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Abstract 

In this paper, we give the Berger-Kazdan inequality and Santaló’s formula 

in Finsler geometry. Based on these, we derive the average value of 

volumes of balls in compact reversible Finsler manifolds. 

1. Introduction 

In this paper, we consider the average of Holmes-Thompson volume µd  of balls 

in a compact reversible Finsler manifold M. Let ( )( )rxB ,µ  be the volume of a 

metric ball of radius r in M centered at a point x. For any function f on M, we will let 

( )[ ]xfave  be the average of f with respect to the volume µd  on M, i.e., 

( )[ ]
( )

( ) .
1

:ave ∫ µ
µ

=
M

dxf
M

xf  We will 1−nc  to represent the volume of the unit 

( )1−n -sphere 1−n
S  in .n

R  
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Theorem. If M is an n-dimensional compact reversible Finsler manifold, then 

for all ( ),inj Mr ≤  the injective radius of M, we have 

( )( )[ ] ,,ave max2
n

n
S r

erxB 







π
≤µ c  

where ( ).supmax ySS SMy∈=  Equality holds if and only if M is isometric to 

standard n-sphere of constant sectional curvature ( ( )) .inj
2

Mπ  

This theorem is a generalization of the theorem of [3] that 

( )
( )

,
inj

vol max2
n

n
S M

eM 







π
≥ −

c  

with equality holding if and only if M is isometric the unit n-sphere .n
S  We could 

ask if main theorem is true for every point .Mx ∈  That is: Is 

( )( ) ,, max2
n

n
S r

erxB 







π
≥µ −

c  

where ( ) ?inj Mr ≤  This is an open question; however, it is known that 

( )( ) ( ) nrnMCrxB ,, ≥µ  for some ( )nMC ,  (see [9, Proposition 6.3]). 

2. Preliminaries 

In this section, we shall recall some well-known facts about Finsler geometry. 

See [8], for more details. Let M be an n-dimensional smooth manifold and TM  

denote its tangent bundle. A Finsler structure on a manifold M is a map 

[ )∞→ ,0: TMF  which has the following properties: 

• F is smooth on { };0\: TMTM =�  

• ( ) ( ),ytFtyF =  for all ;,0 MTvt x∈>  

• 2F  is strongly convex, i.e., 



AVERAGE VALUE OF VOLUMES OF BALLS IN FINSLER MANIFOLDS 

 

59 

( ) ( )yx
yy

F
yxg

jiij ,
2

1
:,

22

∂∂

∂
=  

is positive definite for all ( ) ∈yx, .TM�  

A Finsler structure F is called reversible if ( ) ( )yFyF =−  for all .MTy x∈  For 

a fixed ,MTy x∈  let ( )tyγ  be the geodesic from x with ( ) .0 yy =γ′  Along ( ),tyγ  

we have the osculating Riemannian metrics 

( ) ( ( ) ( ))ttgg yyty
γ′γ=γ′ ,:  

in ( ) .MT tyγ  With the Chern connection, we can define the covariant derivative 

( ) ( )ytJD ty
,γ′  of a vector field ( )ytJ ,  along a geodesic ( ).tyγ  A vector field 

( )ytJ ,  along ( )tyγ  is called a Jacobi field if it satisfies 

( ) ( ) ( ) ( ) ( )( ) .0,, =+ γ′γ′γ′ ytJRytJDD ttt yyy
 

There are Jacobi tensors, ( ),, ytA  which satisfy the Sturm-Liouville equation 

 ( )( ) ( ) ( )( ) ( ) ( ) ,,0,0,0,0,, IyAyAtytAtRtytA y =′==⋅+′′  (2.1) 

where ( )tRy  is the linear representation of ( )ty
Rγ′  with respect to ( ) .ty

gγ′  

Now we recall the Berger-Kazdan inequality. 

Theorem 2.2 [1]. Let ( )ytA ,  be a solution of the Sturm-Liouville equation 

(2.1). If ( )ytA ,  has no conjugate points for ,0 π≤≤≤ ts  then for any 

,20 π≤≤ s  

[ ( ( ))] ,sin,det
2

0

1

0
sdsdtdsystA n

s
s ∫∫ ∫

π
−

π π
π≥ϕ−  

with equality if and only if ,IR =  i.e., ( ) .sin, tIytA =  

This is the fundamental curvature free estimate. It was developed for the proof of 
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the Blaschke problem for sphere. For a proof see [1] or [9]. 

