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Abstract

We analyze and formulate an Eco-Epidemiological model with disease in
the preys and predators. We study the existence of the non-negative
equilibria, obtain sufficient conditions of local asymptotical stability of the
equilibria by the Hurwitz criterion, then we analyze the global stability of

the positive equilibria by constructing appropriate Lyapunov functions.
1. Introduction

Mathematical ecology and mathematical epidemiology are major fields of study.
Since transmissible disease in ecological situation can not be ignored, it is very
important from both the ecological and the mathematical points of view to study
ecological systems subject to epidemiological factors. A large number of studies have
been performed in this field. However, all the papers available only discussed the
disease spread in a species, see [1, 2] deal with the disease spreading among the
predator population only, but in literatures [3-6] disease spreading among the preys
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population is considered. In our common life, the disease may spread among the prey
and the predator. On the basic of this, the present paper deals with the prey-predator
model with diseases in the preys and predators, and we suppose the predators with
disease do not capture on the preys, the susceptible predators capture both on the
susceptible and on the infected preys, but the capture rate is different, which is

much closer to the actual situation. This paper considers the model as follows:

ds S, +1
dtx = }"Sx|:1 - (%)} - BleIx - kISxSy7
dl
dtx =BiS. I _kZIxSy —dol,,
ds
y _
7 = kIGSxSy _dISy _BZSny +k291xSy,
di
Yy _
7 = BzSny - dZIy’

where S, I,, Sy, 1 y are the densities of the susceptible preys, infected preys,

susceptible predators and infected predators, r stands for the intrinsic growth rate of

the susceptible preys, By, P, represent the transmission rate of the susceptible preys

and susceptible predators, respectively, K is the environmental carrying capacity of

the prey population, k; and k, represent the capturing rate of susceptible predators

on the susceptible preys and on the infected preys, respectively, 0 is the conversion
of the predators, dy and d, are the death of infected preys and infected predators

because of diseases, d; be the natural mortality of the susceptible preys.

All the parameters are assumed to be positive.
2. Equilbria Analysis

Let

S, +1
P(Sx, Ix, Sy, Iy)erx[l—(%ﬂ—Blelx _kISxSy ZO,

O(Sy, I, Sy, 1) =PBS, I, — kol S, —dol, =0,

R(Sy 1., Sy, 1,)=k0S,S, —diS, —ByS,I, + kOIS, =0,

M(Sy, I, Sy, 1,)=PB2S, 1, —dyl, = 0.

Case I. It is obvious that the system has non-negative equilibria points
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Ey(0, 0, 0, 0), and E (K, 0, 0, 0).

Case I1. Sy =0, by

S, +1
er(l— xK x)—BleIx:O,

Ix(BISx —do) = 0,

_dZIy ZO,
, do r(BK —do) ,
btain: 1, = =—= l, =F———=<=1,.FE 1
we obtain: 7, =0, S, B, S, 1, BB KTr) ~ x2 2(S,, 1,,0,0) is

non-negative equilibria point.

CaseIll. [ y =0, we obtain

we obtain

_ [BiOK (Bydy + kor) + Byrdy | - dgO(KBF + 2kpr)

Sy 3
k26( KBI + 2k27‘)
0K (Bydy + kor)
Sy = é 0 27 = Sx3’
K9[31 +2k297'
d (KB} + 2kyr — kyr) — 0Kk  (Bydg + kor)
I, = = Ix3'

ky(KOB? + 2k,6r)
We obtain non-negative equilibria point E3(S,3, I3, S,3, 0) when
dl(KBIZ + 2]{2)" - klr) > GKkl(BldO + kzr),
BIGK(BldO + kzr) + Blrdl > doe(KBIZ + 2]{2)").
CaselV. S, #0,1, #0, Sy # 0, Iy # 0, we get

_ kd2 +B2d0 _ S*
* PiB2 v

;= I(KBiBy —doBy —kody) —kiPrdy _

* (r+B1)BiB2 v

S
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dy o

y = E = Sy’

_ ki®(doBy + doBiBo + kodyr) + kyOr( KRBy — doBs —kody) I

- =1,
BT (r +By)

S

Iy

We obtain non-negative equilibria point E, (S, I, S;, I; ) when r(KBB, —doB»

~kody ) > kiByd,.

