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Abstract 

A new proof of the convex contraction mapping theorem [1] was given by 

Ampadu [2]. In the present paper, motivated by certain results contained 

in Mutlu et al. [3], we obtain the coupled version of the convex 

contraction mapping theorem in bipolar metric spaces. 

1. Introduction 

A coupled version of the Banach contraction principle appeared in Mutlu et al. 

[3]. In the present paper, we address the following 

Question 1.1. What is the coupled version of the convex contraction mapping 

theorem [2] in the setting of bipolar metric spaces [4]? 

This paper is organized as follows. Section 2 contains some preliminary ideas 

that would be useful in the sequel. The main results are given in Section 3. An 
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example is given to motivate the main result. 

2. Preliminaries 

Definition 2.1 (Mutlu and Gurdal [4]). A bipolar metric space is a triple 

( )dYX ,,  such that ∅≠YX ,  and +
RaXd :  is a function satisfying the 

following 

(a) if ( ) ,0, =yxd  then ,yx =  

(b) if ,yx =  then ( ) ,0, =yxd  

(c) if ,, YXyx I∈  then ( ) ( ),,, xydyxd =  

(d) ( ) ( ) ( ) ( )22121121 ,,,, yxdyxdyxdyxd ++≤  for all ( ) ( ),,,, 11 yxyx  

( ,2x ) .2 YXy ×∈  

We say d is a bipolar metric on the pair ( )., YX  

Definition 2.2 (Mutlu and Gurdal [4]). Let ( )11, YX  and ( )22 , YX  be pairs of 

sets and 2211: YXYXf UaU  be a given function. If ( ) 21 XXf ⊆  and 

( ) ,21 YYf ⊆  we say f is a covariant map from ( )11, YX  to ( )22 , YX  and write 

( ) ( ).,,: 2211 YXYXf →
→  If ( ) ,21 YXf ⊆  and ( ) ,21 XYf ⊆  we say f is a contra-

variant map from ( )11, YX  to ( )22 , YX  and in this paper, we shall write 

( ) ( ).,,: 2211 YXYXf →
←  

Remark 2.3. If 21, dd  are bipolar metrics on ( )11, YX  and ( ),, 22 YX  

respectively, we shall sometimes write ( ) ( )222111 ,,,,: dYXdYXf →
→  and :f  

( ) ( ).,,,, 222111 dYXdYX →
←  

Definition 2.4 (Mutlu and Gurdal [4]). Let ( )dYX ,,  be a bipolar metric space 

(a) A point YXu U∈  is called a left point if ,Xu ∈  a right point if ,Yu ∈  

and a central point if it is both a left and right point. 
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(b) A sequence { } Xxn ∈  is called a left sequence, and a sequence { } Yyn ∈  is 

called a right sequence. In a bipolar metric space, a left or right sequence, is simply 

called a sequence. 

(c) A sequence { }nu  is said to be convergent to a point u, iff { }nu  is a left 

sequence, u is a right point and ( ) ;0,lim =∞→ uud nn  or { }nu  is a right sequence, 

u is a left point and ( ) .0,lim =∞→ nn uud  

(d) A bi-sequence {( )}nn yx ,  on ( )dYX ,,  is a sequence on the set .YX ×  If 

the sequence { }nx  and { }ny  are convergent, then the bi-sequence {( )}nn yx ,  is 

said to be convergent, and if { }nx  and { }ny  converge to a common fixed point, 

then {( )}nn yx ,  is said to be bi-convergent. 

(e) {( )}nn yx ,  is called a Cauchy bi-sequence if ( ) .0,lim , =∞→ mnmn xxd  

(f) A bipolar metric space is called complete, if every Cauchy bi-sequence is 

convergent, hence bi-convergent. 

Definition 2.5 (Mutlu and Gurdal [4]). Let ( )111 ,, dYX  and ( )222 ,, dYX  be 

bipolar metric spaces 

(a) A map ( ) ( )222111 ,,,,: dYXdYXf →
→  is called left-continuous at a point 

,10 Xx ∈  if for every ,0>ε  there exists a 0>δ  such that ( ) δ<yxd ,01  implies 

( ) ε<fyfxd ,02  for all .1Yy ∈  

(b) A map ( ) ( )222111 ,,,,: dYXdYXf →
→  is called right-continuous at a point 

,10 Yy ∈  if for every ,0>ε  there exists a 0>δ  such that ( ) δ<01 , yxd  implies 