3. Volume forms on Finsler Manifolds 

In this section, we will investigate the volume forms on an n-dimensional Finsler 

manifold ( )., FM  Let { }n
i

ii dydx 1, =  be the dual basis for *T .TM�  The Holmes-

Thompson volume form µd  on M is defined by 

( ) ( ) ( ) ,:1 dxxdxdxxxd n σ=∧∧σ=µ L  

where 

( ) ( ( ))∫−
=σ

MS
ij

n x

yxgx ,det
1

1c
 

( ) .1

1

11














∧∧∧∧−× ∑

−

−
n

n

niii
dydydyy LL

�
 

For a tangent vector ( ) ,, �TMyx ∈  define the distortion τ  by 

( )
( ( ))

( )
,

,det
ln:

x

yxg
y

ij

σ
=τ  

and the S-curvature R→�TMS :  is defined by 

( ) ( ( ))[ ].:
0

t
dt

d
yS y

t

γ′τ=
=

 

An important property is that 0=S  for Finsler manifolds modeled on a single 

Minkowski space. In particular, 0=S  for Berwald spaces. Locally Minkowski 

spaces and Riemannian spaces are all Berwald spaces. 

By the Chern connection, we obtain the decomposition 

( ) { } { },spanspan* ii ydxTMT δ⊕=�  

where iyδ  is the vertical component idy  and is given by 
ji

j
ii

dxNdyy +=δ  for 
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some s
lN  determined by the Chern connection. Then there is a naturally induced 

Sasaki metric ĝ  on �TM  defined by 

( ) ( ) ( ) ,,,,ˆ ji
ij

ji
ij yyyxgdxdxyxgyxg δ⊗δ⊕⊗=  

and the volume form dV  of ĝ  on �TM  is given by 

( ) ( ( )) ( ( )) n
ij

n
ij yyyxgdxdxyxgyxdV δ∧∧δ∧∧∧= LL

11
,det,det:,  

( ( )) .,det
11 nn

ij dydydxdxyxg ∧∧∧∧∧= LL  

Let i

i
dx

y

F

∂

∂
=ω  be the Hilbert 1-form on .�TM  In local coordinates, we have =dV  

( ) !.nd
nω  

Define 

{ ( ) }1,:: =∈= yxFMTyMS xx  and .: U
Mx

xMSSM

∈

=  

For any ,SMy ∈  we denote by ( )ytϕ  the geodesic flows on SM  with ( ) .0 yy =ϕ  

It is obvious that ( ) ( )ty yt γ=ϕop  and ( ) ( ),yt ty ϕ=γ′  where MSM →:p  is the 

bundle projection. Then there is another interpretation of this volume on tangent 

space. Let �TMSMi →:  the natural embedding, and ωX  the Reeb field of the 

Hilbert 1-form .ω  It is uniquely determined by the conditions ( ) ,1=ω ωX  

( ) .0=ω
ω

diX  In particular, we have 0=ω
ωXL  and the geodesic flow of F, i.e., the 

flow with infinitesimal generator ,ωX  consists of contact diffeomorphisms and the 

volume form ( )dVi *  on SM  is 

( )
( )

( ) .
!1

1
,

1−ω∧ω
−

= n
d

n
yxdV  

Since ,0=ω
ωXL  this volume form is also invariants under the geodesic flow tϕ  of 

F. 
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Fix a point FMp ,∈  induces a Riemannian metric on { }0\MTp  by 

( ) ( ) .,:
ji

ijp dydyypgyg ⊗=  

Let pg&  and pdν  denote the Riemannian metric and the Riemannian volume form on 

MS p  induced by ,pg  respectively. Thus 

( ) ( ( )) ( ) .1,det
1

1

1














∧∧∧∧−=ν ∑

−

− nii
n

n

i
ijp dydydyyypgyd LL

�
 

One of the necessary tools in our discussion is the Finslerian version of Santaló’s 

formula (see [7]), which we now state. The proof shall be exactly same as the 

Riemannian case with small modification necessary for the Finsler case, which only 

uses the fact that the geodesic flow preserves .dV  Let Ω  be a relatively compact 

domain in a Finsler manifold M with smooth boundary .Ω∂  Denote by n  the unit 

inward normal vector field along .Ω∂  Thus, ( ) 0, =yg nn  for all .Ω∂∈ Ty  Set 

{ ( ) }Ω∂>Ω∈=Ω∂+ on0,:: ygSyS nn  with measure ( ) ( )( )ydAyd p=χ :  

( )( ),yd ypν  where dA  denotes the induced measure on .Ω∂  We again emphasize 

that dA  is not the volume form of the induced Finsler metric on .Ω∂  For any 

,Ω∈ Sy  we set as in the Riemannian case 

( ) { ( ) Ω∈γ= ttyl ysup:  and [ ]ty ,0
γ  is minimizing} possibly .∞  

Then we have the following proposition. 

