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Abstract

The concept of m-cone metric space appeared in [1]. On the other hand

the concept of cone rectangular metric space appeared in [2]. In the
present paper, we combine the notions of cone rectangular metric space

and mn-cone metric space to form m-cone rectangular metric space and

prove the Banach contraction mapping theorem in this setting

1. Introduction and Preliminaries

Definition 1.1 (Huang and Zhang [3]). Let E be a real Banach space with norm
|- and P be asubset of E. P is called a cone if and only if

(a) P is closed, nonempty, and P # {0}, where 0 is the zero vector in E;
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(b) For any nonnegative real numbers a and b, and x, y € P, we have ax + by

e P;
(c) for xe P, if —x e P, then x = 6.

Definition 1.2 (Huang and Zhang [3]). Given a cone P in a Banach space E,

we define on E a partial order < with respect to P by
X<y © y-xeint(P).

We shall write x < y whenever x <y and x # y, while x < y will stand for

y — x € Int(P), where Int(P) designates the interior of P.

Definition 1.3 (Huang and Zhang [3]). The cone P is said to be normal if there

is a real number C > 0 such that for all x, y € E, we have
0= x<y=|a <

The least positive number satisfying the above inequality is called the normal

constant of P. In particular, we will say that P is a K-normal cone to indicate the

fact that the normal constant is K

Definition 1.4 (Azam et al. [2]). Let X be a nonempty set. Suppose the
mapping d : X X X — E satisfies

(@) 0<d(x, y), forall x, ye X and d(x, y) =0 iff x = y;
(b) d(x, y)=d(y, x) forall x, y e X;

(c) d(x, y) <d(x, w)+d(w, z) +d(z, y) forall x, ye X and for all distinct

points w, z € X —{x, y} [rectangular property].

Then d is called a cone rectangular metric on X, and (X, d) is called a cone

rectangular metric space.

Example 1.5 (Azametal. [2]). Let X = N, E = R2, and
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P={(x y):x y=0}L
Define d : X x X — E by

0,0), if x=y,
d(x, y)=1(3,9), if xand y arein {1, 2} and x # y,
(1, 3),  otherwise.

Then (X, d) is a cone rectangular metric space, but (X, d) is not a cone metric

space, since it lacks the triangular property:
(3,9)=4d(1,2)>d(1,3)+d(3,2)=(1,3)+ (1, 3) = (2, 6)
as (3,9)-(2,6)=(1,3)e P.

Definition 1.6 (Gaba [1]). Let X be a nonempty set and M : X X X > [l, =)

be a map. A function dy, : X X X > E will be called an n-cone metric on X if
(2) 8 < dy(x, y) forall xe X and dy(x, y) =0 iff x = y;
(b) dn(x, y) = dn(y, x) forall x, y e X;
(c) dn(x, 7) < n(x, z)[dn(x, y)+ dn(y, z)] forall x, y, z € X.
Moreover, the pair (X, dy ) is called an T-cone metric space.

Remark 1.7 (Gaba [1]). If forall x, ye X

(a) n(x, y) =1, then we obtain the definition of cone metric space (Huang and

Zhang [3]).

(b) n(x, y) = L, where L > 1, then we obtain the definition of cone metric type

space (Cvetkovic et al. [4]).

(¢) n(x, y)=C, where C>1, E=R and P =]0, «), then we obtain the

definition of metric type space (Khamsi [5]).
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Example 1.8 (Gaba [1]). Let E=R?, P={(x, y)e E:x, y 20} c R? and
X ={,23} Let >0 be a constant and define M:X XX >[I, o) and
dy: XX X > E by

n(x, y) =1+ x+y,
dy(1, 1) = dy(2,2) = dy (3, 3) = (0, 0),
dy (1, 2) = dy(2, 1) = 80(1, ),
dy (1, 3) = dy (3, 1) = 1000(1, ),
dy (2, 3) = dn (3, 2) = 600(1, ).
Then (X, dy ) is an M-cone metric space.

Now we introduce the following

Definition 1.9. Let X be a nonempty set and 1 : X X X +> [1, ) be a map. A

function dy, : X X X > E will be called an n-cone rectangular metric on X if
(2) 8 < dy(x, y) forall x, ye X and dy(x, y) =0 iff x = y;
(b) dy(x, y) = dy(y, x) forall x, y e X;

(©) dn(x, y) <n(x, y)[dy(x, w) +dy(w, 2) + dy(z, y)] forall x, ye X and

for all distinct points w, z € X —{x, y}.
Moreover, the pair (X, dy ) will be called an M-cone rectangular metric space.