( ) ε<02 , fyfxd  for all .1Xx ∈  

(c) A map f is called continuous, if it is left-continuous at each point 1Xx ∈  and 

right-continuous at each point .1Yy ∈  

(d) A contra-variant map ( ) ( )2211 ,,: YXYXf →
←  is continuous iff it is 

continuous as a covariant map ( ) ( ).,,: 2211 YXYXf →
→  
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Remark 2.6 (Mutlu and Gurdal [4]). A covariant or contra-variant map f from 

( )111 ,, dYX  to ( )222 ,, dYX  is continuous iff { } vun →  on ( )111 ,, dYX  implies 

{ ( )} ( )vfuf n →  on ( ).,, 222 dYX  

Definition 2.7 (Mutlu and Gurdal [4]). Let ( )dYX ,,  be a bipolar metric space, 

( ) ( )YXYXF ,,: 22 →
→  be a covariant mapping. ( ) ∈ba,  

22
YX U  is said to be a 

coupled fixed point of F if ( ) abaF =,  and ( ) ., babF =  

Definition 2.8. Let ( )dYX ,,  be a bipolar metric space, ( ) →
→

22 ,: YXF  

( )YX ,  be a covariant mapping, and 321 ,, kkk  be non-negative constants. If F 

satisfies the condition 

( ( ) ( )) ( ) ( )qbdkpadkqpFbaFd ,,,,, 21
22 +≤  

( ) ( )( ) 1,,,, 3213 <+++ kkkqpFbaFdk  

for all Xba ∈,  and ,, Yqp ∈  then we say YXYXF UaU
22

:  is a coupled 

convex contraction mapping of order 2. 

3. Main Results 

Theorem 3.1. Let ( )dYX ,,  be a complete bipolar metric space, and F be a 

map satisfying Definition 2.8, then F has a unique coupled fixed point. 

Proof. Let Xba ∈00 ,  and ., 00 Yqp ∈  Take Xba ∈11,  and Yqp ∈11,  

with ( ),, 001 baFa =  ( ),, 001 abFb =  ( ),, 001 qpFp =  ( )., 001 pqFq =  

Continuing, we obtain bi-sequences {( )}nn ba ,  and {( )}nn qp ,  such that 

( ) ( ) ( ),,,,, 11
2

111 −−+−− === nnnnnnnn baFbaFabaFa  

( ) ( ) ( ),,,,, 11
2

111 −−+−− === nnnnnnnn abFabFbabFb  

( ) ( ) ( ),,,,, 11
2

111 −−+−− === nnnnnnnn qpFqpFpqpFp  

=nq ( ) ( ) ( )11
2

111 ,,,, −−+−− == nnnnnnn pqFpqFqpqF  
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for all .N∈n  Let 1k=γ .32 kk ++  By definition of F, we have 

( ) ( ( ) ( ))nnnnnn qpFbaFdpad ,,,, 2
11

2
21 −+++ =  

( ) ( )nnnn qbdkpadk ,, 1211 −− +≤  

( ( ) ( ))nnnn qpFbaFdk ,,, 113 −−+  

and, 

( ) ( ( ) ( ))nnnnnn pqFabFdqbd ,,,, 2
11

2
21 −−++ =  

( ) ( )nnnn padkqbdk ,, 1211 −− +≤  

( ( ) ( ))nnnn pqFabFdk ,,, 113 −−+  

for all .N∈n  and .1<γ  Now set ( ) ( ),,, 21211 +++++ += nnnnn qbdpade  and 

observe that 

( )[ ( ) ( )] [ ( ) ( )]11311211 ,,,, ++−−+ ++++≤ nnnnnnnnn qbdpadkpadqbdkke  

( )[ ( ) ( )] nnnnn ekpadqbdkk 31121 ,, +++≤ −−  

( ) nn ekekk 3121 ++≤ −  

( ) nekkk 321 ++≤  

.neγ=  

Now it follows that .0 11
2

1 eeee n
nnn γ≤≤γ≤γ≤≤ −+ L  Now observe that 

( ) ( ( ) ( )11
22

12 ,,,, −−++ = nnnnnn qpFbaFdpad  

( ) ( )1211 ,, −− +≤ nnnn qbdkpadk  

( ( ) ( ))113 ,,, −−+ nnnn qpFbaFdk  

and, 

( ) ( ( ) ( )11
22

12 ,,,, −−++ = nnnnnn pqFabFdqbd  
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( ) ( )1211 ,, −− +≤ nnnn padkqbdk  

