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Abstract

Within this paper, weakly P1 properties continue to be examined and

“not-(weakly P1)” properties are investigated.

1. Introduction and Preliminaries

In 1975 [6], Tj -identification spaces, which were introduced in 1936 [7], were

used to further characterize weakly Hausdorff spaces.

Definition 1.1. Let (X, T) be a space, let R be the equivalence relation on X
defined by xRy iff Cl({x}) = CI({y}), let X be the set of R equivalence classes of
X, let N:X — X be the natural map, and let Q(X, T) be the decomposition
topology on X determined by (X, 7) and the map N. Then (X, Q(X, T)) is the
T, -identification space of (X, T) [7].
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Within the 1936 paper [7], T -identification spaces were used to further

characterize pseudometrizable spaces.

Theorem 1.1. A space (X, T) is pseudometrizable iff its T -identification

space (X, O(X, Q(X, T))) is metrizable [7].

Theorem 1.2. A space (X, T) is weakly Hausdorff iff its T -identification
space (X, (Q(X, T)) is Hausdorff [6].

In the 1975 paper [6], it was proven that weakly Hausdorff is equivalent to the

R separation axiom, which was introduced in 1961 [1].

Definition 1.2. A space (X,T) is R, iff for x and y in X such that

Cl({x}) # CI({y}), there exist disjoint open sets U and V such that xe U and
yeV [l

Within the 1961 paper [1], A. Davis was interested in separation axioms R;,
which together with 7; are equivalent to T;,;; i = 0, 1, respectively, leading to the

definition of R; and the rediscovery of the R separation axiom.

Definition 1.3. A space (X, T) is Ry iff for each O e T and each x€ O,
Cl({x}h) c 0 [11.

The separation axioms R;; i = 0, 1, satisfied Davis’ expectations [1].

Within a 2015 paper [2], weakly Hausdorff was generalized to weakly Po

properties.

Definition 1.4. Let P be a topological property for which Po = (P and Tj)
exists. Then (X, T) is weakly Po iff (X, Q(X, T)) has property P. A topological
property Po for which weakly Po exists is called a weakly Po property [2].

As a result of the role of 7;; in the weakly Po property process within the

introductory paper [2], it was proven that for a topological property P for which

weakly Po exists, a space is weakly Po iff its T -identification space has
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property Po.

Even though weakly Po properties were undefined at the time, since
(pseudometrizable)o equals metrizable, metrizable was the first known weakly Po
property and weakly (pseudometrizable)o = weakly (metrizable) = pseudometrizable.

Within the paper [2], it was established that both 7, and 7; are weakly Po
properties, with weakly (R;)o = weakly 7, = R; and weakly (R )o = weakly T}

= Ro.

In the introductory weakly Po property paper [2], the search for a topological
property which was not a weakly Po property led to a need and a use for the
topological property “not-T; ”, where “not-T; ” is the negation of T,. In that paper
[2], it was shown that both 7;; and “not-T;, " are not weakly Po properties. Also, it
was shown that a space is weakly Po iff its 7}, -identification space is weakly Po.

The combination of this result with the fact that other topological properties are

simultaneously shared by a space and its T -identification space led to the

introduction and investigation of 7 -identification P properties [3].

Definition 1.5. Let S be a topological property. Then S is a T, -identification P
property iff both a space and its T -identification space simultaneously share

property S [3].

Within the paper [3], it was proven that property Q is a T -identification P

property iff Qo exists and Q = weakly Qo.

As in the case of weakly Po properties, both T and “not-T; ” fail to be Ty, -

identification P properties [3]. The knowledge and insights obtained from the

investigations of weakly Po and T, -identification P properties was used to define
and investigate weakly Pl and to further investigate weakly Po and T -

identification P properties [4]. In this paper, the study of weakly P1 properties

continues and “not-(weakly P1)” properties are investigated.
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2. Weakly P1

Definition 2.1. Let P be a topological property for which P1= (P and Tj)
exists. Then (X, T) is weakly Pl iff (X, Q(X, T)) is Pl. A topological property

P1 for which weakly P1 exists is called a weakly Pl property [4].

Within the paper [4], it was proven that for a weakly Pl property Ql, weakly
Ol = ((weakly Qo) and Ry). Since both weakly Qo and R; are topological
properties and ((weakly Qo) and Ry) = weakly Q; exists, then weakly Q1=
((weakly Qo) and Ry ) is a topological property.

A natural question to ask at this point is whether there are topological properties

P for which T -identification P, weakly Po, and weakly Pl are equal and, if so, is

there a least topological property for which all three are equal?

Theorem 2.1. The least topological property for which T -identification
P = weakly Po = weakly Pl is R.

Proof. Since Ry = weakly (Ry)o and R; = weakly (R )o, then Ry and R,
are T -identification properties. Since weakly (Ry)l = R and weakly (Rj)l = R,

[4], then for P = Ry or P = R;, each of the three properties are equal.

Let O be a topological property for which 7|, -identification P = weakly Po =
weakly Pl1. Since weakly Q1 = ((weakly Qo) and R ), then Q = weakly Q1 =
((weakly Qo) and Ry) = (Q and Ry), which implies Ry. Thus, R; is the least
topological property P for which each of T -identification P = weakly Po =
weakly Pl.

