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Abstract 

We analyze and formulate an Eco-Epidemiological model with disease in 

the preys and predators.  We study the existence of the non-negative 

equilibria, obtain sufficient conditions of local asymptotical stability of the 

equilibria by the Hurwitz criterion, then we analyze the global stability of 

the positive equilibria by constructing appropriate Lyapunov functions. 

1. Introduction 

Mathematical ecology and mathematical epidemiology are major fields of study. 

Since transmissible disease in ecological situation can not be ignored, it is very 

important from both the ecological and the mathematical points of view to study 

ecological systems subject to epidemiological factors. A large number of studies have 

been performed in this field. However, all the papers available only discussed the 

disease spread in a species, see [1, 2] deal with the disease spreading among the 

predator population only, but in literatures [3-6] disease spreading among the preys 
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population is considered. In our common life, the disease may spread among the prey 

and the predator. On the basic of this, the present paper deals with the prey-predator 

model with diseases in the preys and predators, and we suppose the predators with 

disease do not capture on the preys, the susceptible predators capture both on the 

susceptible and on the infected preys, but the  capture rate  is different, which is 

much closer to the actual  situation. This paper considers the model as follows: 
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where yyxx ISIS ,,,  are the densities of the susceptible preys, infected preys, 

susceptible predators and infected  predators, r stands for the intrinsic growth rate of 

the susceptible preys, 21, ββ  represent  the transmission rate of the susceptible preys 

and susceptible predators, respectively, K is the environmental carrying capacity of 

the prey population, 1k  and 2k  represent the capturing rate of susceptible predators 

on the susceptible preys and on the infected  preys, respectively, θ  is the conversion 

of the predators, 0d  and 2d  are the death of infected preys and infected predators 

because of diseases, 1d  be the natural mortality of the  susceptible preys. 

All the parameters are assumed to be positive. 

2. Equilbria Analysis 

Let 
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Case I. It is obvious that the system has non-negative equilibria points 
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( ),0,0,0,00E  and ( ).0,0,0,1 KE  

Case II. ,0=yS  by 
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we obtain: 
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non-negative equilibria point. 

Case III. ,0=yI  we obtain 
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We obtain non-negative equilibria point ( )0,,, 3333 yxx SISE  when 
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We obtain non-negative equilibria point ( )****
4 ,,, yyxx ISISE  when ( 2021 β−ββ dKr  

) .21122 dkdk β>−  

3. Stability Analysis 

The Jacobi matrix of the system (1) is 
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Case I.  For ( ),0,0,0,00E  the characteristic equation is 

( ) ( ) ( ) ( ) .0210 =+λ+λ+λ−λ dddr  

We can get the characteristic root as follows: 

.0,0,0,0 2413021 <−=λ<−=λ<−=λ>=λ dddr  

Therefore ( )0,0,0,00E  is a Saddle point. 

Case II.  For ( ),0,0,0,1 KE  the characteristic equation is 

( )( )( )( ) .02101 =+λ+λ+β−λ−λ dddKr  

Roots of this equation are 

.0,0,,0 24130121 <−=λ<−=λ−β=λ<−=λ dddKr  

Here 02 <λ  when .01 dK <β  Hence ( )0,0,0,1 KE  is locally asymptotically 

stable. 
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Case III.  For ( ),0,0,, 222 xx ISE  the Jacobi matrix is 
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The corresponding characteristic polynomial is 

( ) ( )( )1222122 dIkSkdD xx +θ−θ−λ+λ=λ  
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Because ,0,0 22112 >β
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 so 43 , λλ  have negative real parts. 

When ,12221 dIkSk xx <θ+θ  .02 <λ  So ( )0,0,, 222 xx ISE  is locally 

asymptotically stable. 

Case IV. For ( ),0,,, 3333 yxx SISE  the Jacobi matrix is 
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It is clear that characteristic root .2321 dS y −β=λ  

Hence, we have the following main theorem: 
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Theorem 1. ( )0,0,0,00E  is a saddle point. When ,01 dK <β  ( )0,0,0,1 KE  

is locally asymptotically stable. When ,12221 dIkSk xx <θ+θ  ( )0,0,, 222 xx ISE  

is locally asymptotically stable. When ,232 dS y <β  ( )0,,, 3333 yxx SISE  is locally 

asymptotically stable. 

4. Global Stability 

Theorem 2. The positive equilibria point ( )0,,, 4444 yxx SISE =  of the 

system is globally asymptotically stable. 

Proof. Take proper Lyapunov function ( ) .:,,,
4
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So by the LaSalle invariant set theorems, we know that ( )44444 ,,, yyxx ISISE  is 

globally asymptotically stable. 

5. Conclusion 

This paper mainly discusses the prey-predator model with disease in the preys 

and predators, we get the conditions of local asymptotical stability and the existence 

of the boundary balance. We prove the positive balance point 
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( )44444 ,,, yyxx ISISE  is globally asymptotically stable by constructing Lyapunov 

function. 
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