3. Stability Analysis

The Jacobi matrix of the system (1) is

2r r r
r—?SX—(?-i-BI)Ix—ley (_?_Bljsx _kISX 0
7 Bllx Blsx _kZSy _dO _kZIx 0
kleSy kzesy kIGSX - dl - BZI)' + kzelx - st),
0 0 Bal, P28, —d,

Case I. For E(0, 0, 0, 0), the characteristic equation is
A =r)(A+dy)(A+dy)(h+dy) = 0.
We can get the characteristic root as follows:
M=r>0, A =-dy<0, A3=-d; <0, Ay=-d,<0.

Therefore E (0, 0, 0, 0) is a Saddle point.

Case II. For El(K , 0, 0, 0), the characteristic equation is

A=r)A=BK+dy)(A+d;)(A+dy)=0.
Roots of this equation are
M=-1r<0, Ay=PK-dy, Ay=-d; <0, Ay=-dy<O.

Here A, <0 when B;K <dy. Hence E[(K, 0,0, 0) is locally asymptotically

stable.
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Case III. For E5(S 5, 1,7, 0, 0), the Jacobi matrix is

r r
—x Sx2 (—E—Bl)sxz 0 0
Bl 0 — kol 0
JEZ =
0 0 klesz + kzelxz 0
0 0 0 —d,

The corresponding characteristic polynomial is
D2(7\.) = (7\, + d2 )(7\. — klesz — k291x2 + dl)

x [73 + Sk + (% - Bl)ﬁlsﬂgz}

r

T Bl)BIszlxz > 0, soAz, A4 have negative real parts.

Because % S >0, (

When klesz + k291x2 < dl’ 7\.2 <0. So Ez(sz, 1x2’ 0, O) is 10C3]ly

asymptotically stable.

Case IV. For E3(S,3, I3, Sy3, 0), the Jacobi matrix is

r r
% Sa (—?—51)5;@ 0 0
Bily3 0 — kol 3 0
JE3 = N
0 k205 13 0 ~B2Sy3
0 0 0 PBySy3—dy

D3(A) = (B2Sy3 —dy = 1)

k%ﬂr

3 r 2 2 r
X{—}\. —foﬁ» —|:K 91x3Sy3+Bl(f+Bl)sx31x3}7‘__5x31x35y3}

Itis clear that characteristic root A; = ,S,3 — d5.

Hence, we have the following main theorem:
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Theorem 1. E((0, 0, 0, 0) is a saddle point. When B1K < dy, E|(K, 0, 0, 0)
is locally asymptotically stable. When k(0S5 + k,01 .5 < dy, E3(S,o, 7,0, 0)
is locally asymptotically stable. When B,S3 < dy, E3(S,3, 1,3, Sy3, 0) is locally

asymptotically stable.
4. Global Stability

Theorem 2. The positive equilibria point E4 = (Sy4, I 4, Sy4,0) of the

system is globally asymptotically stable.
Proof. Take proper Lyapunov function V(Sy, I, Sy, I): R} SR

S 1
V(t) = ml(Sx _S)C4 —Sx4 ln—x)—i-mz(lx —Ix4 —Ix4 ln—x)
Sx4 Ix4

[S S S.al Sy j (1 I I Iy j
+I’}’l3 , = Oy4 —Oy4 In +m4 , —lyg — 1y 0 .
y Py S y oy T,

Let
m2[31 - ml(% + Bl) = O, m3k19 — mlkl = 0,
kyOmy —maky =0,  myBy —m3By = 0.

Namely, when we take m, = %(% + Bl)ml, my = my %ml, my > 0, then

V() = —%"ﬁ(sx —54) <0.

So by the LaSalle invariant set theorems, we know that E4(S .4, 1,4, Syas Iy4) is

globally asymptotically stable.

5. Conclusion

This paper mainly discusses the prey-predator model with disease in the preys
and predators, we get the conditions of local asymptotical stability and the existence

of the boundary balance. We prove the positive balance point
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E (S, 1oas S ya> Lyq ) is globally asymptotically stable by constructing Lyapunov

function.
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