrXyx  with 
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.
6

1
=α  Applying the previous theorem, we obtain that f admits the unique fixed 

point .6* == wx  
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