As in the case of weakly Po and T -identification P properties, neither 7, nor
“not-Tjy ” are weakly Pl properties [4]. Also, within the paper [4], it was proven that
for a weakly P1 property, weakly P1 = (P1 or ((weakly P1) and “not-T; ”)), where
both Pl and ((weakly P1) and “not-7j ) exist and are distinct, and neither are

weakly P1 properties. In the paper [2], it was proven that for a weakly Po property
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Qo, weakly Qo =(Qo or ((weakly Qo) and “not-7;,”)), where both Qo and
((weakly Qo) and “not- T}, ”) exist, are distinct, and neither are weakly Po properties.
Thus, the question of whether “not-7T{, ” in the statement above for weakly Ol could

be replaced by “not- 7 arises.

The use of “not-7j ” in the weakly Po paper [2] as an example of a topological

property that is not a weakly Po property led to the investigation of ‘“not-P”
properties, where P is a topological property and “not-P” exists [5], which led to the
discovery of L = (T, or “not-Tg ); the least of all topological properties [5]. In [5],
it was shown that L is not a weakly Po property and, thus, by the results above, L is
not a weakly Pl property. Within that paper [5], it was proven that L is also equal to
(P or “not-P”), where P is a topological property for which “not-P” exists, which is
used below.

Theorem 2.2. Let Q be a topological property for which weakly Q1 exists and
let (X, T) be a weakly Q1 space. Then (X, T) is “not-Ty” iff (X, T) is “not-T;”.

Proof. Since (X, T) is (Q1 or ((weakly Q1) and “not-Ty, ”)), where both Q1 and

((weakly Q1) and “not- Ty ) exist and are distinct, then (X, T) is not Q1.

Since weakly Q1 = ((weakly Q1) and L) = ((weakly Q1) and (7] or “not-7;”))
= ((weakly Q1)1 or ((weakly Q1) and “not-77”)) and (weakly Q1)1 = Q1 [4], then
(X, T) is (Q1 or ((weakly Q1) and “not-T;7)) and, since (X, T) is not Q1, then
both Q1 and ((weakly Q1) and “not-77”) exist and are distinct. Thus ((weakly Q1)
and “not-Tj, ”) = ((weakly Q1) and “not-Q1”) = ((weakly Q1) and “not-7;”) and in

(X, T), “not-Ty ” and “not-T; ” are equivalent.

Corollary 2.1. Let Q be a topological property for which weakly Q1 exists.
Then weakly Q1= (Q1 or ((weakly Q1) and “not-T,”)), where both Q1 and
((weakly Q1) and “not-1y”) exist, are distinct, and neither of which are weakly P1

properties.

The negation of Theorem 2.2 gives the next result.
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Corollary 2.2. Let Q be a topological property for which weakly Q1 exists and
let (X, T) be a weakly Q1 space. Then (X, T) is Ty iff (X, T) is Tj.

Within the study of weakly Po properties, the introduction and investigation of
“not-P” topological properties raised questions about “not-(weakly Po)” for a weakly
Po property Po, which led to the following discoveries. For a topological property P
for which weakly Po exists, “not-(weakly Po)” exists and is a topological property,
both (P and Ty) and (P and “not-Tp ™) exist, (“not-P”)o = (“not-Po”)o, weakly
((“not-P)o) exists, weakly ((“not-P”)o) = weakly ((“not-(Po)”’)o) = “not-(weakly
Po)” # weakly Po, and (“not-P”)o # Po [5] raising similar questions for weakly P1

properties, which are addressed below.

3. “(Not-(Weakly P1)” Properties for Weakly P1 Properties

Since for a topological property Q for which Q1 is a weakly P1 property, Qo is a

weakly Po property [4], the results below follow immediately from the results above.

Corollary 3.1. Let Q be a topological property for which weakly Q1 exists.
Then Qo is a weakly Po property and “not-(weakly Po)” exists and is a topological
property, both (P and Ty) and (P and “not-T ) exist, (“not-P”)o = (“not-Po”)o,
weakly ((“not-P”)o) exists, weakly ((“not-P”)o) = weakly ((“not-(Po)”)o) = (“not-
weakly Po)” # weakly Po, and (“not-P)’o # Po.

Theorem 3.1. (“Not- Ry and T}) does not exist.

Proof. Let (X, T) be a “not- Ry” space. Let O € T and let x € O such that
CI({x}) is not a subset of O. Let y € CI({x})\ O. Then every open set containing y

contains x and (X, T') is not 7;. Hence (“not- Ry” and 7;) does not exist.

Theorem 3.2. Let Q be a topological property for which weakly Q1 exists.
Then (“not-(weakly Q1)” and T}) does not exist and thus “not-(weakly Q1)” is not a

weakly P1 property.

Proof. Since weakly Q1 = ((weakly Qo) and Ry), then weakly Q1 implies R,

and “not- Ry implies “not-(weakly Q1)”. Since “not- R ” implies “not-(weakly Q1)”
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]

is true, then (“not-Ry” and 77) implies (“not-(weakly Q1)” and 7;) is true and,
since (“not- Ry~ and 77) does not exist, then (“not-(weakly Q1)” and 77) does not

exist and “not-(weakly Q1)” is not a weakly P1 property.

Theorem 3.3. Let Q be a topological property for which weakly Q1 exists.
Then (“not-Q1)o exists, “not-(weakly Q1)” = weakly (“not-Q17)o, and (“not-Q1”)o
is a weakly Po property.

Proof. Since a space is weakly Q1 iff its Ty, -identification space is Q1, then a
space is “not-(weakly Q1)” iff its Tj, -identification space is “not-Q1”. Since all Tj, -
identification spaces are 7;; [7], then a space is “not-(weakly Q1) iff its T} -

identification space is (“not-Q1”)o. Thus “not-(weakly Q1)” = weakly (“not-Q1”)o
exists and (“not-Q1”)o is a weakly Po property.
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