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Abstract 

Morris-Thorne wormholes with a cosmological constant Λ  have been 

studied extensively, even allowing Λ  to be replaced by a space variable 

scalar. These wormholes cannot exist, however, if Λ  is both space and 

time dependent. Such a Λ  will therefore act as a topological censor. 

While not likely to have a bearing on the present, possible cosmological 

consequences of inflation cannot be discounted. 

1. Introduction 

Wormholes are handles or tunnels in the spacetime topology connecting two 

separate and distinct regions of spacetime. These regions may be part of our Universe 

or of different universes. The pioneer work of Morris and Thorne [1] has shown that 

macroscopic wormholes may be actual physical objects, provided that certain energy 

conditions are violated. Several wormhole studies have added the cosmological 

constant Λ  [2-4]. 

When Einstein first introduced the cosmological constant into his field equations 

in 1917, he was still striving for consistency with Mach’s principle. From the 

standpoint of cosmology, however, Λ  served to create a kind of repulsive pressure to 

yield a stationary Universe. Eventually Zel’dovich identified Λ  with the vacuum 

energy density due to quantum fluctuations [5]. 
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It has been proposed from time to time that the “constant” is actually a variable 

parameter. For example, in discussing a family of asymptotically flat globally regular 

solutions to the Einstein field equations, Dymnikova [6] notes that the source term 

corresponds to an r-dependent .Λ  Assuming that Λ  does indeed have the form 

( ) ,rΛ=Λ  Rahaman et al. [7] obtained a class of wormhole solutions, while Ray et 

al. [8] studied various models that can be applied to the classical electron of the 

Lorentz type. Cosmic strings with ( )rΛ=Λ  are discussed in [9]. In [10] the variable 

Λ  is derived from a higher spatial dimension and manifests itself as an energy-

density for the vacuum. 

Another widely discussed possibility is a space- and time-dependent ,Λ  i.e., 

( ),, trΛ=Λ  suggested by recent observations of high redshift Type Ia supernovae 

[11-15]. For a detailed discussion with an extensive list of references, see Alcaniz 

[16]. For various decay-Λ  scenarios from the original high value during inflation to 

the present, see [17] and references therein. [18] discusses the big bang, as well as 

the “big bounce”, referring to variable- Λ  models having a non-singular origin. 

Using a natural extension of a metric proposed by Delgaty and Mann [2], it is 

shown in this paper that if Λ  is both space and time dependent, so that ( ),, trΛ=Λ  

then a wormhole of the Morris-Thorne type will have a curvature singularity at the 

center. Possible cosmological implications are discussed at the end. 

2. Background 

Using units in which ,1== Gc  our starting point is the Einstein-de Sitter 

metric 
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which is the unique solution of the vacuum Einstein field equations for a spherically 

symmetric spacetime with a positive cosmological constant. The line element reduces 

to the Schwarzschild line element if .0=Λ  The wormhole metric in [1], 
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provides a motivation for the following metric, proposed by Delgaty and Mann [2]: 
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In [2], Λ  is fixed, while the constant 1 is incorporated in the function ( ).rM  This 

metric describes a traversable wormole in ( )13 +  dimensions with a cosmological 

constant .Λ  If Λ  is to have the form ( ),, trΛ=Λ  then equation (3) becomes the 

only natural choice for the new metric. 

In the metric, equation (3), ( )rΦ  is called the redshift function. If ,0=Λ  then 

( ) ( ).rbrM =  So ( )rM  will be called the shape function; thus )( .00 rrM =  (Recall 

that in equation (2), the sphere of radius 0rr =  is the throat of the wormhole). 

Qualitatively, ( )rM  has the form shown in Figure 1. Observe that Λ  is a positive 

function of both r and t. 

According to [19], since the wormhole described by the metric in equation (3) is 

dynamic, there are actually two throats on opposite sides of the center .1rr =  This 

center is determined implicitly (for any fixed t) from the equation 
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(Observe that the entire sphere 1rr =  lies in the same time slice). After rearranging 

terms, we get for any fixed time-slice 

 ( ) ( ) ( ) .,
3

1 3 rtrrrMrF =Λ+=  (5) 

So for any fixed t, a solution to equation (5) is a fixed point ( ) .11 rrF =  (See Figure 

1). Since ,, ΛM  and r are all positive, ( ) .11 rrM <  So .01 rr >  Since the sphere 

1rr =  is the center of the wormhole, 0rr =  is not in the manifold, while each throat 

is a sphere with time-dependent radius .12 rr >  
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Figure 1. Graph showing the fixed point 1rr =  of ( ).rF  

3. The Failed Solution 

To study the presumptive wormhole solution, it is necessary to compute the 

components of the Riemann curvature and Einstein tensors using the following 

orthonormal basis: 
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Some of the components of the Einstein tensor are listed next: 
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From the Einstein field equations with cosmological constant, 

 ,8 ˆˆˆˆˆˆ βαβαβα
π=Λ+ TgG  (9) 

we obtain 

 ( ).
8

1
ˆˆˆˆˆˆ βαβαβα

Λ+
π

= gGT  (10) 



AN UNEXPECTED TOPOLOGICAL CENSOR 

 

35 

So 
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where ( )trf ,  is usually interpreted as the energy flux in the outward radial direction 

[20]. 

