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Abstract 

The concept of cone-η  metric space appeared in [1]. On the other hand 

the concept of cone rectangular metric space appeared in [2]. In the 

present paper, we combine the notions of cone rectangular metric space 

and cone-η  metric space to form cone-η  rectangular metric space and 

prove the Banach contraction mapping theorem in this setting 

1. Introduction and Preliminaries 

Definition 1.1 (Huang and Zhang [3]). Let E  be a real Banach space with norm 

⋅  and P  be a subset of PE.  is called a cone if and only if 

(a) P  is closed, nonempty, and { },θ≠P  where θ  is the zero vector in ;E  
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(b) For any nonnegative real numbers a and b, and ,, Pyx ∈  we have byax +  

;P∈  

(c) for ,Px ∈  if ,Px ∈−  then .θ=x  

Definition 1.2 (Huang and Zhang [3]). Given a cone P  in a Banach space ,E  

we define on E  a partial order �  with respect to P  by 

( ).int Pxyyx ∈−⇔�  

We shall write yx p  whenever yx �  and ,yx ≠  while yx �  will stand for 

( ),Int Pxy ∈−  where ( )PInt  designates the interior of .P  

Definition 1.3 (Huang and Zhang [3]). The cone P  is said to be normal if there 

is a real number 0>C  such that for all ,, Eyx ∈  we have 

.yCxyx ≤⇒θ ��  

The least positive number satisfying the above inequality is called the normal 

constant of .P  In particular, we will say that P  is a normal-K  cone to indicate the 

fact that the normal constant is K  

Definition 1.4 (Azam et al. [2]). Let X  be a nonempty set. Suppose the 

mapping EXXd a×:  satisfies 

(a) ( ),,0 yxd≤  for all Xyx ∈,  and ( ) 0, =yxd  iff ;yx =  

(b) ( ) ( )xydyxd ,, =  for all ;, Xyx ∈  

(c) ( ) ( ) ( ) ( )yzdzwdwxdyxd ,,,, ++≤  for all Xyx ∈,  and for all distinct 

points { }yxXzw ,, −∈  [rectangular property]. 

Then d  is called a cone rectangular metric on ,X  and ( )dX ,  is called a cone 

rectangular metric space. 

Example 1.5 (Azam et al. [2]). Let ,, 2
RN == EX  and 
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( ){ }.0,:, ≥= yxyxP  

Define EXXd a×:  by 

( )

( )

( ) { }

( )







≠

=

=

otherwise.,3,1

,and2,1inareandif,9,3

,if,0,0

, yxyx

yx

yxd  

Then ( )dX ,  is a cone rectangular metric space, but ( )dX ,  is not a cone metric 

space, since it lacks the triangular property: 

( ) ( ) ( ) ( ) ( ) ( ) ( )6,23,13,12,33,12,19,3 =+=+>= ddd  

as ( ) ( ) ( ) .3,16,29,3 P∈=−  

Definition 1.6 (Gaba [1]). Let X  be a nonempty set and [ )∞×η ,1: aXX  

be a map. A function EXXd a×η :  will be called an cone-η  metric on X  if 

(a) ( )yxd ,ηθ �  for all Xx ∈  and ( ) θ=η yxd ,  iff ;yx =  

(b) ( ) ( )xydyxd ,, ηη =  for all ;, Xyx ∈  

(c) ( ) ( ) [ ( ) ( )]zydyxdzxzxd ,,,, ηηη +η�  for all .,, Xzyx ∈  

Moreover, the pair ( )ηdX ,  is called an cone-η  metric space. 

Remark 1.7 (Gaba [1]). If for all Xyx ∈,  

(a) ( ) ,1, =η yx  then we obtain the definition of cone metric space (Huang and 

Zhang [3]). 

(b) ( ) ,, Lyx =η  where ,1≥L  then we obtain the definition of cone metric type 

space (Cvetkovic et al. [4]). 

(c) ( ) ,, Cyx =η  where R=≥ EC ,1  and [ ) ,,0 ∞=P  then we obtain the 

definition of metric type space (Khamsi [5]). 
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Example 1.8 (Gaba [1]). Let ( ){ } 22 0,:,, RR ⊆≥∈== yxEyxPE  and 

=X { }.3,2,1  Let 0≥α  be a constant and define [ )∞×η ,1: aXX  and 

×η Xd : EX a  by 

( ) ,1, yxyx ++=η  

( ) ( ) ( ) ( ),0,03,32,21,1 === ηηη ddd  

( ) ( ) ( ),,1801,22,1 α== ηη dd  

( ) ( ) ( ),,110001,33,1 α== ηη dd  

( ) ( ) ( ).,16002,33,2 α== ηη dd  

Then ( )ηdX ,  is an cone-η  metric space. 

