

ABOUT A SERIES OF UNSOLVED PROBLEMS IN THE THEORY OF STABILITY AND OPTIMAL CONTROL OF STOCHASTIC SYSTEMS

LEONID SHAIKHET

Department of Mathematics
Ariel University
Ariel 40700
Israel
e-mail: leonid.shaikhET@usa.net

Abstract

This paper continues a series of papers devoted to unsolved problems in the theory of stability and optimal control of stochastic systems. A delay differential equation with stochastic perturbations of the white noise and Poisson's jumps types is considered. In contrast to the known stability condition, in which it is assumed that stochastic perturbations fade on the infinity quickly enough, a new situation is studied, in which stochastic perturbations can fade on the infinity either slowly or not fade at all. Some unsolved problem in this connection is proposed to readers' attention.

Keywords and phrases: a complete probability space, the Wiener process, Poisson's measure, stochastic perturbations, asymptotic mean square stability.

2020 Mathematics Subject Classification: 37H30, 60G52, 60H30.

Received December 18, 2025; Accepted December 30, 2025

© 2025 Fundamental Research and Development International

1. Introduction

The proposed here unsolved problem continues a series of unsolved problems in the theory of stability and optimal control for stochastic difference equations, stochastic differential equations and stochastic partial differential equations, that were presented during the recent years in some international conferences and papers (see [1-12]). All these problems still need to be solved.

Let $\{\Omega, \mathfrak{F}, \mathbf{P}\}$ be a complete probability space, $\{\mathfrak{F}_t\}_{t \geq 0}$ be a nondecreasing family of sub- σ -algebras of \mathfrak{F} , i.e., $\mathfrak{F}_s \subset \mathfrak{F}_t$ for $s < t$, \mathbf{E} be the expectation with respect to the measure \mathbf{P} , H_2 be the space of \mathfrak{F}_0 -adapted stochastic processes $\phi(s)$, $s \leq 0$, $\|\phi\|^2 = \sup_{s \leq 0} \mathbf{E}|\phi(s)|^2$.

Following Gikhman and Skorokhod [13], we will consider the stochastic delay differential equation

$$\begin{aligned} dx(t) = & \left(Ax(t) + \sum_{i=1}^k B_i x(t - h_i) \right) dt + \sum_{i=1}^m C_i(t) x(t) dw_i(t) \\ & + \int G(t, u) x(t) \tilde{v}(dt, du), \quad t \geq 0, \end{aligned} \tag{1}$$

$$x(s) = \phi(s) \in H_2, \quad s \in [-h, 0], \quad h = \max_{i=1, \dots, k} h_i,$$

where $x(t) \in \mathbf{R}^n$, A , B , $C_i(t)$, $G(t, u)$ are $n \times n$ -matrices, $h_i > 0$, $w_1(t), \dots, w_m(t)$ are the standard Wiener processes, that are mutually independent and also independent of the Poisson measure $v(t, A)$,

$$\mathbf{E}v(t, A) = t\Pi(A), \quad \tilde{v}(t, A) = v(t, A) - t\Pi(A).$$

Definition 1.1 [14]. The zero solution of Equation (1) is called:

- mean square stable if for each $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$\mathbf{E} |x(t)|^2 < \varepsilon, \quad t \geq 0, \text{ provided that } \|\phi\|^2 < \delta;$$

- asymptotically mean square stable if it is mean square stable and $\lim_{t \rightarrow \infty} \mathbf{E} |x(t)|^2 = 0$ for each initial function $\phi(s)$.

Some particular cases of Equation (1) are considered in [15, 16], where it is proven that if the stochastic perturbations fade on the infinity quickly enough then the asymptotically stable zero solution of the corresponding deterministic system remains asymptotically mean square stable regardless of the level of these perturbations.

Below a situation is studied when stochastic perturbations can fade on the infinity either slowly or not fade at all. By that some unsolved problem is also proposed.