Example 1.10. Let X ={1,2, 3,4}, E=R?, P={(x, y)e E:x, y20}

R2. Define n: X x X > [1, ) and dy: X XX > E by

dn (L, 1) = dp(2. 2) = dy (3, 3) = dy (4, 4) = (0, 0),
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dy(1,2) = dy(2,1) = (3, 6),

dy(2,3) = dy(3, 2) = dy (1, 3) = dy(3,1) = (1, 2),

dy(L, 4) = dn(4,1) = dp(2, 4) = dy(4, 2) = dy(3, 4) = d(4, 3) = (2, 4),
nlx, y)=x+y-2.

Then (X, dﬂ) is an m-cone rectangular metric space but not an m-cone metric

space.

Proof. By definition of dﬂ’ it is trivial to check Definition 1.9(a), and

Definition 1.9(b). Now we check Definition 1.9(c)

(3, 6) = dn (1, 2) < (L 2)[dy (1, 3) + dyy (3. 4) + dyy (4, 2)] = [(1, 2) + (2, 4) + (2, 4)]
= (5, 10),

(L, 2) = dy (L 3) <ML 3)[dn (L, 2) + dy (2, 4) + dyy (4, 3)] = 2[(3, 6) + (2, 4) + (2, 4)]
= (14, 28),

(2, 4) = dy (1, 4) < (1, 4)[dy (1, 2) + dpy (2. 3) + dy (3, )] = 3[(3, 6) + (1, 2) + (2, 4)]
= (18, 36),

(1, 2) = dp (2. 3) <2 3)[dy (2. 1) + dpy (1, 4) + dy (4, 3)] = 3[(3, 6) + (2, 4) + (2, 4)]
= (21, 42),

(2, 4) = dy (2, 4) < M2, 4)[dy (2. 1) + dyy (1, 3) + dyy (3, 4)] = 43, 6) + (1, 2) + (2, 4)]
= (24, 48),

(2, 4) = dy (3, 4) <3, 4)[dyy (3. 1) + dyy (1, 2) + dy (2, 4)] = 5[(1, 2) + (3, 6) + (2, 4)]
= (30, 60).

It follows that (X, dyy) is an m-cone rectangular metric space. Finally (X, dy,) is
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not an TM-cone metric space, since it lacks Definition 2.2(d3) [1] as:
as (3,6)-(2,4)=(01,2)e P.

Definition 1.11. Let (X, dn) be an mn-cone rectangular metric space. If for

every ¢ € E, with 0 < ¢ there is ny € N such that for all n > ny, d(x,, x) < c,
then {x,} is said to be convergent, {x,} converges to xe& X, and xe X is the

limit of the sequence {x, }. We shall write lim, x,, = x or x,, — x as n — oo.

Definition 1.12. Let (X, dn) be an m-cone rectangular metric space. If for

every ¢ € E, with 0 < ¢ there is ng € N such that for all n, m > ny, d(x,, x,,)

< ¢, then {x,} will be called a Cauchy sequence.

Definition 1.13. Let (X, dﬂ) be an m-cone rectangular metric space. If every
Cauchy sequence in X converges in X, then (X, dﬂ) will be called a complete

T-cone rectangular metric space.
2. Main Result

In a similar way as Lemma 2.9 [1], we have the following, whose proof can be

completed in a similar fashion as Lemma 1 [3] .

Lemma 2.1. Ler (X, dﬂ) be an m-cone rectangular metric space, P be a

normal cone with normal constant K. Let {x,} be a sequence in X. Then {x,}

converges to x iff

dy(x,, X) = 6 as n — oo

In a similar way as Lemma 2.12 [1], we have the following, whose proof can be

completed in a similar fashion as Lemma 4 [3].
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Lemma 2.2. Let (X, dﬂ) be an m-cone rectangular metric space, P be a

normal cone with normal constant K. Let {x,} be a sequence in X. Then {x,} is

Cauchy iff

dn(xn, X,) — 0 as n, m — oo,

Now our main result is as follows

Theorem 2.3. Ler (X, dy ) be a complete M-cone rectangular metric space, P

be a normal cone with normal constant K, and the mapping T : X + X satisfies
forall x, ye X, where 0 < A < 1. Then T has a unique fixed point.

Proof. Let x; be an arbitrary point in X. Define a sequence of points in X as

follows:
Xppp =Tx, =T xg, n=0,1,2, .
We suppose x is not a periodic point, in fact, if x, = x;, then we obtain

dn(x07 Txg) = dn(xw Tx,)
= dn(T"xo, Tn+1)C0)
< Ay (T" ' xg, T"xp)

< M (T" %x0, T" ')

< Kndn (.XO, T.X() )

It follows that (A" — 1)dy(xg, Txg) € P, which further implies —dy (xo, Txy) =
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n
Ui dy(xg, Txg) € P, and dy(xp, Txy) =0, and so x, is a fixed point of 7. In

-
what follows, we suppose x, # x,, for all distinct n, me N. Now by using

Definition 1.9(c), for all y € X, we have

dy(. T*y) <n(y, T*y) [dy (3. Ty) + dy(Ty, T*y) + dyy(T?y, T*y)]
<y, THy)dy (v, Ty) + M(y. T*y)dn (. Ty)
+A(y, Thy)dy (y. T?y).