( ( ) ( ))113 ,,, −−+ nnnn pqFabFdk  

for all N∈n  and .1<γ  Put ( ) ( ),,, 12121 +++++ += nnnnn qbdpads  and observe 

that 

( )[ ( ) ( )] [ ( ) ( )]nnnnnnnnn qbdpadkqbdpadkks ,,,, 11311211 ++−−+ ++++≤  

( ) nn skskk 3121 ++≤ −  

( ) nskkk 321 ++≤  

.nsγ=  

Now it follows that .0 1
2

1
2

1 ssss nnn γ≤≤γ≤γ≤≤ −+ L  Now observe that 

( ) ( ( ) ( ))11
2

11
2

11 ,,,, −−−−++ = nnnnnn qpFbaFdpad  

( ) ( )112111 ,, −−−− +≤ nnnn qbdkpadk  

( ( ) ( ))11113 ,,, −−−−+ nnnn qpFbaFdk  

and, 

( ) ( ( ) ( ))11
2

11
2

11 ,,,, −−−−++ = nnnnnn pqFabFdqbd  

( ) ( )112111 ,, −−−− +≤ nnnn padkqbdk  

( ( ) ( ))11113 ,,, −−−−+ nnnn pqFabFdk  

for all N∈n  and .1<λ  Now set ( ) ( )11111 ,, +++++ += nnnnn qbdpadt  and 

observe that 

( )[ ( ) ( )] [ ( ) ( )]nnnnnnnnnn qbdpadkqbdpadkkt ,,,, 3111121 ++++≤ −−−−+  

( ) nn tktkk 3121 ++≤ −  

( ) ntkkk 321 ++≤  

.ntγ=  
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Now it follows that .0 11
2

1 tttt n
nnn γ≤≤γ≤γ≤≤ −+ L  By Definition 2.1(d), we 

have 

( ) ( ) ( ) ( ),,,,, 1222111 +++++++ +++≤ mmnnnnmn padpadpadpad L  

( ) ( ) ( ) ( ),,,,, 1222111 +++++++ +++≤ mmnnnnmn qbdqbdqbdqbd L  

( ) ( ) ( ) ( ),,,,, 12111 +++++ +++≤ nnmmmmnm padpadpadpad L  

( ) ( ) ( ) ( )12111 ,,,, +++++ +++≤ nnmmmmnm qbdqbdqbdqbd L  

for each .,, mnmn <∈ N  Consequently, we have 

( ) ( )1111 ,, ++++ + mnmn qbdpad  

[ ( ) ( )] [ ( ) ( )]22222121 ,,,, ++++++++ +++≤ nnnnnnnn qbdpadqbdpad  

[ ( ) ( )]11 ,, ++ +++ mmmm qbdpadL  

mmnnn etete +++++= +++ L221  

111
2

1
2

1
1 teete mmnnn γ+γ++γ+γ+γ≤ +++

L  

( ) ( ) 1
32

1
21 te mnnmnn γ++γ+γ+γ++γ+γ≤ ++++

LL  

1

2

1

1

11
te

nn

γ−

γ
+

γ−

γ
≤

++

 

and 

( ) ( )1111 ,, ++++ + nmnm qbdpad  

[ ( ) ( )] [ ( ) ( )]mmmmmmmm qbdpadqbdpad ,,,, 2211 ++++ +++≤  

[ ( ) ( )]1212 ,, ++++ +++ nnnn qbdpadL  

122 +++ +++++= nnnmm ststs L  

1
1

1
2

1
2

11 ststs nnnmm +++ γ+γ+γ++γ+γ≤ L  

( ) ( ) 1
32

1
21 ts mnnmnn γ++γ+γ+γ++γ+γ= ++++

LL  
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1

2

1

1

11
ts

nn

γ−

γ
+

γ−

γ
≤

++

 

for .mn <  Since for an arbitrary ,0>ε  there exists 1n  such that 

311 1

2

1

1 11 ε
<

γ−

γ
+

γ−

γ ++

te
nn

 

and 

,
311 1

2

1

1 11 ε
<

γ−

γ
+

γ−

γ ++

ts
nn

 

then for each ,, 1nmn ≥  we deduce that 

( ) ( ) ,
3

,, 1111
ε

<+ ++++ mnmn qbdpad  

( ) ( ) .
3

,, 1111
ε

<+ ++++ nmnm qbdpad  

It follows that the sequences {( )}nn pa ,  and {( )}nn qb ,  are Cauchy bi-sequences. 

