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Abstract

In this paper, we give the Berger-Kazdan inequality and Santalé’s formula
in Finsler geometry. Based on these, we derive the average value of

volumes of balls in compact reversible Finsler manifolds.

1. Introduction

In this paper, we consider the average of Holmes-Thompson volume dp of balls

in a compact reversible Finsler manifold M. Let wW(B(x, r)) be the volume of a

metric ball of radius r in M centered at a point x. For any function f on M, we will let

ave[f(x)] be the average of f with respect to the volume du on M, i.e.,

1

ave[f(x)] = M(—M

(n —1) -sphere S"! in R".
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)IM f(x)du. We will ¢,_; to represent the volume of the unit
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Theorem. If M is an n-dimensional compact reversible Finsler manifold, then

Sorall r <inj(M), the injective radius of M, we have

ave[u(B(x, r)] < ezsmaxcn(%)",

where  Syax = SUP e sy S(v). Equality holds if and only if M is isometric to

standard n-sphere of constant sectional curvature (7/inj (M )2

This theorem is a generalization of the theorem of [3] that

.. n
vol(M) > e_zsmﬂ"cn(mj(nM)) ,

with equality holding if and only if M is isometric the unit n-sphere S". We could

ask if main theorem is true for every point x € M. That is: Is

n
Ww(B(x, r)) = e_zsmaxcn(%) ,

where r <inj(M)? This is an open question; however, it is known that
W(B(x, r)) = C(M, n)r" for some C(M, n) (see [9, Proposition 6.3]).

2. Preliminaries

In this section, we shall recall some well-known facts about Finsler geometry.
See [8], for more details. Let M be an n-dimensional smooth manifold and TM
denote its tangent bundle. A Finsler structure on a manifold M is a map

F : TM — [0, o) which has the following properties:
e Fis smoothon TM =TM \{0};

* F(ty) =tF(y), forall t >0,ve T,M;

« FZis strongly convex, i.e.,
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1 9°F?

gij(x, y) =5 ——(x, y)
v 2 dy' oy’

is positive definite for all (x, y)e TM.

A Finsler structure F is called reversible if F(—y)= F(y) forall y e T,M. For
a fixed ye T, M, let y,(t) be the geodesic from x with Y, (0) = y. Along 7v,(7),

we have the osculating Riemannian metrics
8y, () = 8(v, (1), ¥, (1))

in Tyy(,)M . With the Chern connection, we can define the covariant derivative
Dyry(t)l(t, y) of a vector field J(z, y) along a geodesic y,(r). A vector field

J(#, y) along v, (r) is called a Jacobi field if it satisfies
Dy»y(t)Dny(,)J(t, y)+ Ry'y(,)(](t, y)) =0.
There are Jacobi tensors, A(, y), which satisfy the Sturm-Liouville equation
A”(t, y))+ Ry (1) - Alt, y)t) =0, A(0, y)=0, A0, y)=1, (2D
where Ry(t) is the linear representation of Ryfy(t) with respect to 8v,()-

Now we recall the Berger-Kazdan inequality.

Theorem 2.2 [1]. Let A(t, y) be a solution of the Sturm-Liouville equation
(2.1). If A(t, y) has no conjugate points for 0<s<t<T, then for any
0<s<m?2,

T o7 /2 |
J. J. [det A(z = s, @ (y))]dtds > TCJ. sin” " sds,
0 Js 0

with equality if and only if R = I, i.e., A(t, y) =sintl.

This is the fundamental curvature free estimate. It was developed for the proof of
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the Blaschke problem for sphere. For a proof see [1] or [9].
3. Volume forms on Finsler Manifolds

In this section, we will investigate the volume forms on an n-dimensional Finsler
manifold (M, F). Let {dx', dyi};’=l be the dual basis for 7 * TM. The Holmes-

Thompson volume form du on M is defined by

du(x) = o(x)dx' A A dx" = o(x)dx,

where

o(x) =

[ detletx )
S.M

n—1
n . . -
X Z(— Dlhyiayt Ao n dyt A A ay™ |,
n—1
For a tangent vector (x, y)e€ TM , define the distortion T by

det(g;; (x, ¥))
(y) = X—2 "7
(y)=1In o)
and the S-curvature S :TM  — R is defined by

S =4

0[r(vy(r))]-

=

An important property is that S =0 for Finsler manifolds modeled on a single
Minkowski space. In particular, § =0 for Berwald spaces. Locally Minkowski

spaces and Riemannian spaces are all Berwald spaces.

By the Chern connection, we obtain the decomposition

T*(TM )= span{dx'}® span{dy'},

where Syi is the vertical component dyi and is given by Syi = dyi +N ;dxj for
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some N; determined by the Chern connection. Then there is a naturally induced

Sasaki metric § on TM defined by
8(x, y) = g;(x, y)dx' ® dx/ @ g;i(x, y)dy' ® 8y,

and the volume form dV of g on TM is given by

dv(x, y) = /det(g;(x, Y))dx' A A dx A Jdet(g;(x, V)& A e A By"

n

= det(g;(x, Ydx! Ao Adx™ Ady' A A dy"

Let o = B_Fl dx' be the Hilbert 1-form on 7M. In local coordinates, we have dV =
dy