2. Equation without delays

Consider at first Equation (1) without delays, i.e., by the condition

$$B_i = 0, \quad i = 1, \dots, k. \quad (2)$$

Let L be the generator of this equation [13, 14]. Then for the function $V(x(t)) = |x(t)|^2$ we have

$$\begin{aligned} LV(x(t)) &= 2x'(t)Ax(t) + \sum_{i=1}^m x'(t)C'_i(t)C_i(t)x(t) \\ &\quad + \int x'(t)G'(t, u)G(t, u)x(t)\Pi(du) \\ &= x'(t)[A + A' + Q(t)]x(t), \end{aligned} \quad (3)$$

where

$$Q(t) = \sum_{i=1}^m C'_i(t)C_i(t) + \int G'(t, u)G(t, u)\Pi(du).$$

Let $\rho(t) = \|Q(t)\|$ be the norm of the matrix $Q(t)$, i.e.,

$$x'Q(t)x \leq \rho(t) |x|^2. \quad (4)$$

Assume that $A + A'$ is a negative definite matrix, i.e.,

$$x'(A + A')x \leq -\alpha |x|^2, \quad \alpha > 0, \quad (5)$$

and, besides, suppose that

$$\sup_{t \geq 0} \rho(t) < \alpha \quad \text{or} \quad \int_0^\infty \rho(t) dt < \infty. \quad (6)$$

Put also

$$\mu(t) = \frac{1}{t} \int_0^t \rho(s) ds, \quad \mu = \limsup_{t \rightarrow \infty} \mu(t). \quad (7)$$

Remark 2.1. Note that if the first or the second condition (6) holds then, respectively, $\mu < \alpha$ or $\mu = 0 < \alpha$. But the inequality $\mu < \alpha$ can be hold even by the condition

$$\int_0^\infty \rho(t) dt = \infty. \quad (8)$$

For example, for the function $\rho(t) = \frac{2\alpha}{t+1}$ none from the conditions (6) are satisfied, but the both conditions $\mu = 0 < \alpha$ and (8) are obviously satisfied.

Theorem 2.1. *Let α and μ , defined in (5) and (7), satisfy the condition $\mu < \alpha$. Then the zero solution of Equation (1) with the condition (2) is asymptotically mean square stable.*

Proof. Using (3) and the definitions (4), (5) for $\rho(t)$ and α , we have

$$LV(x(t)) \leq (-\alpha + \rho(t)) |x(t)|^2.$$

From this and Dynkin's formula [13]

$$\mathbf{E}V(x(t)) = \mathbf{E}V(x(0)) + \int_0^t \mathbf{E}LV(x(s))ds$$

for the function $V(x(t)) = |x(t)|^2$ it follows that

$$\frac{d}{dt} \mathbf{E}|x(t)|^2 = \mathbf{E}LV(x(t)) \leq (-\alpha + \rho(t))\mathbf{E}|x(t)|^2$$

or

$$\frac{d\mathbf{E}|x(t)|^2}{\mathbf{E}|x(t)|^2} \leq (-\alpha + \rho(t))dt.$$

Integrating this inequality and using (7), we obtain

$$\begin{aligned} \mathbf{E}|x(t)|^2 &\leq \mathbf{E}|x(0)|^2 \exp\left\{-\alpha t + \int_0^t \rho(s)ds\right\} \\ &= \mathbf{E}|x(0)|^2 \exp\{(-\alpha + \mu(t))t\}. \end{aligned}$$

From this and $\mu < \alpha$ it follows that $\mathbf{E}|x(t)|^2 \leq c\mathbf{E}|x(0)|^2$ for some $c > 0$ and $\lim_{t \rightarrow \infty} \mathbf{E}|x(t)|^2 = 0$, i.e., the zero solution of Equation (1), (2) is asymptotically mean square stable. The proof is completed.

Remark 2.2. Note that the integrability of the function $\rho(t)$ is not a necessary condition for asymptotic mean square stability of the zero solution of the stochastic delay differential Equation (1). As it is shown in [16] for a simple scalar equation of the type of (1), (2)

$$dx(t) = -ax(t)dt + \sigma(t)x(t)dw(t) + \int \gamma(t, u)x(t)\tilde{N}(dt, du),$$

the zero solution can be asymptotically mean square stable even by the condition (8).