Now we introduce the following 

Definition 1.9. Let X  be a nonempty set and [ )∞×η ,1: aXX  be a map. A 

function EXXd a×η :  will be called an cone-η  rectangular metric on X  if 

(a) ( )yxd ,ηθ �  for all Xyx ∈,  and ( ) θ=η yxd ,  iff ;yx =  

(b) ( ) ( )xydyxd ,, ηη =  for all ;, Xyx ∈  

(c) ( ) ( ) [ ( ) ( ) ( )]yzdzwdwxdyxyxd ,,,,, ηηηη ++η≤  for all Xyx ∈,  and 

for all distinct points { }.,, yxXzw −∈  

Moreover, the pair ( )ηdX ,  will be called an cone-η  rectangular metric space. 

Example 1.10. Let { } ( ){ } ⊆≥∈=== 0,:,,,4,3,2,1 2 yxEyxPEX R  

.2
R  Define [ )∞×η ,1: aXX  and EXXd a×η :  by 

( ) ( ) ( ) ( ) ( ),0,04,43,32,21,1 ==== ηηηη dddd  
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( ) ( ) ( ),6,31,22,1 == ηη dd  

( ) ( ) ( ) ( ) ( ),2,11,33,12,33,2 ==== ηηηη dddd  

( ) ( ) ( ) ( ) ( ) ( ) ( ),4,23,44,32,44,21,44,1 ====== ηηηηηη dddddd  

( ) .2, −+=η yxyx  

Then ( )ηdX ,  is an cone-η  rectangular metric space but not an cone-η  metric 

space. 

Proof. By definition of ,ηd  it is trivial to check Definition 1.9(a), and 

Definition 1.9(b). Now we check Definition 1.9(c) 

( ) ( ) ( ) [ ( ) ( ) ( )] ( ) ( ) ( )[ ]4,24,22,12,44,33,12,12,16,3 ++=++η<= ηηηη dddd  

( ),10,5=  

( ) ( ) ( ) [ ( ) ( ) ( )] ( ) ( ) ( )[ ]4,24,26,323,44,22,13,13,12,1 ++=++η<= ηηηη dddd  

( ),28,14=  

( ) ( ) ( ) [ ( ) ( ) ( )] ( ) ( ) ( )[ ]4,22,16,334,33,22,14,14,14,2 ++=++η<= ηηηη dddd  

( ),36,18=  

( ) ( ) ( ) [ ( ) ( ) ( )] ( ) ( ) ( )[ ]4,24,26,333,44,11,23,23,22,1 ++=++η<= ηηηη dddd  

( ),42,21=  

( ) ( ) ( ) [ ( ) ( ) ( )] ( ) ( ) ( )[ ]4,22,16,344,33,11,24,24,24,2 ++=++η<= ηηηη dddd  

( ),48,24=  

( ) ( ) ( ) [ ( ) ( ) ( )] ( ) ( ) ( )[ ]4,26,32,154,22,11,34,34,34,2 ++=++η<= ηηηη dddd  

( ).60,30=  

It follows that ( )ηdX ,  is an cone-η  rectangular metric space. Finally ( )ηdX ,  is 
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not an cone-η  metric space, since it lacks Definition 2.2(d3) [1] as: 

( ) ( ) ( ) [ ( ) ( )] ( )4,22,33,12,12,16,3 =+η>= ηηη ddd  

as ( ) ( ) ( ) .2,14,26,3 P∈=−  

Definition 1.11. Let ( )ηdX ,  be an cone-η  rectangular metric space. If for 

every ,Ec ∈  with c�0  there is N∈0n  such that for all ( ) ,,,0 cxxdnn n �>  

then { }nx  is said to be convergent, { }nx  converges to ,Xx ∈  and Xx ∈  is the 

limit of the sequence { }.nx  We shall write xxnn =lim  or xxn →  as .∞→n  

Definition 1.12. Let ( )ηdX ,  be an cone-η  rectangular metric space. If for 

every ,Ec ∈  with c�0  there is N∈0n  such that for all ( )mn xxdnmn ,,, 0>  

,c�  then { }nx  will be called a Cauchy sequence. 

Definition 1.13. Let ( )ηdX ,  be an cone-η  rectangular metric space. If every 

Cauchy sequence in X  converges in ,X  then ( )ηdX ,  will be called a complete 

cone-η  rectangular metric space. 

2. Main Result 

In a similar way as Lemma 2.9 [1], we have the following, whose proof can be 

completed in a similar fashion as Lemma 1 [3] . 