(do)" / n!.
Define

S:M ={yeT,M:F(x y)=1} and SM = | JS,M.
xeM

For any y € SM, we denote by @,(y) the geodesic flows on SM with @q(y) = y.
It is obvious that p o @,(y) = v, () and Y, (t) = ¢,(y), where p: SM — M is the
bundle projection. Then there is another interpretation of this volume on tangent
space. Let i:SM — TM the natural embedding, and X, the Reeb field of the
Hilbert 1-form @. It is uniquely determined by the conditions (X,) =1,
ixm(d(’)) = 0. In particular, we have Lcho = 0 and the geodesic flow of F, i.e., the
flow with infinitesimal generator X, consists of contact diffeomorphisms and the

volume form i * (dV) on SM is

)n—l.

dv(x, y) = DA (do

1
(n—1)
Since Ly o= 0, this volume form is also invariants under the geodesic flow ¢, of

F.
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Fix apoint p € M, F induces a Riemannian metric on 7),M \ {0} by

g, (») = g;i(p, y)dy' ®dy’.

Let g, and dv, denote the Riemannian metric and the Riemannian volume form on

S,M induced by g, respectively. Thus

av,(y) = det (gij(p, ¥ Z( Dyt Ao ndyt A Ady™ |

One of the necessary tools in our discussion is the Finslerian version of Santalé’s
formula (see [7]), which we now state. The proof shall be exactly same as the
Riemannian case with small modification necessary for the Finsler case, which only
uses the fact that the geodesic flow preserves dV. Let Q be a relatively compact
domain in a Finsler manifold M with smooth boundary dQ. Denote by n the unit
inward normal vector field along dQ. Thus, g,(n, y) =0 for all ye 79Q. Set
SToQ ={ye SQ:g,(n, y)>00n dQ} with measure dy(y):= dA(p(y))

dvp(y)( y), where dA denotes the induced measure on 0Q. We again emphasize

that dA is not the volume form of the induced Finsler metric on 0Q. For any

y € SQ, we set as in the Riemannian case
I(y) = sup{r]y,(t) € Q and yy|[0 (] is minimizing} possibly co.

Then we have the following proposition.

Proposition 3.1 [5, Proposition 2]. For all integrable function f on SQ, we

have
()
j v = f “ ’ f(¢,(y))dr}e“(”gn(n, Vdx(y).
SQ S+0Q |JO

In the Riemannian case, et(y) =1, g, = g, and therefore, Proposition 3.1

yields Santalé’s formula [7].
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4. Proof of Main Theorem

In this section, we prove our main theorem. We first recall the following theorem
due to Kim and Min (see [4]).

Theorem 4.1 [4, Theorem 2.3]. The reversible Finsler metrics with positive

constant flag curvature are Riemannian.

We can be extended to Finsler manifolds with little modification as follows (see

[2, Proof of Theorem B]).

Theorem 4.2. If (M, F) is an n-dimensional compact reversible Finsler

manifold, then for all r < inj(M ), we have

ave [L(B(x, )] > e_zsmaxcn(%)n.

Equality holds if and only if (M, F) is isometric to standard n-sphere of constant

sectional curvature (Tt/inj(M )2,

Proof. We first scale the metric so that we are considering B(x, ®), where

7 <inj(M). We need to show
ave[u(B(x, 1))] = e FSmaxc,

with equality holding if and only if M is isometric to the unit n-sphere S". We

consider M X [O, g} with the warped product Finsler metric

sin? z‘F(y)2 +dt? for (y, %) € T(M X [O, %D

For all p e {x}x |:8, %}, we see

T

E sin” (¢)dt |W(B(x, ) = M(B(x’ m) % [8’ gD
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1) _,
_ J'Sp [Mx[s,%D{J.O ™) det(A(s, y))ds}dv(y).

We now apply Theorem 2.2 (Berger-Kazdan inequality) and Proposition 3.1

(Santald’s formula),

. 2
[E sin”(t)dt] J.MH(B(x, 7))du
:J. i {J.l(y) e~ ™) det(A(s, y))ds}dV(y)
o 2] Uo
1(y)
) LB(MX[S,gD 0

> g LB st oo ot ey

J~l(¢t()’)) e_T((pr(y)) det(A(s, (])[()’)))ds:|dtgn(n, y)}dX()’)

0

2 P ot 1) g Y)ax(y).
s (5 o

2¢,T

We consider the warped product metric on M X |:8, %} (see [6]). Since inj(M) = =,

I(y)=m aslong as y, does not hit M x{e}, that is as long as g, (n, y) < cose.

Thus let

S = {ye S+(M><{%}) cgn(n, y) < cose}

and our inequality becomes

[f sin” ]j (B T > ¢ S g (),
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Letting € go to 0, we get

2
Cn+l > 28 max CpnpT €y T
[ = } JM W(B(x, m)du > e R et ()

Thus

- 2¢, T _
ave[W(B(x, m))] = e 2max a1t _ 2Sma"cn.
ne,

In order for equality to hold, we must in particular have equality in the Berger-

Kazdan inequality for all ye S;’ for any €>0. Since almost every

Ve S(M X(O, gD is tangent to a geodesic 7Y, for some such y, we see that

M x (0, %) has constant flag curvature one. Since M X {%} is totally geodesic and

isometric to M, we see that M has constant flag curvature one. Theorem 4.1, then,

implies that F is a Riemannian metric and the universal covering of M is S". But,

since we assumed that inj (M) > m, it follows that M must be isometric to the unit n-

sphere S”".
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