Similarly, for all y € X, we have

dn (3. TO) <n(y. TOy)[dy (3. Ty) + dy (Ty. T?y) + dp(T?y, T?y) + dyy(T°y, T*y)

+dy(T*y, TCy)]

<Ny, T*Y)dn (3. T) +20(3. T*y)dn (3. Ty) + Xn(3. Ty )dn (3. Ty)

+ XMy, Ty)dn (v, T%y) + Ky, THy)dy (v, T2 y)

3
<> Ay, T4y )y (v, Ty) + Ky, T4y)dy (v, T2y).
i=0

Now by induction, we obtain for each k£ = 2, 3, 4, ---

2k-3
dy(y, T?y) < Z An(y, T2 y)dn (v, Ty) + 22720y, T2 y)dy (v, T?y).
i=0

Moreover, forall y e X,

dn(y. Ty) < (y, T°y)[dy (. Ty) + d(Ty, T?y)
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+dy(T?y, T?y) + dy(T7y, TYy) + dy (T*y, T7y)]
4 .
< Zﬂ(y, Ty Wdy(y, Ty).
i=0
By induction, for each £ =0, 1, 2, ---, we have

2k
2k 2k j
dn(y, T**y) < E n(y. T yWay (v, Ty).
i=0

. 2k-3 . A . A
Using dn(y,TZky)SZizo (3. T2 y)dy (3, T9)+ 02 n(3, T2 y)d, (3. T%y),
for k =1, 2, 3, ---, we have
dn(T"xo, T"+2kx0) < %"dn(xo, TZkXO)
2k-3 '
<A An(y. T%y) (dy (x0. Txg) + diy (x0, T7xp))
i=0
#2520y, T y) (dy (0, Tg) + di(x0> T2x0)]
2k-2

<N NNy, T ) (dy (g, Txg) + dy (%0, T7x0))
i=0

XMy, Ty
- I-A

_7\’214:—1) )
(dn(XO, TXO) + dT](‘x()’ T Xo))

- N, T7y)

< - (dn(XO,TX0)+dn(.xO,T2X0)).

Similarly, for k=0,1,2,---, and from dy(y, T2y < Zizjon(y, T2+ W

dy(y, Ty), we deduce the following:
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d (Tnxo’ Tn+2k+1x0) < Xndn(xo’ T2k+1x0)

n
2k '
<0 3 din(y, Ty (dy (xg, Txg) + dy (30, T2%)
i=0

< knn( y, T2k+1y)(1 _ 7\,2k+1 )

- (dn(xO,Tx0)+dn(x0,T2x0))

b i T2k:+l
< —“(yl — 2 (4 (xp, Txp) + dy (0, T50).

It follows that if n < m, then

An(y, T"™"y)

dn(T"xO,meO)S 1_7\’

(dy(xg. Txg) +dy (x0. T%xp)).

Taking norm to inequality in the above, and then taking limits as n — o, we deduce

that

lim [dy(T"x, T"x) )| = 0,

n,m—yoo

and Lemma 2.2 implies that {x,} is a Cauchy sequence in X. Since X is complete,

there is u € X such that lim,_,., x, =lim,_ ., T"xy = u. Now we show u is a

fixed point of 7. Observe that
dy(Tu, u) < (Tu, u)[dn(Tu, T"xg) + dn(TnxO, T”+1xo )+ dn(T"HxO, u)]
<N(Tu, u)[?»dn(u, Tn_lxo )+ dn(TnxO, T”+1xo )+ dn(T"HxO, u)l.

Now taking norm to inequality in the above, and then taking limits as n — oo, we

deduce that

lim ||dn (Tu, u)|| =0,
n—sc0

which implies Tu = u, and so u is a fixed point of 7. For uniqueness of the fixed
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point, suppose w = Tw, but w # u, then observe we have the following:
dy (u, w) = d(Tu, Tw) < Ady (u, w) < dy(u, w),

which is a contradiction, and uniqueness follows.
Now we have the following example in support of the main result.
Example 2.4. Let X, E, P and dﬂ be defined as in Example 1.10. As that

example showed, (X, dn) is an m-cone rectangular metric space, but not an

M-cone metric space. Now define a mapping 7 : X — X by

3, if x #4,
Tx = ]
1, if x=4.

Note that

dn(T(1), T(2) = dy(T(1), T(3)) = dy(T(2), T(3)) = (0. 0)

and in all other cases

dy (Tx, Ty) =1, 2), dy (x, y)=1(2, 4).

Hence for A = %, all conditions of the previous theorem hold and 3€ X is the

unique fixed point.
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