Now let us assume that at the throat )( 2rr =  the usual flare-out conditions have 

been met and that for every t the weak energy condition (WEC) has been violated. 

(The WEC states that given the stress-energy tensor ,ˆˆ βα
T  the inequality 

0
ˆˆ

ˆˆ
≥µµ βα

βα
T  holds for all time-like vectors and, by continuity, all null vectors). So 

for the radial outgoing null vector (1, 1, 0, 0) we therefore have 
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In this manner all the conditions for the existence of a wormhole appear to have been 

met. However, the real problem does not depend on any violation of the WEC: in 

view of equation (4), we have for any given t 
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at the center .1rr =  Hence ( )trf ,  cannot be a finite quantity as long as 

( ) .0, ≠∂Λ∂ ttr  Similarly, the components 
θθˆˆG  and ,ˆˆφφ

G  which are proportional 

to the lateral pressure ,tp  cannot be finite as long as Λ  is time dependent: 
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Finally, it is shown in [1] that for a wormhole to be traversable by humanoid 

travelers, the radial tidal constraint must be met: ( ) ,m10
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Because of equation (4), we see that, once again, the right-hand side of equation (16) 

cannot be finite at the center as long as Λ  is time dependent. The same problem 

arises with the lateral tidal constraints. So even if the earlier problems did not occur, 

the wormhole would not be traversable. 

4. A Divergent Scalar Quantity 

The singularities encountered so far could conceivably be removed by a suitable 

coordinate transformation, as, for example, in the Schwarzschild case. To show that 

the spacetime is singular, we need a scalar quantity that becomes infinite. To this end 

we list the components of the Ricci tensor. First we define the function 
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Now consider the square of the curvature scalar 
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For any fixed t (that is, for any fixed time-slice), the term 
tr

tr RR
ˆˆ

ˆˆ  is divergent for 

some 1rr =  whenever 
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Being a scalar quantity, it diverges at the center in all coordinate systems. 

5. Discussion 

Before discussing the various implications, let us first recall that the assumption 

( ) 0, ≠Λ
∂

∂
tr

t
 has some clear-cut consequences: Equations (13), (15), and (16) 

imply that the energy flux, lateral pressure, and curvature cannot be finite at the 

center of the wormhole. Since the scalar quantity βα
βα

ˆˆ
ˆˆ
RR  also diverges, there is a 
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curvature singularity at the center. So given the ansatz, equation (3), it follows that 

for a wormhole of the Morris-Thorne type to exist, Λ  must not be time dependent. 

More formally, using the language of the topological censorship principle [21, 22], 

causal curves originating from and ending in a simply connected asymptotic region 

do not see any non-trivial topology and can therefore be deformed to a curve 

contained entirely within the asymptotic region. In the present situation, an ingoing 

radial null geodesic continues to move inward and so cannot pass through the 

wormhole and probe the topology. A time-dependent Λ  will therefore act as a 

topological censor for wormholes of the Morris-Thorne type. 

Returning to the line element (3), suppose ( ) ( ) 0, =Λ∂∂ trt  for 0tt ≤  (for 

some 0t ) and that a Morris-Thorne wormhole exists. If ( ) ( )trt ,Λ∂∂  becomes 

nonzero for ,0tt >  then the center develops a curvature singularity. So the entire 

model, equation (3), breaks down and we no longer have a valid wormhole solution. 

With the properties of black holes in mind, this singularity is not likely to disappear 

even if Λ becomes constant again. Moreover, since all the points on the sphere are 

singularities, the infinite gravitational forces between them would pull the entire 

sphere into a single point, thereby producing a black hole. 

While all these conclusions are based on fairly straightforward calculations, one 

can question their relevance: for if Λ  really does change, then the rate of change is 

likely to be so minute as to be practically undetectable. Putting it another way, even if 

Λ  should be independent of r, which is also likely, ( ) ( )trt ,Λ∂∂  is going to be zero 

within the margin of experimental error. So the outcome has no bearing on the 

present. 

The situation would have been entirely different during a period when Λ  really 

did change, at least with respect to time, as would have been the case during 

inflation. Here the existence of a kind of vacuum energy caused the Universe to act 

like an approximation to a de Sitter solution since it was dominated by a large 

effective cosmological “constant” ([23, p. 10]). At the very least, the change in Λ  

would have been very large at the beginning of inflation, as well as the end. Now, 

submicroscopic wormholes existing prior to the onset of inflation could conceivably 

have expanded to macroscopic size [20]. However, such wormholes could not have 

survived the beginning of inflation. 

During inflation, Λ  would not only have been large, but it may also have been 

constant. (If not, wormholes could not have formed). It is generally believed that 



AN UNEXPECTED TOPOLOGICAL CENSOR 

 

39 

inflation provides a possible explanation for the initial inhomogeneities that have led 

to the macroscopic structures we see today. These large-scale structures could have 

included wormholes. But since Λ  changed again rapidly at the end of inflation, such 

wormholes could not have survived either. 

These outcomes help explain why (apart from gravitational lensing) the stars and 

galaxies observed are not believed to be multiple images of a much smaller set: such 

a phenomenon would indeed require a multiply-connected spacetime. In addition, the 

possibility that previously existing wormholes had become black holes would help 

explain the large number of black holes discovered, while the evidence for the 

existence of wormholes is entirely lacking. 
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