Proposition 3.1 [5, Proposition 2]. For all integrable function f on ,ΩS  we 

have 

( ( ))
( )

( ) ( ) ( ).,
0

ydygedtyffdV
y

S S

yl

t χ








φ= τ

Ω Ω∂+∫ ∫ ∫ nn  

In the Riemannian case, ( ) ,,1 gge y ==τ
n  and therefore, Proposition 3.1 

yields Santaló’s formula [7]. 
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4. Proof of Main Theorem 

In this section, we prove our main theorem. We first recall the following theorem 

due to Kim and Min (see [4]). 

Theorem 4.1 [4, Theorem 2.3]. The reversible Finsler metrics with positive 

constant flag curvature are Riemannian. 

We can be extended to Finsler manifolds with little modification as follows (see 

[2, Proof of Theorem B]). 

Theorem 4.2. If ( )FM ,  is an n-dimensional compact reversible Finsler 

manifold, then for all ( ),inj Mr ≤  we have 

[ ( )( )] .,ave max2
n

n
S r

erxB 







π
≥µ −

c  

Equality holds if and only if ( )FM ,  is isometric to standard n-sphere of constant 

sectional curvature ( )( ) .inj
2

Mπ  

Proof. We first scale the metric so that we are considering ( ),, πxB  where 

( ).inj M≤π  We need to show 

( )( )[ ] n
S

exB cmax2
,ave

−≥πµ  

with equality holding if and only if M is isometric to the unit n-sphere .n
S  We 

consider 




 π

×
2

,0M  with the warped product Finsler metric 

( ) 222sin dtytF +  for .
2

,0, 











 π

×∈







∂

∂
MT

t
y  

For all { } ,
2

,




 π
ε×∈ xp  we see 

( ) ( )( ) ( ) 











 π
ε×πµ=πµ















∫
π

ε 2
,,,sin2 xBxBdtt

n
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( ) ( )( )
( )

( ).,det

2
, 0∫ ∫












 π
ε×

τ−









=
MS

yl
y

p

ydVdsysAe  

We now apply Theorem 2.2 (Berger-Kazdan inequality) and Proposition 3.1 

(Santaló’s formula), 

( ) ( )( )∫∫ µπµ












 π

ε M

n
dxBdtt ,sin

2

2  

( ) ( )( )
( )

( )ydVdsysAe
MS

yl
y∫ ∫












 π

×

τ−









=

2
,0 0

,det  

( )( )
( )( )

( ( ( )))
( )

( ) ( )∫ ∫ ∫











 π
ε×∂+

φ
φτ− χ

















φ≥

2
, 0 0

,,det
MS

yl

t

yl
y

ydydtgdsysAe
t

t nn  

( )
( ( ( ))) ( )

( )
( )ydydtgdsysAe

MS

yl

t

tyl
S χ

















φ≥ ∫ ∫ ∫














π

×

−
−

+

2
0 0

2
,,detmax nn  

( ) ( ) ( ).,
2

2

2
1

12 max ydygyle
n

MSn
n

ns χ
π

≥
+















π

×+
+− ∫ +

n

c

c
n  

We consider the warped product metric on 




 π
ε×

2
,M  (see [6]). Since ( ) ,inj π≥M  

( ) π=yl  as long as yγ  does not hit { },ε×M  that is as long as ( ) .cos, ε<yg nn  

Thus let 

( )






 ε<














π

×∈= ++
ε cos,:

2
ygMSyS nn  

and our inequality becomes 

( ) ( )( ) ( ) ( ).,
2

,sin 12

2

2 max ∫∫∫ +
ε

χ
π

≥µπµ













+−

π

ε Sn

nS

M

n
ydygedxBdtt n

c

c
n  
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Letting ε  go to 0, we get 

( )( ) ( ).
2

,
2

112
2

1 max M
n

edxB n

n

nS

Mn

n µ
ππ

≥µπµ




 −+−+ ∫
c

c

c

c

c
 

Thus 

( )( )[ ] .
2

,ave maxmax 2

1

12
n

S

n

nS
e

n
exB c

c

c −

+

−− =
π

≥πµ  

In order for equality to hold, we must in particular have equality in the Berger-

Kazdan inequality for all +
ε∈ Sy  for any .0>ε  Since almost every 














 π

×∈
2

,0MSv  is tangent to a geodesic yγ  for some such y, we see that 







 π

×
2

,0M  has constant flag curvature one. Since 






π

×
2

M  is totally geodesic and 

isometric to M, we see that M has constant flag curvature one. Theorem 4.1, then, 

implies that F is a Riemannian metric and the universal covering of M is .n
S  But, 

since we assumed that ( ) ,inj π≥M  it follows that M must be isometric to the unit n-

sphere .n
S  
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