Lemma 2.1. Let ( )ηdX ,  be an cone-η  rectangular metric space, P  be a 

normal cone with normal constant .K  Let { }nx  be a sequence in .X  Then { }nx  

converges to x iff 

( ) ., ∞→θ→η nasxxd n  

In a similar way as Lemma 2.12 [1], we have the following, whose proof can be 

completed in a similar fashion as Lemma 4 [3]. 
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Lemma 2.2. Let ( )ηdX ,  be an cone-η  rectangular metric space, P  be a 

normal cone with normal constant .K  Let { }nx  be a sequence in .X  Then { }nx  is 

Cauchy iff 

( ) .,, ∞→θ→η mnasxxd mn  

Now our main result is as follows 

Theorem 2.3. Let ( )ηdX ,  be a complete cone-η  rectangular metric space, P  

be a normal cone with normal constant ,K  and the mapping XXT a:  satisfies 

( ) ( )yxdTyTxd ,, ηη λ≤  

for all ,, Xyx ∈  where .10 <λ≤  Then T  has a unique fixed point. 

Proof. Let 0x  be an arbitrary point in .X  Define a sequence of points in X  as 

follows: 

.,2,1,0,0
1

1 L=== +
+ nxTTxx n

nn  

We suppose 0x  is not a periodic point, in fact, if ,0xxn =  then we obtain 

( ) ( )nn TxxdTxxd ,, 00 ηη =  

( )0
1

0 , xTxTd
nn +

η=  

( )00
1

, xTxTd
nn−

ηλ≤  

( )0
1

0
22

, xTxTd
nn −−

ηλ≤  

M  

( )., 00 Txxd
n

ηλ≤  

It follows that ( ) ( ) ,,1 00 PTxxd
n ∈−λ η  which further implies ( ) =− η 00 , Txxd  
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( ) ,,
1

1
00 PTxxd

n

n

∈
λ−

−λ
η  and ( ) ,0, 00 =η Txxd  and so 0x  is a fixed point of .T  In 

what follows, we suppose mn xx ≠  for all distinct ., N∈mn  Now by using 

Definition 1.9(c), for all ,Xy ∈  we have 

( ) ( ) [ ( ) ( ) ( )]yTyTdyTTydTyydyTyyTyd
42244

,,,,, ηηηη ++η≤  

( ) ( ) ( ) ( )TyydyTyTyydyTy ,,,,
44

ηη λη+η≤  

( ) ( ).,,
242

yTydyTy ηηλ+  

Similarly, for all ,Xy ∈  we have 

( ) ( ) [ ( ) ( ) ( ) ( )yTyTdyTyTdyTTydTyydyTyyTyd 4332266 ,,,,,, ηηηηη +++η≤  

( )]yTyTd
64

,η+  

( ) ( ) ( ) ( ) ( ) ( )TyydyTyTyydyTyTyydyTy ,,,,,,
4244

ηηη ηλ+λη+η≤

 

( ) ( )yTydTyy
23

,, ηηλ+ ( ) ( )yTydyTy
244

,, ηηλ+  

( ) ( ) ( ) ( ).,,,,
2444

3

0

yTydyTyTyydyTy
i

i

ηη

=

ηλ+ηλ≤ ∑  

Now by induction, we obtain for each L,4,3,2=k  

( ) ( ) ( ) ( ) ( ).,,,,,
22222

32

0

2
yTydyTyTyydyTyyTyd

i

i

η
−

η

−

=

η ηλ+ηλ≤ ∑ kkk

k

k
 

Moreover, for all ,Xy ∈  

( ) ( ) [ ( ) ( )yTTydTyydyTyyTyd 255 ,,,, ηηη +η≤  
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( ) ( ) ( )]yTyTdyTyTdyTyTd
544332

,,, ηηη +++  

( ) ( ).,,
5

4

0

TyydyTy
i

i

η

=

λη≤ ∑  

By induction, for each ,,2,1,0 L=k  we have 

( ) ( ) ( ).,,,
12

2

0

12
TyydyTyyTyd

i

i

η
+

=

+
η λη≤ ∑ k

k

k
 

Using ( ) ( ) ( ) ( ) ( ) ,,,,,, 2222232

0

2 yTydyTyTyydyTyyTyd i

i η
−

η
−

=η ηλ+ηλ≤∑ kkkkk   

for ,,3,2,1 L=k  we have 

( ) ( )0
2

00
2

0 ,, xTxdxTxTd
nnn kk

η
+

η λ≤  

( ) ( ( ) ( ))0
2

000
2

32

0

,,, xTxdTxxdyTy
i

i

n
ηη

−

=

+






ηλλ≤ ∑ k

k

 

