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Abstract 

By using the bifurcation theory of planar dynamical systems to the 

Calogero-Bogoyavlenskii-Schiff equation, the existence of solitary wave 

solution and periodic travelling wave solutions is proved. Exact explicit 

parametric representations of the above solutions are obtained. 

1. Introduction 

In this paper, we consider the Calogero-Bogoyavlenskii-Schiff equation of the 

form 
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where .1 fdxfx ∫=∂−  To remove the integral term in equation (1), we introduce the 

following potential of the form 

 ( ) ( ).,,,, tzxvtzxu x=  (2) 

Then equation (1) becomes 
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This system is used to describe the ( )12 +  dimensional interaction of Riemann wave 

propagated along the z -axis with long wave propagated along the x -axis [1-4]. The 

authors [1-2] obtained overturning soliton solutions of equation (1). To the best of 

our knowledge, the dynamical behavior of travelling wave solutions of (1) has not 

been performed before. In this paper, by using bifurcation theory of planar dynamical 

systems, we study exact travelling wave solutions of equation (1) and we show that it 

has solitary wave solutions and periodic wave solutions. Exact explicit parametric 

representations of these solutions are given. 

Substituting the travelling wave transformation ( ) ( ),,, ξ= vtzxv  where 

ctzx −+=ξ  with the wave speed c  reduces equation (3) to the ordinary 

differential equation 
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where ' is the derivative with respect to .ξ  Integrating once and neglecting the 

integral constant, we have 
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To extend the dynamical method to the system (5), we consider the following 

transformation 

 .ϕ=′v  (6) 

Substituting equation (6) into equation (5), we obtain 
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3 2 =ϕ′′+ϕ+ϕ− c  (7) 

We have the following travelling wave system which is a planar dynamic system: 
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 (8) 

Obviously, equation (8) is a planar Hamiltonian system with Hamiltonian function 

 ( ) .say,2
2

1
, 322 hcyyH =ϕ+ϕ−=ϕ  (9) 
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Note that to this physical model, only bounded travelling waves are meaningful, 

so we just pay our attention to the bounded solutions of the equation (8) which are 

physically acceptable. To investigate all bifurcations of solitary waves, kink waves 

and periodic waves of equation (1), we should find all periodic annuli, homoclinic 

and heteroclinic orbits of the equation (8) depending on the parameter c  of the 

system. The bifurcation theory of dynamical systems (see [5-7]) plays an important 

role in our study. 

The rest of this paper is organized as follows. In Section 2, we consider 

bifurcations of phase portraits of the planar Hamiltonian system (8). In Section 3, we 

give some exact explicit parametric representations for travelling wave solutions of 

equation (1). 

2. Bifurcations of Phase Portraits of Equation (8) 

In this section, we will consider phase portraits of the system (8). Let ( )0,iiE ϕ  

be an equilibrium point of the system (8). The system (8) has two equilibrium points 

( )0,00 ϕE  and ( ),0,11 ϕE  where 00 =ϕ  and .
3

4
1

c
=ϕ  Let ( )0,iM ϕ  be the 

coefficient matrix of the linearized system of the system (8) at an equilibrium point 

( ).0,iiE ϕ  Then we have 

 ( ) ( ) .460,det0, cMJ iii −ϕ=ϕ=ϕ  (10) 

By the theory of planar dynamical systems (see [5-7]), the equilibrium point 

( )0,iiE ϕ  of the Hamiltonian system (8) is a saddle point if ( ) ;00, <ϕiJ  the 

equilibrium point ( )0,iiE ϕ  is a center if ( ) .00, >ϕiJ  

From the above analysis, we obtain the different phase portraits of the system (8) 

shown in Figures 1(a) and 1(b). 

                

(a)                                            (b) 

Figure 1. The phase portraits of system (8): (a) ,0>c  (b) .0<c  
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3. Exact Explicit Travelling Wave Solutions of Equation (1) 

The interest in finding exact solutions [1-4, 8] to nonlinear wave equations by 

using appropriate technique is growing day by day and these exact solutions play an 

important role in the study of nonlinear physical phenomena. In this section, by using 

the travelling wave system (8) and the Hamiltonian (9) with 0=h  to do calculations, 

we obtain the following exact explicit parametric representations of equation (1). 

(1) When ,0>c  (see Figure 1(a)), we have the smooth solitary wave solution of 

equation (1) of the form 

 ( ).sech2 2 ξ= ccu  (11) 

 

Figure 2. Graph of the solitary wave solution (11) for .2=c  

(2) When ,0<c  (see Figure 1(b)), we have a family of smooth periodic 

travelling wave solutions of equation (1) of the form 

 ( ( )).tan12 2 ξ−+−−= ccu  (12) 

 

Figure 3. Graph of the periodic wave solution (12) for .1.0−=c  

4. Conclusion 

In this paper, we have considered the bifurcation behavior of travelling wave 

solutions of equation (1). We have obtained smooth solitary wave solution and 
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smooth periodic travelling wave solutions. The study of bifurcation behavior of the 

travelling wave solutions of equation (1) will add some value in the literature of the 

Calogero-Bogoyavlenskii-Schiff equation. 
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