Unsolved problem. *The proof of asymptotic mean square stability of the zero solution of the stochastic delay differential Equation (1) under the condition (8) is currently an unsolved problem, which is offered to the attention of potential readers.*

3. Conclusions

To the readers attention an unsolved problem is offered about of stability of a delay differential equation under unfading or slowly fading stochastic perturbations. This unsolved problem complements a number of other previously published unsolved problems, the solutions to which have not until now been obtained.

References

- [1] L. Shaikhet, About some unsolved problems of stability theory for stochastic hereditary systems, Leverhulme International Network: Numerical and analytical solution of stochastic delay differential equations, University of Chester, UK, 31st August to 3rd September, Abstracts, 2010, pp. 6-7.
- [2] L. Shaikhet, Unsolved stability problem for stochastic differential equation with varying delay, Leverhulme International Network: Numerical and analytical solution of stochastic delay differential equations, University of Chester, UK, 5th to 7th September, Abstracts, 2011, p. 21.
- [3] L. Shaikhet, About an unsolved stability problem for a stochastic difference equation with continuous time, Journal of Difference Equations and Applications 17(3) (2011), 441-444; <https://doi.org/10.1080/10236190903489973>.
- [4] L. Shaikhet, Two unsolved problems in the stability theory of stochastic differential equations with delay, Applied Mathematics Letters 25(3) (2012), 636-637; doi:10.1016/j.aml.2011.10.002.
- [5] L. Shaikhet, About an unsolved optimal control problem for stochastic partial differential equation, XVI International Conference “Dynamical System Modeling and Stability Investigations” (DSMSI-2013), Kiev, 29-31 May, 2013, p. 344.
- [6] L. Shaikhet, Some Unsolved Problems: Problem 1, Problem 2, In the book: Lyapunov Functionals and Stability of Stochastic Functional Differential Equations, Springer Science & Business Media, 2013, pp. 51-52.

- [7] L. Shaikhet, Some unsolved problems in stability and optimal control theory of stochastic systems, Special issue “Models of Delay Differential Equations-II”, Mathematics 10(3) (2022), 474; <https://doi.org/10.3390/math10030474>.
- [8] L. Shaikhet, About an unsolved problem of stabilization by noise for difference equations, Mathematics 12(1) (2024), 110; <https://www.mdpi.com/2227-7390/12/1/110>.
- [9] L. Shaikhet, Unsolved problem about stability of stochastic difference equations with continuous time and distributed delay, Modern Stochastics: Theory and Applications 11(4) (2024), 395-402; <https://doi.org/10.15559/24-VMSTA253>.
- [10] L. Shaikhet, About one unsolved problem in asymptotic p -stability of stochastic systems with delay, AIMS Mathematics, Special Issue: “Problems of Stability and Optimal Control for Stochastic Systems” 9(11) (2024), 32571-32577; <https://www.aimspress.com/article/doi/10.3934/math.20241560>.
- [11] L. Shaikhet, About some unsolved problems in the stability theory of stochastic differential and difference equations, Axioms 14(6) (2025), 452; <https://doi.org/10.3390/axioms14060452>.
- [12] L. Shaikhet, About unsolved problems in stabilization of two coupled controlled inverted pendulums under stochastic perturbations, Applied Mathematics Letters 173 (2026), 109763; <https://doi.org/10.1016/j.aml.2025.109763>.
- [13] I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations, Springer-Verlag, Berlin, 1972.
- [14] L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Functional Differential Equations, Springer Science & Business Media, Berlin, Germany, 2013; <https://link.springer.com/book/10.1007/978-3-319-00101-2>.
- [15] L. Shaikhet, About stability of delay differential equations with square integrable level of stochastic perturbations, Applied Mathematics Letters 90 (2019), 30-35; doi:10.1016/j.aml.2018.10.004.
- [16] L. Shaikhet, Stability of delay differential equations with fading stochastic perturbations of the type of white noise and Poisson's jumps, Discrete and Continuous Dynamical Systems Series B 25(9) (2020), 3651-3657; doi:10.3934/dcdsb.2020077.