By completeness of ( ),,, dYX  there exists Xba ∈,  and Yqp ∈,  with 

,lim,lim,lim apqbpa nnnnnn === ∞→∞→∞→  and .lim bqnn =∞→  Now 

observe there exists N∈2n  with ( ) ( ) ( )nnn padqbdpad ,,
3

,,
3

,
ε

<
ε

< ,
3

ε
<  

( )
3

,
ε

<nqbd  for all 2nn ≥  and every .0>ε  Since {( )}nn pa ,  and {( )}nn qb ,  

are Cauchy bi-sequences, we get ( ) ,
3

,
ε

<nn pad  and ( ) .
3

,
ε

<nn qbd  By the 

contractive condition of the theorem, we have 

( ( ) )pbaFd ,,2  

( ( ) ) ( ) ( )padpadpbaFd nnnn ,,,, 2222
2

++++ ++≤  

( ( ) ( )) ( ) ( )padpadqpFbaFd nnnnn ,,,,, 222
22

+++ ++≤  

( ) ( ) ( ( ) ( ))nnnn qpFbaFdkqbdkpadk ,,,,, 321 ++≤  
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( ) ( )padpad nnn ,, 222 +++ ++  

( )
3

2
33 231

ε
+

ε
+

ε
+≤ kkk  

( )
3

2
3

ε
+

ε
γ=  

3
2

3

ε
+

ε
<  

ε=  

for each N∈n  and .1: 321 <++=γ kkk  So ( ( ) ) ,0,,2 =pbaFd  that is, 

( ) .,2 pbaF =  Similarly, ( ) ( ) ( ) .,,,,, 222 bpqFaqpFqbaF ===  Since 

( ) ( ) ( ) ,0,limlim,lim, ===
∞→∞→∞→

nn
n

n
n

n
n

padapdpad  

( ) ( ) ( ) .0,limlim,lim, ===
∞→∞→∞→

nn
n

n
n

n
n

qbdbqdqbd  

It follows that pa =  and .qb =  Therefore ( ) 22, YXba I∈  is a coupled fixed 

point. For uniqueness, take another coupled fixed point ( ) ., 22
11 YXba U∈  If 

( ) ,, 2
11 Xba ∈  then we get 

( ) ( ( ) ( ))baFbaFdaad ,,,, 11
2

1 =  

( ) ( ) ( ( ) ( ))baFbaFdkbbdkaadk ,,,,, 11
2

31211 ++≤  

( ) ( ) ( )bbdkaadkk ,, 12131 ++≤  

and 

( ) ( ( ) ( ))abFabFdbbd ,,,, 11
2

1 =  

( ) ( ) ( ( ) ( ))abFabFdkaadkbbdk ,,,,, 11
2

31211 ++≤  

( ) ( ) ( ).,, 12131 aadkbbdkk ++≤  

From the chain of two inequalities immediately above, we deduce that 
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( ) ( ) ( )[ ( ) ( )]bbdaadkkkbbdaad ,,,, 1132111 +++≤+  

[ ( ) ( )] ( ) ( )bbdaadbbdaad ,,,, 1111 +<+γ=  

which is a contradiction, thus ( ) ( ) ,0,, 11 =+ bbdaad  and so aa =1  and ,1 bb =  

that is, ( ) ( ).,, 11 baba =  It follows that the coupled fixed point is unique. 

If all the constants in the previous theorem are equal, then we obtain the 

following 

Corollary 3.2. Let ( )dYX ,,  be a complete bipolar metric space, and 

( ) ( )YXYXF ,,: 22 →
→  be a covariant mapping, and 1<k  be a non-negative 

constant. If F satisfies the condition 

( ( ) ( )) ( ) ( ) ( ) ( )( )[ ]qpFbaFdqbdpad
k

qpFbaFd ,,,,,
3

,,, 22 ++≤  

for all Xba ∈,  and ,, Yqp ∈  then F has a unique coupled fixed point. 

Now we have the following, illustrating the main ideas of this paper 

Example 3.3. Let ( ) ( ) ,,, dLU nn RR  and F be defined as in Example 1 [3]. 

Now fix ,
2

1
:=k  and observe that 

( ) ( )ijijijij

n

ji

dbca −+−∑
=1,

9

2
 

( ( ) ( ))DCFBAFd ,,, 22=  

( ) ( )∑
=

−+−≤

n

ji

ijijijij dbca
k

1,
3

4

3

4

3
 

( ) ( ) ( ) ( )∑ ∑
= =

−+−+−+−≤

n

ji

n

ji

ijijijijijijijij dbca
k

dbca
k

1, 1,
33

1

3

1

3
 

( ) ( ) ( ) ( )∑ ∑ ∑
= = =

−+−+−+−≤

n

ji

n

ji

ijij

n

ji

ijijijijijij db
k

ca
k

dbca
k

1, 1, 1,
333

1

3

1

3
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( ) ( )( ) ( ) ( )[ ].,,,,,
3

DBdCAdDCFBAFd
k

++=  

Clearly, all the conditions of the previous Corollary hold, and the unique coupled 

fixed point is ( ) ( ) ( ),0,0 RR nnnnnn LU I∈××  where nn×0  is the null matrix. 
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