( ) ( ( ) ( ))]0
2

000
222

,,, xTxdTxxdyTy ηη
− +ηλ+ kk

 

( ) ( ( ) ( ))0
2

000
2

22

0

,,, xTxdTxxdyTyi

i

n
ηη

−

=

+ηλλ≤ ∑ k

k

 

( ) ( )
( ( ) ( ))0

2
000

122

,,
1

1,
xTxdTxxd

yTyn

ηη

−

+
λ−

λ−ηλ
≤

kk

 

( )
( ( ) ( )).,,

1

,
0

2
000

2

xTxdTxxd
yTyn

ηη +
λ−

ηλ
≤

k

 

Similarly, for ,,2,1,0 L=k  and from ( ) ( ) i

i
yTyyTyd λη≤ +

=
+

η ∑ 122

0

12 ,, kkk
 

( ),, Tyydη  we deduce the following: 
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( ) ( )0
12

00
12

0 ,, xTxdxTxTd
nnn +

η
++

η λ≤ kk
 

( ) ( ( ) ( ))













+ηλλ≤ ηη

+

=
∑ 0

2
000

12
2

0

,,, xTxdTxxdyTy
i

i

n k

k

 

( ) ( )
( ( ) ( ))0

2
000

1212

,,
1

1,
xTxdTxxd

yTyn

ηη

++

+
λ−

λ−ηλ
≤

kk

 

( )
( ( ) ( )).,,

1

,
0

2
000

12

xTxdTxxd
yTyn

ηη

+

+
λ−

ηλ
≤

k

 

It follows that if ,mn <  then 

( )
( )

( ( ) ( )).,,
1

,
, 0

2
00000 xTxdTxxd

yTy
xTxTd

nmn
mn

ηη

−

η +
λ−

ηλ
≤  

Taking norm to inequality in the above, and then taking limits as ,∞→n  we deduce 

that 

( ) ,0,lim 00
,

=η
∞→

xTxTd mn

mn
 

and Lemma 2.2 implies that { }nx  is a Cauchy sequence in .X  Since X  is complete, 

there is Xu ∈  such that .limlim 0 uxTx n
nnn == ∞→∞→  Now we show u is a 

fixed point of .T  Observe that 

( ) ( ) [ ( ) ( ) ( )]uxTdxTxTdxTTuduTuuTud
nnnn

,,,,, 0
1

0
1

00
+

η
+

ηηη ++η≤  

( ) [ ( ) ( ) ( )].,,,, 0
1

0
1

00
1

uxTdxTxTdxTuduTu
nnnn +

η
+

η
−

η ++λη≤  

Now taking norm to inequality in the above, and then taking limits as ,∞→n  we 

deduce that 

( ) ,0,lim =η
∞→

uTud
n

 

which implies ,uTu =  and so u is a fixed point of .T  For uniqueness of the fixed 
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point, suppose ,Tww =  but ,uw ≠  then observe we have the following: 

( ) ( ) ( ) ( ),,,,, wudwudTwTudwud ηηηη <λ≤=  

which is a contradiction, and uniqueness follows. 

Now we have the following example in support of the main result. 

Example 2.4. Let PEX ,,  and ηd  be defined as in Example 1.10. As that 

example showed, ( )ηdX ,  is an cone-η  rectangular metric space, but not an 

cone-η  metric space. Now define a mapping XXT a:  by 





=

≠
=

.4if,1

,4if,3

x

x
Tx  

Note that 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )0,03,23,12,1 === ηηη TTdTTdTTd  

and in all other cases 

( ) ( ) ( ) ( ).4,2,,2,1, == ηη yxdTyTxd  

Hence for ,
2

1
=λ  all conditions of the previous theorem hold and X∈3  is the 

unique fixed point. 

References 

 [1] Yae Ulrich Gaba, metric-η  structures, arXiv:1709.07690 [math.GN]. 

 [2] Akbar Azam, Muhammad Arshad and Ismat Beg, Banach contraction principle on 

cone rectangular metric spaces, Appl. Anal. Discrete Math. 3 (2009), 236-241. 

 [3] L.-G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of 

contractive mappings, J. Math. Anal. Appl. 332(2) (2007), 1468-1476. 

 [4] A. S. Cvetkovic, M. P. Stanic, S. Dimitrijevic and Suzana Simic, Common fixed point 

theorems for four mappings on cone metric type space, Fixed Point Theory Appl. 



CLEMENT BOATENG AMPADU 

 

34 

2011, Article ID 589725 (2011). 

 [5] M. A. Khamsi, Remarks on cone metric spaces and fixed point theorems of contractive 

mappings, Fixed Point Theory Appl. (2010), 7 pages. 


